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ABSTRACT
Aedes albopictus, the Asian Tiger Mosquito, vector of Chikungunya, Dengue Fever
and Zika viruses, has proven its hardy adaptability in expansion from its natural
Asian, forest edge, tree hole habitat on the back of international trade transportation,
re-establishing in temperate urban surrounds, in a range of water receptacles and
semi-enclosures of organic matter. Conventional aerial spray mosquito vector controls
focus on wetland and stagnant water expanses, proven to miss the protected hollows
and crevices favoured by Ae. albopictus. New control or eradication strategies are thus
essential, particular in light of potential expansions in the southeastern and easternUSA.
Successful regional vector control strategies require risk level analysis. Should strategies
prioritize regions with non-climatic or climatic suitability parameters forAe. albopictus?
Our study used current Ae. albopictus distribution data to develop two independent
models: (i) regions with suitable non-climatic factors, and (ii) regions with suitable
climate for Ae. albopictus in southeastern USA. Non-climatic model processing used
Evidential Belief Function (EBF), together with six geographical conditioning factors
(raster data layers), to establish the probability index. Validation of the analysis results
was estimated with area under the curve (AUC) using Ae. albopictus presence data.
Climatic modeling was based on two General Circulation Models (GCMs), Miroc3.2
and CSIRO-MK30 running the RCP 8.5 scenario in MaxEnt software. EBF non-
climatic model results achieved a 0.70 prediction rate and 0.73 success rate, confirming
suitability of the study site regions for Ae. albopictus establishment. The climatic model
results showed the best-fitmodel comprisedColdestQuarterMeanTemp, Precipitation
of Wettest Quarter and Driest Quarter Precipitation factors with mean AUC value of
0.86. Both GCMs showed that the whole study site is highly suitable and will remain
suitable climatically, according to the prediction for 2055, for Ae. albopictus expansion.

Subjects Ecosystem Science, Climate Change Biology, Environmental Impacts, Spatial and
Geographic Information Science
Keywords Mosquito, Ae. albopicus and Aedes albopictus, MaxEnt, USA, GIS, Evidential Belief
Function

INTRODUCTION
Invasive alien species pose a threat to biodiversity, ecosystems, agriculture, human and
animal health, and consequently inflict economic damage (Pyšek & Richardson, 2010).
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Invasive weeds smother and crowd out indigenous flora, thereby threatening local fauna;
some release allergenic pollens harmful to many humans, while invasive waterweeds clog
and choke natural waterways. The introduction of an alien flora species may concurrently
introduce alien parasites, fungi, invertebrate larvae or diapausing eggs, hosted by that
species in its environmental niche. Such hosted species may be potential vectors of novel
pathogens into their new environment. Similarly, some invasive alien insect species may
be vectors of diseases of epidemic potential (Antia et al., 2003) that can be medically,
socially and economically devastating (Pimentel, 2011). Despite the advanced control
mechanisms of modern public health, and stringent standards imposed at borders to
control what travelers and traders carry in and out through border posts, invasive alien
species still penetrate and establish an environmental presence.Whether or not the potential
health and economic impacts of such invasions have been quantified, logic demands the
elimination of such potentially dangerous invasive alien species as a precaution, as quickly
as possible (Wittenberg & Cock, 2001). In practice, aside from invasions of pests that have
an economic impact and act as vectors of disease, response is often delayed (Hulme, 2006).

Aedes albopictus, or the Asian tiger mosquito, a belligerent insect that bites during the
day, has emerged as a threat to public health worldwide and has been identified as the
vector of the Chikungunya and Dengue viruses, among others. Most recently it has been
verified in Brazil that Ae. albopictus is a potential vector of Zika virus, of which its closest
relative, Ae. Aegypti, has been the major vector thus far (Schaffner, Medlock & Bortel, 2013).
Ae. albopictus is one of the world’s one hundred worst invasive species according to the
Global Invasive Species Database (GISD, 2017). This devastating impact has been facilitated
by a rapid spread from its native East Asian to western Pacific and Indian Ocean natural
domains (Caminade et al., 2012).

While the species has hadmultiple introductions to Australia andNewZealand, it has not
established itself there, mainly attributable to the efficiency of entomological surveillance
in the airports and harbors of these countries (Ritchie et al., 2006).

Ae. albopictus was established in the USA in 1980, ostensibly arriving in a shipload of
used tires from Japan. (Rai, 1991). Once Ae. albopictus establishes in a particular locality,
eradication becomes virtually impossible, and costly vigilance and control becomes essential
(Holder et al., 2010).

