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Abstract

The whitefly, Bemisia tabaci, is a major threat to tomato Solanum lycopersicum and ranks

as one of the world’s 100 most invasive pests. This is the first study of B. tabaci (Biotype B

and Q) global distribution, focusing on risk levels of this invasive pest, in areas projected to

be suitable for open field S. lycopersicum cultivation under climate change. This study aims

to identify levels of risk of invasive B. tabaci for areas of suitability for open field S. lycopersi-

cum cultivation for the present, 2050 and 2070 using MaxEnt and the Global Climate Model,

HadGEM2_ES under RCP45. Our results show that 5% of areas optimal for open field S.

lycopersicum cultivation are currently at high risk of B. tabaci. Among the optimal areas for

S. lycopersicum, the projections for 2050 compared to the current time showed an extension

of 180% in areas under high risk, and a shortening of 67 and 27% in areas under medium

and low risk of B. tabaci, respectively, while projections for 2070 showed an extension of

164, and a shortening of 49 and 64% under high, medium and low risk, respectively. The

basis of these projections is that predicted temperature increases could affect the pest,

which has great adaptability to different climate conditions, but could also impose limitations

on the growth of S. lycopersicum. These results may be used in designing strategies to pre-

vent the introduction and establishment of B. tabaci for open-field tomato crops, and assist

the implementation of pest management programs.

1. Introduction

Plant pest expansion increased in the last century, mainly due to international travel and the

trading of plants around the world [1]. A pest species may be distributed in different regions of

the planet, introduced either by natural or anthropic dispersion. After introduction, the pest

species may establish and cause negative impact to local hosting ecosystem and economy.

Many factors may influence expansion, such as the availability of hosts and appropriate cli-

matic conditions [2,3,4,5].

PLOS ONE | https://doi.org/10.1371/journal.pone.0198925 June 14, 2018 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Ramos RS, Kumar L, Shabani F, Picanço

MC (2018) Mapping global risk levels of Bemisia

tabaci in areas of suitability for open field tomato

cultivation under current and future climates. PLoS

ONE 13(6): e0198925. https://doi.org/10.1371/

journal.pone.0198925

Editor: Bi-Song Yue, Sichuan University, CHINA

Received: February 11, 2018

Accepted: May 29, 2018

Published: June 14, 2018

Copyright: © 2018 Ramos et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This research was supported by the

National Council for Scientific and Technological

Development (Conselho Nacional de

Desenvolvimento Cientı́fico e Tecnológico – CNPq),

the Brazilian Federal Agency, for the Support and

Evaluation of Graduate Education (Coordenação de

Aperfeiçoamento de Pessoal de Ensino Superior –

CAPES), the Minas Gerais State Foundation for

Research Aid (FAPEMIG), and the School of

https://doi.org/10.1371/journal.pone.0198925
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0198925&domain=pdf&date_stamp=2018-06-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0198925&domain=pdf&date_stamp=2018-06-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0198925&domain=pdf&date_stamp=2018-06-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0198925&domain=pdf&date_stamp=2018-06-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0198925&domain=pdf&date_stamp=2018-06-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0198925&domain=pdf&date_stamp=2018-06-14
https://doi.org/10.1371/journal.pone.0198925
https://doi.org/10.1371/journal.pone.0198925
http://creativecommons.org/licenses/by/4.0/


Climate is a major factor impacting on the distribution and abundance of arthropod species

[6,7]. Studies of climate effects on pests and host species have advanced significantly in recent

years and attained greater relevance, in terms of impact on distribution, physiology, phenol-

ogy, genetics and behaviors of many invasive species [8]. It is predicted that climate change

will have a great impact on agricultural crops such as date palm [9], maize [10], wheat and cot-

ton [11], rice [12], as well as insect populations, both in natural ecosystems and agroecosys-

tems [13].

The term ‘climate change’ refers to both global-scale and regional climate alterations over

time. It is an important concept in organism distribution studies, especially in the case of

insects, which are classified as ectotherms [14]. As particular regions become warmer, colder,

wetter or dryer, they may become more or less suitable for specific pests and hosts. For exam-

ple, a mean temperature increase hastens the maturing of many insect species, consequently

affecting life cycle length, reproductive capacity and the degree of mobility [8]. Thus, the distri-

bution of a species is primarily dependent on climate, which generally defines its geographical

distribution.

A species distribution model (SDM) is a tool widely used in understanding the effects of cli-

mate change on a species, as well as planning further expansion of agricultural species and

potential risks this may entail [15,16]. Such models offer the most efficient techniques for sim-

ulation of future climates under a variety of climate scenarios. They offer a means to study the

projected impact of climate change on pest distribution. The model generates categories of cli-

mate suitability and matches these to geographical regions, whether or not the species occurs

there currently. Such research, based on modeling, can predict the distribution and abundance

of pests, in addition to elucidating ecological interactions and abiotic factors affecting the natu-

ral mortality.

The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) has been shown to be

one of the most invasive and devastating insect pests of agricultural and horticultural crops,

causing enormous economic losses worldwide [17,18]. The species is sap-sucking, highly gen-

eralist and widely distributed, making it a pest of great significance in many tropical countries.

