QUALITATIVE ANALYSES OF A FUNDAMENTAL MOTOR SKILL ACROSS THE LIFESPAN: LINKING PRACTICE AND THEORY

Submitted by

John Ewen See Haynes
Master of Education
(University of New England, Armidale, NSW 1994)

Bachelor of Arts
(University of New England, Armidale, NSW 1984)

Diploma in Physical Education
(Wollongong Teachers’ College, Wollongong NSW 1968)

This Thesis is presented for the degree of
Doctor of Philosophy of the
University of New England
School of Education

April, 2009
ACKNOWLEDGEMENTS

I wish to acknowledge the contributions of the following people. These include supervisors, colleagues, students, family and many friends.

Prof. John Pegg for your patience, sensitivity, dedication and timing.

Dr Judith Miller for her tolerance, support, skilful guidance and friendship.

To my colleagues and friends at the School of Education, for your interest, support and collegiality throughout this “trek across time”. In particular, Dr. Rosemary Callingham, many thanks for pointing me in the right direction with regard to the use of statistics. Mr Tony Brown for technical assistance with the conversion of visual data into a form that my computer could manage. I acknowledge the support and friendship of fellow Physical Education team members Mrs Annette Freak and Dr Claire Parker.

Special mention must go to the all participants and officials from the Gunnedah Gymnastics Club and their dedicated coaches Mr Kevin Maunder and Ms Debbie Croft. My thanks also to the members of the Coffs Harbour Gymnastics Club and the UNE students who volunteered to participate.

I also wish to acknowledge the support from two UNE sources. The Faculty of Education for the Internal Research Grant made available for the collection of data, and to the Special Studies Program Committee for granting study leave at the appropriate intervals. I am very appreciative of the timely support.

To the all members of my family who were always asking: “Are you there yet” ... “Yes, I think so.”
TABLE OF CONTENTS

List of Publications vi
List of Tables vii
List of Figures ix
List of Appendices x
Abstract xiv

PREAMBLE

1

CHAPTER ONE: HUMAN MOVEMENT: FROM THEORY TOWARDS PRACTICE

- Movement: Theoretical Perspectives 3
- Motor Development: A Maturational Perspective 3
 - Motor Learning and Control: Cognitive Perspective 8
 - Movement Changes: Dynamic Systems 13
 - Conclusion 17
- Learning Domains 18
 - Bloom’s Taxonomy 18
 - Models of the Psychomotor Domain 20
 - Conclusion 25
- Terminology: A Perplexing Situation 26
 - Conclusion 27
- Stage Models Of Learning 28
 - Stage Theorists 28
 - Conclusion 36
- Chapter Conclusion 36

CHAPTER TWO: EXAMINING A PROBLEM

- Motor Skill Acquisition 39
 - A “Benchmark” Model 40
 - Alternative Models of Skill Acquisition 43
 - Conclusion 45
- Motor Skill Assessment In Practice 45
 - Assessment System for the Forward Roll 46
 - Alternative Assessments of the Forward Roll 50
 - Conclusion 59
- The Lifespan Challenge: The Solo Model 60
 - Overview of SOLO 60
 - SOLO Modes and Forms of knowledge 61
 - Learning Levels 62
 - Learning Cycles 64
 - The Foundational Mode of SOLO: Is it tacit? 67
 - Research Potential: The SOLO Model and Movement Studies 69
 - Conclusion 71
- Chapter Conclusion 72
- Research Themes And Questions 74
CHAPTER SEVEN: ANALYSIS OF THE MAMQ:FR FRAMEWORK 175
- Data Treatment 175
- Rasch Analysis: Results 177
 - Item and Case Estimate Results 178
 - Item Fit 180
 - Item difficulty 181
 - Conclusion 185
- A New Theoretical Paradigm 185
 - The MAMQ:FR from a SOLO Perspective 186
 - The SOLO Observational Checklist (SOC) 190
 - Exemplars of Determining SOLO Levels using the SOC 192
 - Conclusion 203
- Reliability 204
 - Conclusion 205
- Chapter Conclusion 205

CHAPTER EIGHT: DISCUSSION OF RESULTS AND CONCLUSION 207
- Possible Limitations Of The Study 207
- Synopsis Of The Research Findings 209
- Implications Of The Findings 212
- Recommendations For Future Research 215
- Chapter Conclusion 215

REFERENCES 217

APPENDICES 227
LIST OF PUBLICATIONS

Parts of this Thesis appear are published in the following:

###########
LIST OF TABLES

Table 1.1: Harrow’s Elements of the Psychomotor Domain (1972) 20
Table 1.2: Simpson’s Taxonomy for the Psychomotor Domain (1972) 21
Table 1.3: Dave’s Categories of the Psychomotor Domain (1975) 22
Table 1.4: Characteristics and Interests of Children: Psychomotor Domain 24
Table 1.5: Abridged Version of Fischer’s Levels of Cognitive Skills Development 30
Table 1.6: Mounoud’s Stages of Cognitive and Motor Development 34
Table 2.1: General Faults Sheet: Floor Routines (Women) 48
Table 2.2: Descriptive Aspects of the Forward Roll 49
Table 2.3: Initial Phase of the Developmental Sequences for the Forward Roll 51
Table 2.4: Completion Phase of the Developmental Sequences for the Forward Roll 52
Table 2.5: Organisation of the Component System: the Forward Roll 53
Table 2.6: Descriptions of Steps Within Component Phases for the Forward Roll 54
Table 2.7: Descriptions of Steps Within Component Phases for the Forward Roll: Late Phase 55
Table 2.8: Gallahue and Ozmun’s Developmental Sequence of Body Rolling 56
Table 2.9: Key Observation Points: Proficiency of Rolling 58
Table 3.1: Summary of Participants’ Profile 85
Table 3.2: Example of Video Data Transcription 91
Table 4.1: Time Based Movements: Lateral Aspect 111
Table 4.2: General Description for Claire 113
Table 4.3: Summary of all Perspectives for Claire 115
Table 4.4: Time Based Movements: Lateral Aspect 117
Table 4.5: General Description for Ewen 119
Table 4.6: Summary of all Perspectives for Ewen 120
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7</td>
<td>Time Based Movements: Lateral Aspect</td>
<td>122</td>
</tr>
<tr>
<td>4.8</td>
<td>General Description for Gail</td>
<td>124</td>
</tr>
<tr>
<td>4.9</td>
<td>Summary of all Perspectives for Gail</td>
<td>126</td>
</tr>
<tr>
<td>4.10</td>
<td>Case Study Perspectives: An Overview</td>
<td>127</td>
</tr>
<tr>
<td>6.1</td>
<td>Beginning Sequence for all Cohorts</td>
<td>156</td>
</tr>
<tr>
<td>6.2</td>
<td>Bridging Sequence for all Cohorts</td>
<td>164</td>
</tr>
<tr>
<td>6.3</td>
<td>End Sequence of Feet Position and Final Movements for all Cohorts</td>
<td>167</td>
</tr>
<tr>
<td>6.4</td>
<td>Summary of Most Common Descriptors</td>
<td>172</td>
</tr>
<tr>
<td>7.1</td>
<td>Coding Information</td>
<td>176</td>
</tr>
<tr>
<td>7.2</td>
<td>Example of Data Code for a Single Participant</td>
<td>177</td>
</tr>
<tr>
<td>7.3</td>
<td>Summary of Item Estimates</td>
<td>178</td>
</tr>
<tr>
<td>7.4</td>
<td>Summary of Case Estimates</td>
<td>179</td>
</tr>
<tr>
<td>7.5</td>
<td>Item Fit for Nine Indicators of the Forward Roll</td>
<td>181</td>
</tr>
<tr>
<td>7.6</td>
<td>Number of Participants in each SOLO Cycle and Level</td>
<td>190</td>
</tr>
<tr>
<td>7.7</td>
<td>SOLO Observational Checklist for the Forward Roll</td>
<td>191</td>
</tr>
<tr>
<td>7.8</td>
<td>SOC for Aimee</td>
<td>196</td>
</tr>
<tr>
<td>7.9</td>
<td>SOC for Ewen</td>
<td>199</td>
</tr>
<tr>
<td>7.10</td>
<td>SOC for Claire</td>
<td>202</td>
</tr>
<tr>
<td>7.11</td>
<td>Number of Participants In each SOLO Cycle and Level using SOC</td>
<td>203</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1.1: Phases of Motor Development: Gallahue and Ozmun (2006) 8
Figure 1.2: Case’s (1985) Sensori-Motor Stage of Mental Development 32
Figure 1.3: SOLO: Modes and Forms of Knowledge (adapted from Biggs & Collis 1980) 35
Figure 1.4: An Hypothetical connection between Motor Development, Motor Skill Learning and Motor Control 38
Figure 2.1: Elements of the Forward Roll 50
Figure 2.2: SOLO Pathways 63
Figure 2.3: Cycles of Learning within the SOLO Model 65
Figure 3.1: Equipment Placement For The Pilot Study 78
Figure 3.2: Camera Location, Mat Placement and Roll Direction 86
Figure 4.1: Example of a Low Quality Performance 105
Figure 4.2: Example of Medium Quality Performance 107
Figure 4.3: Example of High Quality Performance 108
Figure 4.4: High Quality Performance 112
Figure 4.5: Medium Quality Performance 118
Figure 4.6: Low Quality Performance 123
Figure 5.1: Hand Position 133
Figure 5.2: Arm/Elbow Position 134
Figure 5.3: Head Position 135
Figure 5.4: Contact Points 136
Figure 5.5: Hip Flexion, Knee Extension followed by Flexion of both Legs (Sbc) 138
Figure 5.6: Hips/Knees remain Flexed (Bt) 138
Figure 5.7: Hip and Knee Flexion followed by Extension of Both (Bs) 139
Figure 5.8: Hip Flexion, Knees Remain Extended then Hip Extension (Ss) 140
Figure 7.7: Aspects of the Start: Ewen 196
Figure 7.8: Aspects of Rotation: Ewen 197
Figure 7.9: Aspects of the Finish: Ewen 198
Figure 7.10: Aspects of the Start: Claire 200
Figure 7.11: Aspects of Rotation: Claire 200
Figure 7.12: Aspects of the Finish: Claire 201
LIST OF APPENDICES