The observed suitable climate for Ae. albopictus growth now ranges from temperate
through sub-tropical to tropical, with vegetation from savanna to evergreen and Amazon
forest. It can adapt to both arid and humid conditions (Kraemer et al., 2015a; Messina
et al., 2016; Vega-Rúa et al., 2014). Winter temperatures appear to be a limiting factor of
further spreading of the species (Hanson & Craig, 1994; Rochlin et al., 2013a; Thomas et
al., 2012), while winter precipitation may moderate the suitability of the species to colder
temperatures (Hanson & Craig, 1995). The natural Ae. albopictus habitat was originally
forest edges where they bred in tree holes, stumps of bamboo and bromeliads. Thus,
the species was formerly classified as a specifically rural vector (Higa, 2011). However,
Ae. albopictus has demonstrated an exceptional ability to adapt to new environmental
conditions and establish itself. In urban and suburban environments, it may be found
breeding in manmade containers such as external water tanks, animal water troughs,
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bird baths, plant containers, moist organic matter and abandoned tires, in both towns and
suburbs (Caputo et al., 2012). The species is now considered themajor vector, and in certain
areas the sole vector, of such environments (Caputo et al., 2012). Invasive alien mosquitos
often displace the indigenous mosquito territorially. However, the only known case of an
invasive alien replacing another invasive alien mosquito species is the displacement of Ae.
Aegypti by Ae. albopictus (Kenis et al., 2009), which has been researched and corroborated
in Florida, USA. Ae. Aegypti is the major international vector of Zika, and Ae. albopictus has
been recently acknowledged as a potential vector, which will certainly have an impact on
an outbreak of Zika in any region of such displacement (Ding et al., 2018; Kenis et al., 2009;
Nihei et al., 2014; Simard et al., 2005; Weaver & Lecuit, 2015). It should be mentioned that
Ding et al. (2018) have recently mapped the spatial distribution of Aedes aegypti and Aedes
albopictus for the current time through temperature suitability, NDVI, precipitation, urban
accessibility, night time light, urban regions, relative humidity, and population density.

USA public health departments in both rural and urban communities, which previously
had no need for developing strategies to control mosquitos, now face the challenge
of Ae. albopictus (Rochlin et al., 2013a), which poses a threat to the region without the
development of novel methods of control. Existing mosquito controls generally have
involved aerial spraying of easily accessible marshland and floodwater breeding grounds.
However, the Ae. albopictus partiality for smaller scale, protected breeding in close range
of humans in water storage and other moist semi-enclosed artifacts, evade existing control
methods. The alternative means the necessity for communities falling within the paths of
expansion to deal with the impact. The involvement of a complete community is vital.
The crucial issue is whether new strategies can be developed at a relatively low cost.
Projecting regions of expansion and general forward planning and sufficient funding
through greater public awareness will be the key to effective campaigns. In terms of Ae.
albopictus adaptation from rural to urban surrounds, and the need for policy makers
and public health organizations to prioritize resources, crucial decisions will need to be
made on whether to focus generally on regions with suitable climate, or rather on specific
non-climatic parameters such as roads, lakes, rivers, altitude and slope within climatically
suitable regions?

The answer to this question is synonymous with the aim of this study which sets out
to determine whether Ae. albopictus distribution is more associated with non-climatic
parameters or climate suitability?

The current distribution of Ae. albopictus in the southeastern region of the USA was
used to develop two separate models for this species of mosquito, based on (i) regions
with suitable non-climatic factors, and (ii) regions with suitable climate. The non-climatic
model comprised a data-driven Evidential Belief Function with six conditioning factors:
(i) altitude, (ii) slope, (iii) aspect, (iv) distance of locality from road, (v) distance of locality
from river and (vi) geology, through ArcGIS. The climatic model was based on two GCMs
ofMiroc3.2 and CSIRO-MK30 for the current time under RCP 8.5 scenario and employed
MaxEnt software. We hold the view that the methodology and results of this study will
promote active surveillance of Ae. albopictus, as well as other invasive insect species. The
results of this study will emphasize the need for increasing awareness to promote vigilance
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 Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID,
IGN, and the GIS User Community
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Figure 1 Study area and Asian Tiger Mosquito testing and training points.
Full-size DOI: 10.7717/peerj.4474/fig-1

and effective control and eradication mechanisms, complementing the current online
information networks of the relevant government and non-government bodies.

METHODOLOGY
Study area selection
The study site is located between 75◦30′00′′W and 92◦00′00′′W, and 25◦00′00′′N and
36◦30′00′′N in USA (Fig. 1). In selecting the study site, we looked for an area exhibiting
variations of each conditioning factor, as well as Ae. albopictus presence. For example, in
terms of altitude, the study area should display a range of altitudes. Our selected study area
had an altitude range from 0 m to 2,031 m above sea level. For geology, the study area had
80 different geological fractures.