B. tabaci is ranked globally as one of the top 100 most invasive pests and has the ability to colo-

nize on more than 600 plant species [18,19]. Among the species of plants colonized by the B.

tabaci, the tomato Solanum lycopersicum cultivated in many countries and one of the most

valuable vegetable crops globally, is one of the crops worst affected by the pest [20,21,22]. The

damage caused by B. tabaci can be either through direct feeding (phloem sap-sucking), or due

to the injection of toxins and transmission of over 150 plant viruses, mainly of the genus Bego-

movirus (Family: Geminiviridae), which is significant in tomato crops [23,24,25]. Damage

caused by this insect pest may lead to mortality of the plants, with losses of up to 100% of pro-

duction [23,26,27,28]. Thus, B. tabaci is a major problem in tomato crops. Cases of productiv-

ity losses due to the presence of the pest in open field tomato cultivation are more and more

frequent, and concern is even greater where the insect is already present but the viruses (i.e

Geminivirus) have not yet been reported. The combination can make tomato production

unfeasible in many production fields around the world.

Bemisia tabaci is considered a species complex containing more than 30 morphological

indistinguishable cryptic species [29], between them there are two most invasive and destruc-

tive species, which are the Middle East-Asia minor I, and the Mediterranean species, also

referred as Biotype B and Q, respectively [17,29,30]. B. tabaci may fly long distances and

acquire new niches, mostly by international trade. It is well known that the biotypes of B.

tabaci are very dynamic and acquire new properties, and may replace another within a few

years (e.g. Biotype B replacing A in the USA, and Q replacing B in the Middle and Far East).

For this reason, it is important to consider these two biotypes in the model because they are
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showing to be similar in many aspects beyond climate requirements, and they are the ones, so

far, that have strongly suppressed other biotypes especially when they reach places where only

wild biotypes are present. Hence these two biotypes are considered most invasive and impor-

tant to tomato crops [17], and for being similar on their climate niches [31], we selected the

occurrences of these two biotypes B and Q for undertaking the modelling in this study.

Despite the impact of the whitefly and the large body of research on the species, the potential

impact of climatic change on the global distribution of B. tabaci in agricultural crops remains

understudied, particularly in tropical regions such as Brazil. So far there are only two modelling

studies, one assessing the risk presented by B. tabaci in Europe [32] and another a case study in

Bundaberg, Australia as adaptive pest management for horticulture under climate change [33].

Reviewing related research, our study appears to be unprecedented in its focus on risk levels of

invasive pest of B. tabaci, in areas suitable for S. lycopersicum cultivation under climate change.

In this research, we modeled the risk of B. tabaci in S. lycopersicum cultivation for the present

and years 2050 and 2070. Thereafter, we overlaid these results onto predicted S. lycopersicum
future distributions, to establish categories of highest, medium and lowest risk for areas highly

conducive to the cultivation of S. lycopersicum. Predicting geographical distributions of B. tabaci
facilitates the development of models and consequently the concentration of efforts in regions

with higher risk of invasion or establishment. Furthermore, analysis of the potential impact of

climate change on areas of suitability for S. lycopersicum open-field cultivation, for both present

and future are essential for the continued success of producing an economically viable crop and

the design of more efficient strategies for controlling whitefly in open-field tomato farming, in

terms of B. tabaci’s global ranking as a threat and the difficulties in attempting to control it

[17,18,34], particularly in tomatoes [35]. Though B. tabaci is present on all continents, it is not

yet established worldwide in open field scenarios [36].

2. Material and methods

2.1. Occurrence data

Occurrence data for both species examined in our research was collected from GBIF and other

references (for B. tabaci, Biotype B and Q): 878 locations from GBIF and 84 from other litera-

ture and for S. lycopersicum: 186 occurrences from literature). We confirmed that all locations

were open field, as opposed to glasshouses. Eventually, we selected 627 occurrences for B.

tabaci and retained the 186 occurrences for S. lycopersicum. The B. tabaci records were reduced

to 421 and S. lycopersicum to 177 after spatial filtering in spThin, an R package for minimizing

spatial autocorrelation [37]. This technique retains as many localities as possible and outper-

forms alternative methods [38]. All occurrence data points were>10 km apart after filtering

[38,39]. This distance ensures that each cell has only a single occurrence point.

2.2. Scenario and model

Potential distributions of pest and host were modelled using the HadGEM2_ES GCM under

the RCP45, for the years 2050 and 2070.

RCP45 was developed by the GCAM (Global Change Assessment Model) modeling team at

the Pacific Northwest National Laboratory’s Joint Global Change Research Institute (JGCRI)

(http://www.globalchange.umd.edu/models/gcam/) The scenario is structured on the core

assumption that the global irradiative force will be stabilized by 2100 through the introduction

of greenhouse gas limiting technology [40]. A secondary assumption is that forest land cover

will be extended and crop and grazing lands reduced to increase carbon storage. RCP45 was

selected on the basis that it sets out to describe the minimum aggregated impact of climate

change [41].