APPENDIX A
Sample Gymnastic Judging Sheet 227

APPENDIX B
Sample Forward Rolling Checklist –Multiple Observations 228

APPENDIX C
Permission Letter/Consent Form For Children 229

APPENDIX D
Research Approval Notice 231

APPENDIX E
Transcripts of Interviews 232

APPENDIX F
Adult Information/Consent Form 253

APPENDIX G
Transcript of Selected Interviews 255

APPENDIX H
Leximancer Theme Map 259

APPENDIX I
Two Additional Children’s Cohort Case Studies 260

APPENDIX J
Two Additional Young Adult Cohort Case Studies 269

APPENDIX K
Two Additional Young Adult Cohort Case Studies 276

APPENDIX L
Coding for Beginning, Bridging & End Sequences: Children 282

APPENDIX M
Coding for Beginning, Bridging & End Sequences: Young adults 283

APPENDIX N
Coding for Beginning, Bridging & End Sequences: Older Adults 284

APPENDIX O
Selected SOLO Sequence Descriptions for the Forward Roll 285

APPENDIX P
Solo Levels and Cycles for all Children, Young Adults and Older Adults 293
APPENDIX Q
 Samples of SOLO Observation Checklists

APPENDIX R
 SOC Codes for all Cohorts

APPENDIX S
 The Performers: Notes related to the findings
ABSTRACT

This study is an investigation of the sensorimotor mode of learning. This is facilitated by observations of individuals across a 44 year age range, performing the fundamental motor skill of the forward roll. This fundamental motor skill was selected because it has already been partially validated for developmental sequences.

The participants comprised 28 males and 89 females. The cohorts were: children (n=48); young adults (n=24); and, older adults (n=45). All participants (N=117) were video taped whilst performing the forward roll. In addition, the adults were interviewed about their performance.

The performances of all participants were analysed initially by comparing them to an “ideal”. Following this analysis, nine participants were selected for further analysis, on the basis of their representative age group – children, young adults and older adults, as well as the quality of their performance – low, medium or high. The purpose of this approach was to assess whether three currently used instruments, each representing an alternative assessment perspective, could provide an accurate measure of quality when applied to the nine performances. In so doing, a movement domain specific comparison of the performances for the fundamental movement skill was provided. The results of this analysis showed that the instruments did not accurately assess the quality of the performance of the forward roll across the lifespan.

A new instrument was developed from a fine-grained analysis of all participants’ performances that addressed the identified deficiencies. This instrument was termed the Model for Assessing Movement Quality of the Forward Roll (MAMQ:FR). It was based upon incremental observational components, which were termed indicators and descriptors. These indicators and descriptors were applied to three hypothetical sequences within the forward roll – the beginning, bridging and end.

The partial credit form of Rasch modelling, involving the Quest statistical package was applied to the data to determine the veracity of the underlying construct of the MAMQ:FR. The application of Quest to the data confirmed that the MAMQ:FR utilised a single underlying construct, that is, the quality of movement. An innovative addition to the statistical analysis was the presentation of the item fit map in pictorial format, whilst still accurately demonstrating the step difficulty and level of quality for a particular movement.
A comparative analysis and an interpretation of the performance indicator data for the forward roll, for all cohorts was also undertaken. The resulting analysis presented in both tabulated and graphical format demonstrated that the observable components for the forward roll were similar for children, young adults and older adults.

Based on the acceptable levels of the fit statistics, the SOLO theoretical paradigm was applied to the MAMQ:FR framework. This step was undertaken by using the three identified sequences within the forward roll and the indicators and descriptors of the MAMQ:FR. As a result the SOLO cycles and levels were identified and described for each sequence of the forward roll. In addition, further analysis using a SOLO Observation Checklist (SOC) indicated that cycles and levels could be applied to the skill using a whole body approach. The implications of this investigation include the first exploration of the cycles of learning in the sensorimotor mode of learning, within the SOLO model. This finding has implications for how the assessment of learning is approached in the movement domain and provides a bridge between the cognitive modes of learning and those of skilled human movement across the lifespan.