Spatial datasets
Inventory factors
In the study, 70% of the Ae. albopictus presence layer, an inventory factor obtained from
Global Biodiversity Information Facility database (Global Biodiversity Information Facility,
2017) and Kraemer et al. (2015b), were used for model training while the remainder 30%
was reserved for model validation (Fig. 1). The training and testing points cover all the
study area and the testing points were selected randomly.
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Conditioning factors
The six geographical conditioning factors (i) altitude, (ii) slope, (iii) aspect, (iv) distance of
locality from road, (v) distance of locality from river and (vi) geology, with a grid cell size
90× 90 m were used to run the EBFmodel. The quantile classification scheme was used for
all conditioning factors, as recommended by Tehrany, Pradhan & Jebur (2013). Altitude,
slope and aspect layers were generated from DEM data obtained from EarthExplorer (2014)
as shown in Figs. 2A–2C respectively. Distances from road and river layers were generated
by Euclidean Distance tool and divided into ten classes using the quantile method, as
shown in Figs. 2D and 2E respectively. The geology layer, obtained from the United
States Department of Agriculture (USDA) (United States Department of Agriculture, 2017)
contained 80 different types of lithology as shown in Fig. 3. The elevation layer was included
as it depicts climate variations and the physical barriers limiting dispersion. The road, river
and geological layers were included as the greatest densities of Ae. albopictus occur in urban
environments (Rochlin et al., 2013a).

Non-climatic modeling
Evidential Belief Function (EBF), which is also called Dempster-Shafer theory of evidence,
was developed by Dempster (Dempster, 1967), based on the Bayesian theory of subjective
probability. Its advantages are the relative flexibility with which it accepts uncertainty
and its ability to aggregate beliefs from many sources of evidence (Thiam, 2005). Rather
than estimating the validity of probabilities, the Dempster-Shafer technique calculates the
nearness of the evidence in proving the validity of a hypothesis (Pearl, 1990). Applications
of EBF have been effective in many fields of research that utilize GIS data (Malpica, Alonso
& Sanz, 2007).

To produce a hazard index of presence of Ae. albopictus, the conditioning factors were
expressed individually as acquired weights and then aggregated (Eq. (1)).

Assuming a set of Ae. albopictus presence conditioning factors C = (Ci,i= 1,2,3,...,n),
consisting of mutually exclusive and exhaustive factors Ci. C represents the frame of
discernment, and a fundamental probability assignment is represented by the function
m : P(C)→[0,1].

The set P(C) includes all subsets of C , as well as C itself and the empty set.
m : P(C)→[0,1] is described as amass function and satisfiesm(8)= 0 and

∑
ACm(A)= 1,

in which 8 represents the empty set and A represents any subset of C . The m(A) estimates
to what degree the evidence supports A, which is denoted by Bel (A), a belief function.

There are four basic evidential belief functions attributable to a proposition, based on
evidence. These four functions establish the degree of: (i) Belief (Bel), (ii) Disbelief (Dis),
(iii) Uncertainty (Unc) and (iv) Plausibility (Pls). Bel represents the lower bound and Pls
represents the upper bound of probability (Althuwaynee, Pradhan & Lee, 2012; Awasthi &
Chauhan, 2011). Unc is established by the difference between Bel and Pls, and represents
the ignorance. Dis represents the degree of probability that the proposition is false.

Dis= 1−Pls or 1−Unc−Bel , such that Bel+Unc+Dis= 1. For a case of Cij zero
presence of Ae. albopictus, implying that Bel = 0, Dis is reset to zero, whether that is
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Figure 2 Study area’s (A) altitude (B) slope, (C) aspect, (D) distance from roads, (E) distance from
rivers. (continued on next page. . . )

Full-size DOI: 10.7717/peerj.4474/fig-2

the case or not (Carranza, Hale & Faassen, 2008). EBF can be estimated on the basis of a
subjective judgment or calculated on the input of data (Srivastava, Mock & Gao, 2011). By
superimposing the inventory map (L) of Ae. albopictus onto the six individual conditioning
factor maps, we ascertained the number of pixels with Ae. albopictus presence and absence,
for each separate conditioning factor. Assuming that N (L) represents the total of presence
pixels and N (C) the total pixels comprising the study site, Cij represents the jth class
attribute of Ae. albopictus presence conditioning factors Ci ( i= 1,2,...,n), N (Cij) is the
total of pixels for class Cij , and N (L∩Cij) is the Ae. albopictus presence pixels in Cij .
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Figure 2 (. . .continued)
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Figure 3 Geology of the study area.
Full-size DOI: 10.7717/peerj.4474/fig-3
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According to (Carranza & Hale, 2003), estimation of EBFs based on data is represented by:

Bel
(
Cij
)
=

WCij (Ae.Albopictus presence)∑n
j=1WCij (Ae.Albopictusabsence)

(1)

WCij (Ae.Albopictus presence)=

N (L∩Cij )
N (L)

[N (Cij )−N (L∩Cij )]
[N (C)−N (L)]

(2)

Dis
(
Cij
)
=

WCij (Ae.Albopictus absence)∑n
j=1WCij (Ae.Albopictus absence)