Risk levels of Bemisia tabaci in areas of suitability for open field tomato cultivation
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HadGEM2-ES is a product of the Hadley Centre Global Environmental Model associated

cycle of the fifth phase of the CMIP5 (http://www.ipcc.ch/report/ar5/wg1/) [42]. The model

incorporates dynamic data on the impact of greenhouse gas emissions, aerosols, solar irradi-

ance, ozone and other pollutants on vegetation, ocean biology and atmospheric chemistry

[43]. With a CO2 doubling rate of approximately 4.68˚C, it ranks near the top of the CMIP5

range for climate sensitivity [43,44]. The coupling of the atmospheric and ocean models simu-

lates the uptake and retention of carbon dioxide according to ocean depth more realistically

than its predecessors [45].

2.3. Environmental data layers

We initially considered nineteen bioclimatic parameter variables (Tables 1 and 2), from the

WorldClim dataset [46] (http://www.worldclim.org/), at 2.5min spatial resolution (~5Km).

This is a high quality resolution, sufficient to support climatic variables at global scale [2,47].

Average temperature was based on monthly climate data for minimum, mean, and maximum

temperature and precipitation on data covering 1960–1990. Other parameters were drawn

from seasonal variables and climatic extreme indices [46].

SDMtools in ARCGIS software was used to remove variables with high correlation, such

that only one variable from a group with high correlation was included (Pearson correlation

coefficient, r�|0.75|) (S1 Table). Values exceeding 0.75 are described by Kumar et al. (2014) as

relatively strong for variable selection [48]. Ultimately the inclusion of a variable was based on

realistic biological relevance to both B. tabaci and S. lycopersicum, and six bioclimatic variables

were finally selected (Table 1; S1 Table).

2.4. Model development and validation

Global potential distributions of B. tabaci and S. lycopersicum were obtained from the maxi-

mum entropy based model or MaxEnt algorithm version 3.3.3k [49]. MaxEnt constitutes a

machine learning method that forecasts the probability distribution based on maximum

entropy [49]. MaxEnt requires only a small sampling of data on the presence of a species and

the background data [48,50,51,52]. The program most suited our research which had only

presence data available for pest and host [49]. MaxEnt generates a suitability index ranging

between 0 for unsuitable and 1 for optimum suitability. 50,000 background points were ran-

domly selected for each species representing areas of current occurrence. A sampling bias was

generated in that the data was collected unsampled from external sources. This was generated

using a kernel density estimate in SDMToolbox [53]. The bias surface offsets sampling inten-

sity and potential sampling bias [54].

To optimize the model for both B. tabaci and S. lycopersicum, we made adjustments to the

MaxEnt default settings for certain combinations of feature types, as well as the regularization

multiplier (RM). [48,54,55]. Initially, we combined sets of linear [L], quadratic [Q], product

[P], threshold [T], and hinge [H] features (Tables 3 and 4) with the RM to control the number

of parameters and thus the model complexity [55,56]. RM values of 1.0; 1.5 and 2.0 were used

for both species (Tables 3 and 4).

An RM below 1 is restrictive and inappropriate for global predictions, while an RM greater

than 1 produces a broader potential distribution [49].

We used the MaxEnt ‘fade-by-clamping’ option to eliminate extrapolations outside the

environmental range [57]. The predictive contribution of environmental variables was esti-

mated using the ‘jackknife’ technique. MaxEnt generates response curves and we chose only

those representing relationships between probabilities of presence for each species, in terms of

Risk levels of Bemisia tabaci in areas of suitability for open field tomato cultivation
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each environmental predictor. All response curves were evaluated on the basis of sound bio-

logical logic and those failing this test were eliminated from further evaluations.

Test sensitivities of 0% and 10% training Omission Rates (OR) [52,58] and the AUCcv (area

under the receiver operating characteristic [ROC] curve) were used to compare performance

of the models [59]. To calculate these, a 10-fold cross-validation was run in MaxEnt. AUCcv

was also used for discriminating presence from background data. An AUCcv value of 0.5 indi-

cates that predictions do not exceed random; values below 0.5 are below random; 0.5–0.7 rep-

resents poor performance; 0.7–0.9 represents satisfactory to moderate performance; and

values above 0.9 rate as high performance [60]. In the case of Omission Rate, the anticipated

value at 0% training OR is 0 and at 10% it is 0.10; poor performance is indicated when the

value exceeds the anticipated rate [38]. We ranked our models on 10% training OR, 0% train-

ing OR, and AUCcv [55,58,61].

ArcGIS 10.3.1 software was used to extract the risk levels for B. tabaci invasion of areas suit-

able for open field cultivation of tomatoes from the MaxEnt outputs.

2.5. Determining B. tabaci risk levels

Maximum Test Sensitivity Plus Specificity (MTSPS) threshold was chosen to ascertain from

projected future distributions of B. tabaci and S. lycopersicum which areas optimal for open

field cultivation of S. lycopersicum would be at risk for B. tabaci invasion, according to the cate-

gories of highest, medium and lowest risk. For overlaying, ‘optimal conditions’ were defined as

areas of medium or high suitability. Projections for both species, as well as their overlaying to

ascertain level of B. tabaci risk in areas of optimal risk, were made using the four suitability

classes of unsuitable, low, medium and high.

Table 1. Environmental variables considered in B. tabaci (Biotype B and Q) niche models, and average percent contribution of environmental variables in the B.

tabaci (Biotype B and Q) distribution model; values were averaged across 10 replicate runs. General statistics were calculated using all occurrences (n = 627).

(Min = minimum, Max = maximum, and SD = standard deviation).

Variable Percent contribution Permutation importance Min. Max. Mean SD

Annual mean temperature (bio1; ˚C) 75.1 65.4 8.0 28.7 23.8 3.8

Precipitation seasonality (CV) (bio15) 7.2 6.4 0 160 89.4 30.3

Mean annual precipitation (bio12; mm) 6.5 8.5 0 3516 667 588.8

Precipitation of driest month (bio14; mm) 6.1 3.6 0 113 9.7 17.4

Mean diurnal range in temperature (bio2; ˚C) 2.7 7.8 6.0 18.9 13 2.7

Temperature annual range (bio7; ˚C) 2.4 8.3 8.5 40.7 28.4 9.7

Isothermality (bio3) - - 24 91 49.4 14.5

Temperature seasonality (SD x 100) (bio4) - - 251 10871 5199 2761

Maximum temperature of warmest month (bio5; ˚C) - - 22.8 46.3 37.4 5.6

Minimum temperature of coldest month (bio6; ˚C) - - -9.9 22.8 8.93 6.4

Mean temperature of wettest quarter (bio8; ˚C) - - 6.2 34.5 27.2 6.4

Mean temperature of driest quarter (bio9; ˚C) - - -2.6 36.1 21.7 4.8

Mean temperature of warmest quarter (bio10; ˚C) - - 16 36.1 29.9 4.5

Mean temperature of coldest quarter (bio11; ˚C) - - -2.6 36.1 16.7 5.4

Precipitation of wettest month (bio13; mm) - - 0 815 140 113.7

Precipitation of wettest quarter (bio16; mm) - - 0 1875 348 293

Precipitation of driest quarter (bio17; mm) - - 0 381 41 62.6

Precipitation of warmest quarter (bio18; mm) - - 0 1219 189 178

Precipitation of coldest quarter (bio19; mm) - - 0 1865 118 174.5

Bold font indicates variables in the final model. Source of data: WorldClim (http://www.worldclim.org/bioclim; Hijmans et al., 2005).

https://doi.org/10.1371/journal.pone.0198925.t001
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3. Results

The pest species B. tabaci (Biotype B and Q) and host open-field S. lycopersicum are distributed

globally (Fig 1). Climatic variables most contributory to B. tabaci distribution were annual

Table 2. Environmental variables considered in S. lycopersicum niche models, and average percent contribution of environmental variables in the S. lycopersicum
distribution model; values were averaged across 10 replicate runs. General statistics were calculated using all occurrences (n = 627). (Min = minimum,

Max = maximum, and SD = standard deviation).

Variable Percent contribution Permutation importance Min. Max. Mean SD

Annual mean temperature (bio1; ˚C) 58.5 57.4 8.6 28.8 20.1 4.3

Temperature annual range (bio7; ˚C) 25.9 25.1 9.7 37.7 20.1 6.6

Mean diurnal range in temperature (bio2; ˚C) 8.5 7.8 7.1 17.0 11.3 19.3

Mean annual precipitation (bio12; mm) 5.9 6.7 3 3200 1039.6 598.6

Precipitation seasonality (CV) (bio15) 0.7 1.9 11 145 65.7 29.4

Precipitation of driest month (bio14; mm) 0.5 1.0 0 120 22.8 26.8

Isothermality (bio3) - - 24 91 59.9 15.4

Temperature seasonality (SD x 100) (bio4) - - 163 9490 2907.9 2204.8

Maximum temperature of warmest month (bio5; ˚C) - - 18.7 41.2 30.2 3.7

Minimum temperature of coldest month (bio6; ˚C) - - -8.9 22.9 10.1 6.5

Mean temperature of wettest quarter (bio8; ˚C) - - 5.6 29.1 20.5 5.6

Mean temperature of driest quarter (bio9; ˚C) - - -3.2 31.5 19.9 5.4

Mean temperature of warmest quarter (bio10; ˚C) - - 13.3 32.7 23.7 3.5

Mean temperature of coldest quarter (bio11; ˚C) - - -3.2 27.9 16.3 6.3

Precipitation of wettest month (bio13; mm) - - 1 727 180.5 112.6

Precipitation of wettest quarter (bio16; mm) - - 3 1806 471.6 286

Precipitation of driest quarter (bio17; mm) - - 0 447 85.4 93.2

Precipitation of warmest quarter (bio18; mm) - - 0 1388 282.6 208.8

Precipitation of coldest quarter (bio19; mm) - - 0 1097 201.3 217.6

Bold font indicates variables in the final model. Source of data: WorldClim (http://www.worldclim.org/bioclim; Hijmans et al., 2005.

https://doi.org/10.1371/journal.pone.0198925.t002

Table 3. Summary of performance statistics of B. tabaci (Biotype B and Q) MaxEnt models. The best model is highlighted in bold.