(3)

where,

WCij (Ae.Albopictus presence)=

[N(Cij)−N (L
⋂
Cij )]

N (L)
[N (C)−N (L)−N(Cij)+N (L

⋂
Cij )]

[N (C)−N (L)]

. (4)

In Eq. (2) the numerator represents the proportion of Ae. albopictus presence pixels
occurring in factor class Cij , while the denominator represents the proportion of Ae.
albopictus absence pixels in factor class Cij . In Eq. (4) the numerator represents the
proportion of Ae. albopictus absence pixels in factor class Cij , while the denominator
represents the proportion ofAe. albopictus absence pixels in attributes excluding factor class
Cij . The parameter WCij (Ae. albopictus presence) represents the weight of Cij supporting
the belief that Ae. albopictus presence exceeds Ae. albopictus absence. Parameter WCij (Ae.
albopictus absence) is the weight of Cij that supports the belief that Ae. albopictus absence
exceeds presence.

After calculation of the EBF function for all Ae. albopictus presence conditioning
factors, Dempster’s combination rule was introduced to produce the four integrated
EBFs (Dempster, 1967). The formulae for combination of two Ae. albopictus presence
conditioning factors C1 and C2 are as follows (Carranza, Woldai & Chikambwe, 2005):

BelC1C2 =
BelC1BelC2+BelC1UncC2+BelC2UncC1

1−BelC1DisC2−DisC1BelC2

(5)

DisC1C2 =
DisC1DisC2+DisC1UncC2+DisC2UncC1

1−BelC1DisC2−DisC1BelC2

(6)

DisC1C2 =
DisC1DisC2+DisC1UncC2+DisC2UncC1

1−BelC1DisC2−DisC1BelC2

. (7)

Integrated EBFs of the Ae. albopictus presence conditioning factors are applied in
sequence by means of Eqs. (5)–(7). Table 1 shows the estimated EBFs for the six Ae.
albopictus presence conditioning factors.

Climatic data, future scenarios and climate models
Baseline climate was represented by the WorldClim current climate dataset of BIOCLIM
variables (http://www.worldclim.org). WorldClim is a high-resolution climate average for
the period 1961 to 1990, with global coverage and spanning the time period over which
the majority of occurrence records were collected. Possible future climates at global scale
incorporated four IPCC5 greenhouse gas concentration (GHC) trajectories, which differ
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Table 1 The estimated EBF for the six Ae. albopictus conditioning factors (i) altitude, (ii) slope, (iii) aspect, (iv) distance of locality from road,
(v) distance of locality from river, and (vi) geology.

Layer Classes Pixels in class Belief Disbelief uncertainty plausibility

Altitude (m) 0–15 11844138 23 8 69 92
15.01–27 11044489 24 8 68 92
27.01–44 11103435 16 9 75 91
44.01–70 11205803 12 9 79 91
70.01–97 10777866 8 10 82 90
97.01–127 10766882 2 10 88 90
127.01–167 10729677 5 10 85 90
167.01–228 10530594 0 11 89 89
228.01–321 10384667 4 10 86 90
321.01–2,031 10264963 1 10 89 90

Slope (Degree) 0–2.71 10817128 10 9 81 91
2.72–5.12 11518857 12 9 79 91
5.13–7.84 11211137 12 9 79 91
7.85–10.55 11296609 10 10 80 90
10.56–13.86 10691424 14 9 77 91
13.87–17.48 10788198 13 9 78 91
17.49–21.7 10695224 7 10 83 90
21.71–26.82 10548139 5 10 85 90
26.83–33.75 10586704 9 10 81 90
33.76–76.85 10499094 4 10 86 90

Aspect (Direction) Flat 1966236 8 11 81 89
North 13716970 11 11 78 89
Northeast 13146928 7 11 82 89
East 12995205 6 11 83 89
Southeast 13288273 10 11 79 89
South 14219316 15 10 75 90
Southwest 13358372 12 11 77 89
west 12885860 13 10 77 90
Northwest 13075354 13 10 77 90

Distance of locality from Road (m) 0–252.46 9093909 22 9 69 91
252.47–757.38 15575127 19 8 73 92
757.39–1,262.3 13129450 15 9 76 91
1,262.31–1,767.22 11372444 9 10 81 90
1,767.23–2,524.59 14065017 17 9 74 91
2,524.6–3,281.97 10968822 4 10 86 90
3,281.98–4,291.81 10815605 1 10 89 90
4,291.82–5,554.11 8877260 3 10 87 90
5,554.12–7,573.78 7524670 0 10 90 90
7,573.79–64,124.67 7230210 6 10 84 90

(continued on next page)
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Table 1 (continued)

Layer Classes Pixels in class Belief Disbelief uncertainty plausibility

Distance of locality from River (m) 0–9,601.28 9750778 11 9 80 91
9,601.29–22,402.98 11907617 8 10 82 90
22,402.99–35,204.69 11317607 8 10 82 90
35,204.7–49,606.6 11872683 4 10 86 90
49,606.61–65,608.73 11611532 14 9 77 91
65,608.74–83,211.08 10954263 11 9 80 91
83,211.09–102,413.63 10793879 6 10 84 90
102,413.64–126,416.83 10642544 7 10 83 90
126,416.84–161,621.51 10084369 16 9 75 91
161,621.52–408,054.31 9717242 10 9 81 91

Geology water 1483703 0 1 99 99
clay or mud 17275519 5 1 94 99
limestone 11355836 9 1 90 99
delta 1287865 10 1 89 99
alluvium 3199675 4 1 95 99
sandstone 6712321 6 1 93 99
beach sand 4633046 9 1 90 99
sand 25077193 5 1 94 99
dolostone (dolomite) 2012103 0 1 99 99
mixed clastic/carbonate 27,891 0 1 99 99
unconsolidated deposit 1691087 16 1 83 99
calcarenite 958,785 14 1 85 99
dune sand 71335 0 1 99 99
silt 1399918 0 1 99 99
indeterminate 537 0 1 99 99
claystone 1138234 0 1 99 99
terrace 363141 0 1 99 99
carbonate 1479813 0 1 99 99
shale 3770339 0 1 99 99
mudstone 48266 0 1 99 99
conglomerate 1250159 0 1 99 99
black shale 21201 0 1 99 99
greenstone 26169 0 1 99 99
amphibolite 563162 0 1 99 99
schist 960674 0 1 99 99
mica schist 1854096 0 1 99 99
quartzite 248931 0 1 99 99
pyroxenite 12283 0 1 99 99
phyllite 428634 0 1 99 99
marble 20271 0 1 99 99
felsic gneiss 276180 0 1 99 99

(continued on next page)
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Table 1 (continued)

Layer Classes Pixels in class Belief Disbelief uncertainty plausibility

tonalite 52635 0 1 99 99
dacite 1823 0 1 99 99
trondhjemite 7813 0 1 99 99
slate 212254 0 1 99 99
metasedimentary rock 1529772 4 1 95 99
orthogneiss 87322 0 1 99 99
granite 1855440 3 1 96 99
quartz monzonite 32402 0 1 99 99
granodiorite 39584 0 1 99 99
granitic gneiss 2339458 2 1 97 99
chert 1586586 4 1 95 99

Geology quartz-feldspar schist 23548 0 1 99 99
mafic gneiss 146884 0 1 99 99
mylonite 158219 0 1 99 99
biotite gneiss 3561030 1 1 98 99
gneiss 1525144 0 1 99 99
gabbro 148560 0 1 99 99
ultramafic intrusive rock 13,298 0 1 99 99
amphibole schist 11552 0 1 99 99
hornfels 3420 0 1 99 99
charnockite 8768 0 1 99 99
augen gneiss 19131 0 1 99 99
quartz diorite 77694 0 1 99 99
arkose 123 0 1 99 99
gravel 120,094 0 1 99 99
loess 92 0 1 99 99
tectonic breccia 479 0 1 99 99
biotite schist 17160 0 1 99 99
metamorphic rock 1063128 0 1 99 99
siltstone 66319 0 1 99 99
graywacke 153019 0 1 99 99
diorite 15751 0 1 99 99
peat 449404 0 1 99 99
metavolcanic rock 529438 0 1 99 99
felsic metavolcanic rock 928277 0 1 99 99
mafic metavolcanic rock 138759 0 1 99 99
syenite 5883 0 1 99 99
paragneiss 72466 0 1 99 99
lake or marine deposit (non-glacial) 1159949 0 1 99 99
granitoid 136910 0 1 99 99
phyllonite 15496 0 1 99 99
arenite 28543 0 1 99 99

(continued on next page)
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Table 1 (continued)

Layer Classes Pixels in class Belief Disbelief uncertainty plausibility

meta-argillite 570737 0 1 99 99
intermediate metavolcanic rock 46,641 0 1 99 99
migmatite 33447 0 1 99 99
diabase 6843 0 1 99 99
norite 14 0 1 99 99
felsic volcanic rock 38 0 1 99 99
pelitic schist 13 0 1 99 99

Geology meta-conglomerate 1160 0 1 99 99

in terms of GHC emission peaks. The lower the number of the trajectory, the earlier in the
century it peaks.

We purposefully chose the worst (extreme) RCP8.5 (peak 2080) (Stocker et al., 2013)
for incorporation into the future climate scenario in the model projections as it is not yet
possible to determine which estimates of the climate change and RCPs of 2.6, 4.5, 6.0 and
8.5 are the most reliable (Randall et al., 2007). RCP8.5 is a representative concentration
pathway that includes relatively high emissions of greenhouse gases. Other factors assumed
in RCP8.5 are high demographic development, relatively slow economic growth, with
modest progress in technology and the introduction of novel sources of energy. These
factors culminate in an increased demand for energy and higher GHG emissions over the
long term, without a more radical approach to the projected impact of climate change
(Riahi et al., 2011).