ModelRank Variables MaxEnt settings Test AUCcv

(±SD)

OR

Features RM 0% 10%

1 bio1,bio2,bio7, bio12, bio14, bio15 LQPH 1.0 0.900 ± 0.017 0.0071 0.1086

2 Same as above LQPTH 2.0 0.896 ± 0.017 0.0048 0.1108

3 Same as above LQH 1.0 0.889 ± 0.017 0.0096 0.1108

4 Same as above LQP 2.0 0.886 ± 0.017 0.0024 0.113

5 Same as above LQP 1.0 0.886 ± 0.017 0.0048 0.1134

6 Same as above LQPH 2.0 0.896 ± 0.017 0.0024 0.1155

7 Same as above LQPH 1.5 0.897 ± 0.016 0.0048 0.1155

8 Same as above LH 2.0 0.884 ± 0.017 0.0024 0.1158

9 Same as above LQH 2.0 0.882 ± 0.017 0.0024 0.1204

10 Same as above LH 1.0 0.892 ± 0.017 0.0024 0.1205

11 Same as above LQPTH 1.5 0.896 ± 0.017 0.0048 0.1226

12 Same as above LQH 1.5 0.884 ± 0.017 0.0048 0.1227

Note: Variables’ full names (see table 1). L, Q, P, T and H are linear, quadratic, product, threshold and hinge features, respectively. RM is regularization multiplier, and

SD is standard deviation. OR is test omission rate. Test AUCcv is MaxEnt 10-fold cross-validation Area Under the ROC curve.

https://doi.org/10.1371/journal.pone.0198925.t003
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mean temperature (bio1; ˚C), precipitation seasonality (CV) (bio15), mean annual precipita-

tion (bio12; mm), precipitation of driest month (bio14; mm), mean diurnal range in tempera-

ture (bio2; ˚C) and temperature annual range (bio7; ˚C) (Table 1), and S. lycopersicum
(Table 2). Based on observed occurrences, B. tabaci (Biotype B and Q) occurs in areas with

mean annual temperature of 23.8˚C, and mean annual precipitation between 0–3516 mm

(Table 1) and S. lycopersicum occurs in areas with mean annual temperature of 20.1˚C, and

mean annual precipitation from 3000–3200 mm (Table 2).

The performance of all MaxEnt models used to determine the two species potential distri-

butions exceeded random, using AUCcv test values higher than 0.5 (Tables 3 and 4). Based on

10-fold cross validation, mean AUCcv values varied from 0.882–0.900 for B. tabaci (Table 3)

and 0.898–0.904 for S. lycopersicum (Table 4). These models also had low test omission rates,

with values at 0% training OR, varying from 0.0024–0.0096, and 0.1086–0.1227 at 10% for

B. tabaci (Table 3). For S. lycopersicum, values at 0% training OR varied from 0.0056–0.0173,

and from 0.1016–0.1206 at 10% (Table 4). The best model for B. tabaci included a combination

of six environmental variables, Linear, Quadratic, Product and Hinge (LQPH) features,

Table 4. Summary of performance statistics of S. lycopersicum MaxEnt models. The best model is highlighted in bold.

ModelRank Variables MaxEnt settings Test AUCcv

(±SD)

OR

Features RM 0% 10%

1 bio1,bio2,bio7, bio12, bio14, bio15 LH 1.0 0.904 ± 0.023 0.0059 0.1016

2 Same as above LQP 2.0 0.902 ± 0.024 0.0059 0.1033

3 Same as above LQPT 2.0 0.904 ± 0.024 0.0059 0.1075

4 Same as above LH 2.0 0.902 ± 0.024 0.0173 0.1078

5 Same as above LQP 1.0 0.901 ± 0.024 0.0110 0.1127

6 Same as above LQH 2.0 0.901 ± 0.025 0.0118 0.1127

7 Same as above LQH 1.5 0.903 ± 0.024 0.0056 0.1131

8 Same as above LQPH 1.5 0.903 ± 0.023 0.0059 0.1150

9 Same as above LQPH 2.0 0.898 ± 0.024 0.0110 0.1196

10 Same as above LQPTH 1.5 0.906 ± 0.024 0.0167 0.1199

11 Same as above LH 1.5 0.904 ± 0.025 0.0114 0.1203

12 Same as above LQP 1.5 0.899 ± 0.024 0.0056 0.1206

Note: Variables’ full names (see Table 1). L, Q, P, T and H are linear, quadratic, product, threshold and hinge features, respectively. RM is regularization multiplier, and

SD is standard deviation. OR is test omission rate. Test AUCcv is MaxEnt 10-fold cross-validation Area Under the ROC curve.

https://doi.org/10.1371/journal.pone.0198925.t004

Fig 1. Global known occurrences of B. tabaci (Biotype B and Q) in open field (red dots), and S. lycopersicum in

open field (green dots).

https://doi.org/10.1371/journal.pone.0198925.g001
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regularization multiplier = 1.0, produced the best model for B. tabaci and exhibited the lowest

omission rate at 10% and 0% (Table 3). Similarly for S. lycopersicum, the best model had six

environmental variables, Linear and Hinge (LH) features, regularization multiplier = 1, and

had lowest omission rate at 10% and 0% (Table 4).

MaxEnt predictions of the best B. tabaci model closely matched current known distribu-

tions (Figs 1 and 2). Highly suitable areas were predicted in South America, Africa, Europe,

Asia and Oceania. The S. lycopersicum model also displayed agreement between known occur-

rences and projections, globally (Figs 1 and 3).

The current and projected climate results for B. tabaci risk levels in areas with optimal con-

ditions (medium and high suitability) for S. lycopersicum open-field cultivations for 2050 and

2070 are shown in Fig 4. Results indicated that 5% of optimal areas are currently at high B.

tabaci risk. Currently, much of South and Central America has a low, medium or high risk lev-

els for B. tabaci in areas with optimal conditions for open-field tomato. On the North Ameri-

can continent, Mexico and the USA states of California and Florida exhibit low, medium or

high risk. In all the above regions, B. tabaci is already present. In Europe, Africa, Asia and Oce-

ania all three risk categories for B. tabaci can be discerned. Many sites in Europe and southern

China which are at high risk for B. tabaci in optimal conditions for tomato open-field require

close attention (Fig 4A).

However, a decrease in areas with low or moderate levels of B. tabaci is projected for 2050

and 2070, but an increase of areas with high risk for B. tabaci (Fig 4B and 4C). Among the opti-

mal areas for S. lycopersicum, the projections for 2050 compared to the current time showed an

extension of 180% in areas under high risk, and a shortening of 67 and 27% in areas under

medium and low risk of B. tabaci, respectively. By 2070, the projections indicate an extension

of 164, and a shortening of 49 and 64% under high, medium and low risk, respectively.

According to projected scenarios for 2050 and 2070 the risks levels for B. tabaci in China will

increase from the east to the centre of the country when compared to the current levels (Fig

4A, 4B and 4C). In Europe, the current B. tabaci risk level is moderate and high in southern

regions but will increase to more moderately suitable for B. tabaci in regions with optimal cli-

matic conditions for open-field S. lycopersicum.

In large areas such as South America (for example Brazil), the current risk levels of B. tabaci
are moderate and high (Fig 4A). However, most optimal regions already produce open-field

tomatoes. Future predictions show large reductions of areas with B. tabaci risk levels due to

the reduction of climatic conditions suitable for both species, but mostly for the host (Fig 4A,

4B and 4C).

The Jackknife test of variable importance indicated that mean annual temperature had the

most impact on both species models (B. tabaci and S. lycopersicum) (Fig 2D and 2E and Fig 3D

and 3E). The highest probability for B. tabaci presence exits in areas with annual mean tempera-

tures of 23–24˚C (Fig 5A), and 18–20˚C for S. lycopersicum (Fig 6A). The probability of B. tabaci
presence is higher in areas of low mean diurnal temperature range (Fig 5B) and higher in areas

of medium mean diurnal temperature range for S. lycopersicum (Fig 6B). The probability for the

presence of both species is higher in areas with low precipitation, decreasing with an increase in

precipitation (Figs 5C and 6D), and when the precipitation seasonality is 130–150 mm for B.

tabaci (Fig 5D), and temperature annual range is low for S. lycopersicum (Fig 6C).

4. Discussion

B. tabaci is distributed worldwide (Fig 1) and has caused many losses in tomato crops over the

past 20 years in North, Central and South America, Africa (West, Central and South), Asia

(India and China) and Mediterranean Europe countries [62,63,64,65,66].
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All models presented in this study show great degree of reliability. Both B. tabaci and S. lyco-
persicum models produced 90% (AUC) agreement with the current modeled global climate.

Cross-validation indicated that all models performed much better than would be expected at

random, and had a high validation statistic. The high percentage of accordance with the distri-

bution of both species highlights the consistency of these models. Thus, the model outputs and

their overlaying may be considered reliable as a foundation of research on B. tabaci occurrence

and risk in areas suitable for open-field tomato, globally.

While B. tabaci and S. lycopersicum occurrence has been reported for regions on all conti-

nents (Fig 1), the combination is more probable in tropical regions with high mean annual

temperatures (Tables 1 and 2 and Figs 5A and 6A), including areas with wide variations of

daily temperatures (Figs 5B and 6B), and a wider range in precipitation (Tables 1 and 2 and

Figs 5C and 6D). These important characteristics confirm that B. tabaci has great potential for

invasion [67,68,69] and that S. lycopersicum may be produced in open field conditions in sev-

eral areas in the world. However, in certain regions where B. tabaci has already been reported

in glasshouses, it has not been reported as causing problems in the open field. This is probably

because climatic conditions are unsuitable for B. tabaci growth, development and therefore the

establishment of the species in these areas.

Although B. tabaci can establish across a wide thermal range, the species can be affected by

global temperature changes (Fig 2). Extreme temperatures (either high or low) may affect the

development of the species. Furthermore, pests are dependent on the survival of the host.

Thus, tomato crops may well suffer from climate change, which will have an impact on B.

tabaci [70] (Fig 3).

If the increases in temperature predicted by the HadGEM2-ES climate model do occur, this

may affect not only the pest but impose limitations on S. lycopersicum growth. Vegetable spe-

cies generally show great sensitivity under extreme environmental conditions, particularly

temperatures, high or low temperatures [71]. This was confirmed by the results of the future

models (2050 and 2070), in which greater reductions in susceptibility are predicted in S. lyco-
persicum globally, than in B. tabaci (Figs 2 and 3).