There are 19 General Circulation Models (GCMs) in WorldClim database and we have
selected GCMs of Miroc3.2 and CSIRO-MK30, which have higher reputations and have
been used for projections of many invasive species, agricultural crops and pests (Da Silva et
al., 2017a; Da Silva et al., 2017b; Lamsal et al., 2017; Paterson et al., 2017; Ramirez-Cabral,
Kumar & Shabani, 2017b; Ramirez-Cabral, Kumar & Shabani, 2017a; Shabani, Kumar &
Ahmadi, 2016; Shabani, Kumar & Ahmadi, 2017; Shabani, Kumar & Taylor, 2012).

Climatic modeling
MaxEnt desktop version 3.3.3k, with modified parameters, was used to construct the
climatic model (Phillips, Anderson & Schapire, 2006; Phillips & Dudík, 2008). MaxEnt
requires a user-defined background of geographical data (Guillera-Arroita, Lahoz-Monfort
& Elith, 2014) in order to compare the climate of a set of grid cells representing the
presence of a species, with the reference set representing the climate of the sampled cells.
The selected geopgraphical data is a significant determinant of the results of themodel (Elith
et al., 2011) and it is important that it reflect all environmental variations covering the areas
representing the presence of the species (Elith, Kearney & Phillips, 2010). The algorithm
in MaxEnt estimates the maximum entropy probability distribution that approximates
uniformity, based on a comparison of presence and background location interactions with
a set of variables, limited by parameters imposed by the observed spatial distributions and
environmental factors. Optimisation of the maximum entropy probability distribution is
achieved by minimisation of the relative entropy between presence and background point
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data (Phillips, Anderson & Schapire, 2006). MaxEnt, with inbuilt MESS analysis tool, has
the capacity to predict future distributions, generated from two datasets of environmental
variables (Elith et al., 2011). In our study, the current conditions are used to generate the
model, with a set of variables utilized for projection of the future scenario (in this case 2055).

Using jackknife analysis and Pearson correlation technique to correlate coefficients, we
selected the most influential variables showing low correlation (R2 < 0.5) for this modeling
study. Here, BIO11 (Mean Temperature of Coldest Quarter), BIO16 (Precipitation of
Wettest Quarter) and BIO17 (Precipitation of Driest Quarter) were selected for the
modeling. To achieve greater consistency of background data and overcome the potential
for finding fewer records representing areas more recently experiencing invasions, as well
as those incompletely sampled, we assigned greater prominence to the records representing
less geographical proximity. However, it should be noted that without information on
actual survey returns, there is no method of separating unsuitable and under-sampled
areas, and that the weighting of prominence cannot overcome the fusion of these two
categories of data. After using the Gaussian kernel method to establish deviations from the
ArcGIS default values, the formula applied for weighting is to divide total weighted records
by the weighted number of land cells of the specific area, to exclude coastal region edge
effects. By adjusting the resulting grid to a range of 1–20, extreme values were excluded.
This weighting method, as advocated by Elith, Kearney & Phillips (2010), reduces bias that
gives prominence to the records of more densely sampled areas. Background training
points were generated from the kernel density layer for the species using Hawths Tools
extension (Beyer, 2004).

Model validation
The non-climatic modeling analysis was executed and validated using known Ae. albopictus
presence (Fig. 1). Using training and testing Ae. albopictus presence data, validation was
carried out using the area under curve (AUC) method. While training presence data
was used to generate the model, the results using this data does not fully represent the
model’s total efficiency. The prediction rate was measured to establish how efficiently the
model and selected conditioning factors predicted Ae. albopictus presence. AUC can assess
prediction accuracy qualitatively by arrangement of the calculated values of all cells of the
study locations into descending order, providing an individual hierarchical ranking of the
accuracy of each prediction. Thereafter, the values of cells were divided into 100 classes
with accumulation intervals of 1%.