The current climate modeling showed predominantly medium and high risk in South, Cen-

tral and North America for B. tabaci in areas with optimal climate conditions for growing

open-field tomato (Fig 4A). Europe, Africa, Asia and Oceania displayed all three categories of

risk of B. tabaci; with close attention for many sites in Europe, southern China (Asia) and Bra-

zil (South America), which are at high risk for B. tabaci in optimal conditions for open-field

tomato.

While the majority of studies on the impact of climate change on organisms predict

increases in invasive species, the converse may be seen for B. tabaci in open field tomato in

some regions. After the overlaying of the current models and future projections in areas with

optimal conditions for open field tomato, we observed that in some regions with current high

risk, B. tabaci risk will decrease in the years 2050 and 2070, mainly in tropical countries of

South America and Africa. The main reason related to the predicted increase of temperature

in the world, which will mainly affect the host. Conversely, in China (from east to central

areas), and Mediterranean Europe (e.g. France, Italy and Spain) a great increase in susceptibil-

ity to B. tabaci is predicted in regions with optimal climatic conditions for open field tomato

crops. In some areas along the coastlines of Brazil (south, southeast and northeast) and

Fig 2. Habitat suitability under current and future climatic conditions of B. tabaci (Biotype B and Q). Maps (A)

current global distribution using MaxEnt model, (B) 2050, (C) 2070. Relative importance of the environmental

variables based on the JackKnife test (D) Regularized training gain and (E) AUC in B. tabaci model.

https://doi.org/10.1371/journal.pone.0198925.g002
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Australia (south and east), the same levels of susceptibility to, or risk of, the pest are main-

tained (Fig 4).

At high temperatures, the current B and Q B. tabaci biotypes exhibit lower fertility than at tem-

perate climates [72]. However, new emerging biotypes that are much more resistant to heat may

be selected during climatic warming. This is something that we cannot include in our model

because we do not know how often new biotypes in the species will emerge, and if the resistance

will occur at the same speed that climate change. The biological factors such as generation time

Fig 3. Habitat suitability under current and future climatic conditions of open-field S. lycopersicum cultivation.

Maps (A) current global distribution using MaxEnt model, (B) 2050, and (C) 2070. Relative importance of the

environmental variables based on the JackKnife test (D) Regularized training gain and (E) AUC in S. lycopersicum
model.

https://doi.org/10.1371/journal.pone.0198925.g003

Fig 4. Habitat suitability under current and future climatic conditions in optimal areas for open-field S.

lycopersicum cultivation with three suitability levels of B. tabaci (Biotype B and Q) using MaxEnt model. Maps (A)

current time, (B) 2050, and (C) 2070.

https://doi.org/10.1371/journal.pone.0198925.g004
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and how climate change may influence the appearance of new biotypes are characteristics that are

still not possible to be included as parameters in the construction of models via MaxEnt.

Mean annual temperature (bio1) was one of the most important variables associated with

the distribution of B. tabaci and S. lycopersicum (Tables 1 and 2, Figs 2D, 2E, 3D and 3E respec-

tively). Many studies have shown that mean annual temperature is the major variable contribut-

ing to distributions of species [73,74,75,76]. The models predicted a greater probability of

presence of B. tabaci in temperatures around 23–24˚C and around 18–20˚C for S. lycopersicum.

This may be the major reason that B. tabaci occurrence has been so high in areas having a mean

temperature close to the optimal requirement for growth. However, a combination of major

Fig 5. Response curves of the best predictors of B. tabaci (Biotype B and Q) in the best model. (A) Annual mean

temperature (bio1; ˚C), (B) Mean diurnal range (Mean of monthly (max temp–min temp)) (bio2), (C) Annual

precipitation (bio12; mm), and (D) Precipitation seasonality (Coefficient of variation, bio15).

https://doi.org/10.1371/journal.pone.0198925.g005

Fig 6. Response curves of the best predictors of S. lycopersicum in the best model. (A) Annual mean temperature

(bio1; ˚C), (B) Mean diurnal range (Mean of monthly (max temp–min temp)) (bio2), (C) Temperature annual range

(bio7; ˚C), and (D) Annual precipitation (bio12; mm).

https://doi.org/10.1371/journal.pone.0198925.g006
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climate factors with other variables, such as a higher number of hosts, might be related to the

success of the B. tabaci distributions [77,78]. Consequently, the decreased B. tabaci risk levels in

some areas may be due to a reduction of climatic suitability factors for both species.

Tomato production becomes unviable in places where temperatures reach values above

40˚C. There are many studies that show that high temperature causes stress in tomato plants

(for the most common tomato cultivars) such as reduced fruit set, reproductive number, pol-

len production and pollen viability [70,79,80]. S. lycopersicum shows a wide climatic tolerance

and is grown in both tropical and temperate regions around the world, and thus high or low

temperatures can impact negatively on this species [81]. As shown by our model, the mean

annual temperature is an extremely important parameter that determines the distribution

(occurrence and establishment) of the species. Although there are varieties more adapted for

high temperature sites (e.g. in the Middle East) they can still yield at high temperatures, mostly

due the manipulation of the environment (nethouses and glasshouses), using ventilation or

air-conditioning. Obviously, with the advance in genetic studies, new cultivars could be intro-

gressed by breeding and selection into current genotypes when needed to cope with increasing

temperatures. The same has happened in countries where the mean temperatures are very low

and tomato production is only possible due to the temperature control possible in the green-

house (where it is possible to maintain higher temperatures than the external environment).

Therefore, the evolution and emergence of adapted varieties in high temperature environ-

ments may succeed as long as productivity is not compromised. Even with the advent of cur-

rent plant genotypes resistant to high temperatures, this is not yet a reality that extends to the

entire planet and we do not know if those varieties will support high temperatures and if they

would be an alternative to overcome the barriers to climate change. In our model, we used the

occurrence points of tomato plants of current and most commonly used cultivars. However,

the production of new cultivars resistant to high temperatures can make tomato production

feasible in places where air temperatures are quite high. This is one of the uncertainties that we

could not include in the MaxEnt configuration for building our model.

Our overlaying results should contribute to warning agricultural authorities in many loca-

tions to employ management strategies to prevent a decreased viability for open-field tomato.

In areas of high B. tabaci risk and optimal conditions for open-field S. lycopersicum, both

whitefly and tomato are already present. It would still be logical to introduce preventive mea-

sures for the spread of toxins and viruses into areas in which these have not yet been reported.

Strategies such as inspection of seeding plant trade and phytosanitary regulations would be

valid in locations with high and medium risk of B. tabaci, to lessen the risk.

Despite the inherent uncertainty of correlative niche models such as MaxEnt in regard to

the quality of occurrence data, resolution of spatial data layers, sampling bias, species charac-

teristics, and spatial autocorrelation [54,76,82,83,84], MaxEnt software has a great user inter-

face, making the modeling process easier. MaxEnt does offer options for certain adjustments,

which can improve the quality of specific models [54,61,76]. The adjustments used in our

study were in the selection of feature types, value of regularization multiplies, selection of back-

ground points and extent [49]. Utmost care was devoted to model calibration to obtain model

results adhering to the current occurrence of both species studied. The quality of the models

can be seen in the biological validity of the response curves and strong validation results

(Tables 2 and 3; Figs 2D and 2E; 3D and 3E; 5 and 6).

Our models were based only on climate parameters, executed using the currently available

global broad-scale climate data, and thus only show broad-scale shifts. Only open field occur-

rence data for both B. tabaci and S. lycopersicum were taken into account.

It should be noted that the predictions of suitable areas for tomato production were estab-

lished based on the current climatic thresholds from current commercial cultivars. However,
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the production of new cultivars resistant to high temperatures, the production of tomatoes in

protected crops with climatic control or the production of tomato in times of mild temperature

in very hot places can enable the future production of tomato in other places. Although tomato

cultivation is still mainly cultivated in the open field, the current trend in tomato cultivation is

increasingly favouring nethouses (50-mesh nets to protect from insects) or closed glasshouses.

In both cases, proper ventilation or air-conditioning can control inside temperatures. These sys-

tems control the microclimate of crops and modelling studies can not take this into account.

For this reason, the problems with B. tabaci in protected and semi-protected environments may

be diverse in several locations around the world but not pointed out by our model.

Although it is well known that the B. tabaci is already widely distributed and has other host

species, modeling other hosts may have predictions that differ from our study, on the basis of

specific host sensitivity to climatic changes. In this study, we did not take into account poten-

tial genetic progress as B. tabaci has shown high adaptability and numerous biotypes. There-

fore, the results of these models can be used in other studies, including non-climatic factors

such as differences of the existing biotypes, other pest-plant interactions, natural enemies, pest

resistance, dispersal and adaptations.

Our study indicates that climate change may impact on the geographical distributions of

the pest B. tabaci and the host S. lycopersicum. Our study provides important information on

the risk of B. tabaci for open-field tomato crops using the MaxEnt model. Considering both

species together (B. tabaci and S. lycopersicum), it seems large areas with optimal conditions

for S. lycopersicum under current climate are already at medium and high risk of B. tabaci,
areas with high risk of B. tabaci will increase and areas with medium risk will decrease in the

future (2050 and 2070). The future projections in areas with optimal conditions for open field

tomato shows that some regions (e.g. Brazil), where B. tabaci currently shows medium and

high risk will become less favorable (risks will decrease) in the years 2050 and 2070. Conversely

in some places such as China (from east to central areas), and Europe (e.g. France, Italy and

Spain) projections show large increases in susceptibility to B. tabaci in regions with optimal cli-

matic conditions for tomato crops in open field. The main reason for this is related to the pre-

dicted increase of temperature in the world, which may affect not only the pest, but also the

host. Our results can be used in designing strategies to prevent the introduction and establish-

ment of B. tabaci in areas still B. tabaci free, such as Finland, Sweden, Republic of Ireland and

the UK, as well as implementing pest management programs in areas of current occurrence,

particularly at sites under high risk.
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