RESULTS
Non-climatic modeling
We examined, and assessed individually, six geological variable factors that directly impact
the presence ofAe. albopictus in a specific locality. The altitude EBFs indicated that localities
of 0 to 97 m above sea level had a high probability presence of Ae. albopictus. The belief
value (Bel) peaked at 24 with altitudes from 15 to 27 m, while it was 5 and 0 at altitudes
from 127 to 167 m and 167 to 228 m respectively (Table 1). Slope EBF indicated that classes
of 2.72 to 7.84◦, 10.56 to 13.86◦ and 33.76 to 76.85◦ produced Bel values of 12, 14 and 4,
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Figure 4 AUC- success rate and prediction rate of EBFmethod.
Full-size DOI: 10.7717/peerj.4474/fig-4

respectively. The three highest Aspect Bel values of 15, 13 and 12 related to the classes of
South, Northwest and Southwest, respectively (Table 1). Distance from locality to road
was included as a conditioning factor, as motor vehicles have been shown as a means of Ae.
albopictus transmission. The highest Bel values for this factor were 22 and 19, representing
the classes of 0 to 252 m and 252 to 757 m, respectively. For Distance of locality from river,
EBF estimated the probability of Ae. albopictus presence, for all ten classes (Table 1). For
Geology, the classes of unconsolidated deposit, calcarenite and delta scored Bel values of
16 and 14 and 41, indicating the probability of Ae. albopictus presence in these geological
formations (Table 1).

Probability index and suitability map
The verification results for EBF model are shown in Fig. 4. Probability index maps of Ae.
albopictus presence produced by EBF method are shown in Figs. 5A and 5B respectively.
The range is from 0 to 1, where 0 represents zero probability and 1 represents 100%
probability. For producing suitability maps, as well as improving the visual interpretation
of locational suitability, probability maps require some form of classification (Umar et al.,
2014). There are a variety of classification techniques such as equal interval, natural break,
standard deviation and quantile, the selection of which should be based on the research
data characteristics and study objectives. Equal interval is suitable when the data displays
a normal distribution, while standard deviation arranges the data into a fixed number of
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Figure 5 Asian Tiger Mosquito probability and susceptibility maps achieved by EBFmethod.
Full-size DOI: 10.7717/peerj.4474/fig-5
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classes. Natural break suits a dataset exhibiting a sudden or big jump. Here, in order to have
a reliable judgment regarding the impact of every class of each factor on species occurrence,
we attempted to reduce the influence of classification algorithm on the conditioning factors
classes as much as possible. In some population analysis projects where the goal is to find
a big jump in the data, natural break technique is highly recommended (Hui et al., 2010;
Umar et al., 2014), while in this research, this method would not be efficient. Hence,
quantile-based classification technique was found to be more appropriate to classify the
factors in this study. This method groups equal number of pixels (area) into each group
without any interference in the separation of the pixels. We thus selected the quantile
method to produce the suitability classes. The verification results for EBF model are shown
in Fig. 4. The AUC results showed 0.73 success rate and 0.70 prediction rate (Fig. 4) and
these values are high enough and satisfactory for model prediction as documented inUmar
et al. (2014). Our probability indexes were into five zones of suitability: very low, low,
moderate, high, and very high, for EBF output (Fig. 5B).

Climatic modeling
The climatic model produced by MaxEnt, using two GCMs, Miroc3.2 (Fig. 6A) and
CSIRO-MK30 (Fig. 6B), under the RCP 8.5 scenario, shows virtually the whole study site
is highly suitable for Ae. albopictus and that this condition will persist until at least 2055.
Comparing the GCM projections for 2055, CSIRO-MK30 produced a more moderate
pattern of climatic suitability than Miroc3.2. Both GCM response curves show the highest
probabilities of Ae. albopictus presence in areas with Coldest Quarter Mean Temp (bio11)
from 16 to 23 ◦C, Wettest Quarter Precipitation (bio16) of 430 mm and Driest Quarter
Precipitation (bio17) of 350 to 450 mm (Figs. 6A and 6B). The Miroc3.2 mean AUC was
0.868, while CSIRO-MK30 indicated 0.864.

DISCUSSION
This study undertook a comparative assessment of the proficiency of the EBF and MaxEnt
statistical methods inmapping the probability ofAe. albopictus expansion based on climatic
and non-climatic parameters respectively. Based on AUC validation method, both EBF
and MaxEnt had high prediction rates and thus both can be used to generate Ae. albopictus
expansion probability and suitability for current and future time. Such maps would assist
national, regional and local public health organizations in the identification of areas, and
their degree of suitability to Ae. albopictus expansion or invasion, as a blueprint on which to
plan and implement prevention or reductionmeasures, or to prepare for potential invasion.
Suitability maps provide a foundation for more refined analytical tools such as hazard and
risk mapping. It is important to note that the accuracy of Ae. albopictus expansion risk
is dependent on the accuracy with which the conditioning factor values are calculated.
Beyond the establishment of the class, it is essential to understand which conditioning
factors impact most on Ae. albopictus expansion or invasion. Once the conditioning factors
and associated severity of impact have been established, the information is valuable as a
foundation to conservation strategies to protect areas at risk.
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Figure 6 Climatic suitability maps of Asian Tiger Mosquito based on two General CirculationMod-
els of (A) Miroc3.2 and (B) CSIRO-MK30 under RCP 8.5 scenario throughMaxEnt software plus the re-
sponse curves of the most important climatic layers.

Full-size DOI: 10.7717/peerj.4474/fig-6

We also highlight that through the Miroc 3.2 model, the overall suitability remains the
same by 2055, while the suitability will slightly decrease by 2055 in theCSIRO-MK30 model
and the possible explanation of this difference is due to each GCM and SDM functioning
slightly differently and, in line with this matter, Shabani, Kumar & Ahmadi (2017) has
recently documented that comparison of the individual SDM or GCM to an ensemble
approach showed that there was a better agreement between the ensemble outputs under
different GCMs or SDMs. This finding is in line with Araújo & New (2007), who have
recommended that using ensemble forecasting has clear advantages over single model
forecasts.

Our results indicate the importance of both climate and non-climate factors on the
degree of potential Ae. albopictus expansion. Complementary to this finding, a number
of studies have shown the inability of diapausing Ae. albopictus eggs to survive extreme
winter temperatures (Hanson & Craig, 1994). Urban habitats with high levels of organic
material, such as sewerage treatment works and storm water drainage systems, can impact
on the extent of Ae. albopictus expansion and such larval habitats should be treated with
well-developed methods providing long term relief for the entire Ae albopictus season
(Rochlin et al., 2013b). Our results also indicate that in terms of climatic suitability, and
predicted future climate scenarios, this study has validity and will remain valid in the
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future for Ae. albopictus (Fig. 6), particularly for the USA. Almost one-third of the study
site was identified as being at high risk of Ae. albopictus expansion, based on the location
of suitable non-climatic parameters alone (Fig. 5). Our results show the importance
of non-climatic parameters in that these can be used to further refine high probability
areas within climatically suitable regions. Thus, in terms of offering Ae. albopictus control
services, the climatic result is not as useful on a practical basis as the non-climatic result
due to the overall climate suitability of the whole study site. However, the projected future
impact of non-climatic parameters on Ae. albopictus expansion for the future was not
undertaken as the road and river layers will change.

The EBF outputs for altitude conditioning factor indicated that areas from 0 to 97m
above sea level had a high probability of Ae. albopictus presence, which may be attributable
to the greater instability of organic material, water or other non-climatic factors at higher
elevations. Moisture preservation and distribution of vegetation amount are related to
slope and aspect. Results showed that these factors impacted specifically on the initiation
of expansion, as well as having a direct impact on suitability to expansion. The EBF outputs
on distance of locality from road and river indicated that both factors had significance in
Ae. albopictus expansion, which may be due to the greater transportability of Ae. albopictus
eggs by vehicles, on rivers and in water catchment areas. Conversely, it is probable that
geology does not impact significantly on Ae. albopictus expansion. Thus, altitude, slope,
aspect, distance of locality from road, and distance of locality from river are the most
significant non-climatic factors affecting expansions of Ae. albopictus.

Community education regarding Ae. albopictus and awareness campaigns as to home
and garden sanitation and interventions from all levels of public, environmental health
and vector control units, as well as private sector infestation control offering mosquito
control to provide barrier treatments or other specific locality eradication methods is
important. The efficiency and practicality of large-scale adulticiding should be researched,
as well as determining the combination of factors which would demand the initiation of
this control. Without ongoing strategies to prevent Ae. albopictus further expansion, the
problem will have to be faced on an increased scale in the near future. Ongoing research
has been examining controls involving genetic modification of the species, as well as RIDL
(release of insects with dominant lethality) and the introduction of Wolbachia bacterium,
an insect parasite (Walker, 2016).

CONCLUSION
Projected warmer winter temperatures, increasing gradually over the next few decades, will
impact significantly on the potential for greater Ae. albopictus expansion of range in the
southeastern and eastern USA. By implication, more people will live within Ae. albopictus
range, and will potentially be subjected to more bites from the greater density of the
species, thus being at greater risk of the posed arboviral threats of the species. At present,
aside from small scale direct extermination of hatchings and prophylactic restriction
of the specified semi-enclosed moist habitats of water and organic matter containers,
by minimizing such habitats, no strategies or techniques of larger area control exists.
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Thus, public health agencies, particularly in regions with little or no broad anti-mosquito
strategies and techniques, may find themselves in a vacuum, in terms of vector potential of
Ae. albopictus and a novel pathogen.

Statistical modeling is advantageous for its simplicity and user friendly qualities
throughout the suitability mapping process involved. It is also capable of processing
large quantities of case or region-specific GIS data relatively quickly. Sustainable urban
development is dependent on effective remedies to the potential health impacts of vector
hazards that can reach epidemic proportions. Our study indexed potential non-climatic
factors and delineated high risk regions, demonstrating an investigative and analytical
approach as a foundation for the policy makers and public health networks. We reiterate
that anticipating areas of potential establishment based on non-climatic factors is the
priority practical approach, where a whole region is classified as suitable for Ae. albopictus
range extension.
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