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Abstract
Background: Postural sway may be useful as an objective measure of Parkinson's 
disease (PD). Existing studies have analyzed many different features of sway using 
different experimental paradigms. We aimed to determine what features have been 
used to measure sway and then to assess which feature(s) best differentiate PD pa-
tients from controls. We also aimed to determine whether any refinements might 
improve discriminative power and so assist in standardizing experimental conditions 
and analysis of data.
Methods: In this systematic review of the literature, effect size (ES) was calculated 
for every feature reported by each article and then collapsed across articles where 
appropriate. The influence of clinical medication status, visual state, and sampling 
rate on ES was also assessed.
Results: Four hundred and forty-three papers were retrieved. 25 contained enough 
information for further analysis. The most commonly used features were not the most 
effective (e.g., PathLength, used 14 times, had ES of 0.47, while TotalEnergy, used 
only once, had ES of 1.78). Increased sampling rate was associated with increased ES 
(PathLength ES increased to 1.12 at 100 Hz from 0.40 at 10 Hz). Measurement during 
“OFF” clinical status was associated with increased ES (PathLength ES was 0.83 OFF 
compared to 0.21 ON).
Conclusions: This review identified promising features for analysis of postural sway 
in PD, recommending a sampling rate of 100 Hz and studying patients when OFF to 
maximize ES. ES complements statistical significance as it is clinically relevant and is 
easily compared across experiments. We suggest that machine learning is a promising 
tool for the future analysis of postural sway in PD.
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1  | INTRODUC TION

Parkinson's disease (PD) is the second most prevalent neurode-
generative disease (Jankovic,  2008; Kalia & Lang,  2015; Nutt & 
Wooten,  2005). It evolves slowly over time and has a well-recog-
nized prodromal period before symptoms and signs become appar-
ent (Gonera et al., 1997; Hawkes et al., 2010). Diagnosis is currently 
made clinically, based on history, examination, and response to med-
ication (Savitt et al., (2006)). Thus, however skilled the clinician, diag-
nosis remains somewhat subjective, and this potentially contributes 
to significant rates of delayed diagnosis and misdiagnosis (Media 
PA, 2019). The most commonly used tool to measure PD patients' 
disease status and severity is the Movement Disorders Society's 
Revision of the Unified Parkinson's Disease Rating Score (UPDRS) 
(Goetz et al., 2008) which suffers from considerable inter-rater vari-
ability (Heldman et  al.,  2011; Post et  al.,  2005). The development 
of a more accurate and quantifiable marker would introduce greater 
objectivity into the diagnostic process, allow more accurate tracking 
of disease severity, and facilitate clinical management (Fahn, 2005; 
Pålhagen et al., 2006; Whone et al., 2003).

Maintenance of posture is a complex process requiring input 
from visual, vestibular, and somatosensory systems (Winter, 1995). 
Several methods have been used to assess postural sway, the most 
common of which uses a force plate to quantify the movement of 
an individual's center of pressure (CoP) while standing. Research 
suggests that assessment of postural sway might provide an objec-
tive, and potentially more accurate, way of assessing PD (Mancini 
et al., 2012; Souza Fortaleza et al., 2017).

To date, published studies have investigated numerous different 
features of postural sway recorded under varying experimental con-
ditions. The choice of feature used in any study depends on multiple 
factors, including the equipment used and, often, preconceptions 
based on previous experimental results. Because existing studies do 
not analyze the same features as each other or, indeed, all possi-
ble features, it remains unclear which feature(s) and experimental 
conditions provide maximum discriminative power between PD 
patients and controls, and hence the most clinically meaningful in-
formation. Machine learning (ML) is a promising approach that could 
be used to provide a better idea of which features are the most clin-
ically meaningful, and it has the ability to determine which feature 
(or set of features) has the largest discriminative power.

As a prelude to the wider use of ML in this field, it is important 
to survey what information is already available in the literature. 
Accordingly, the primary aim of this systematic review was to deter-
mine what postural sway features have been used to date in the litera-
ture and which features appear to be most effective at distinguishing a 
PD patient from a healthy individual. Classification of patients into the 
different subtypes of parkinsonism and assessment of disease severity, 
while important, were considered to be beyond the scope of this re-
view. By limiting ourselves to simply distinguishing patients from con-
trols, we sought to determine what experimental refinements might 
improve discriminative power when analyzing sway data, and so pro-
vide suggestions regarding optimization of data analysis in the future.

2  | METHODS

The review followed PRISMA guidelines for systematic reviews 
(Liberati et  al.,  2009). SCOPUS, Web of Science, PubMed, the 
Cochrane Library, and the IEEE Xplore Digital Library databases 
were searched in August 2018 using the following search strat-
egy: “TITLE-ABS-KEY(parkinson*) AND TITLE-ABS-KEY(stabilo* 
OR statokine* OR postur* OR sway) AND TITLE-ABS-KEY(static)”. 
Retrieved articles were screened for duplicates and independently 
assessed for inclusion by two reviewers; conflicts were resolved by 
a third reviewer.

Inclusion criteria were as follows: First, studies had to include 
both idiopathic PD group (to avoid confusion we excluded explicit 
diagnoses of “Parkinson's plus” syndromes) and healthy control (HC) 
groups. Second, studies had to analyze static postural sway using an 
objective and quantifiable approach (other than clinicians' scores/
ratings) and attempt to classify participants as PD or HC based on 
postural measures. Third, papers had to be available in English as 
full-length articles.

For further subanalysis, articles that split the PD group into sub-
groups such as “fallers” or “nonfallers” were collapsed into one PD 
group. The effectiveness was only calculated between control and 
PD groups if the difference in average age was within six years, as 
age is known to affect postural sway (Røgind et al., 2003). If exper-
imental details of the task were not explicit, the task was assumed 
to involve static standing with eyes open. We compared articles that 
reported medians and interquartile ranges with those that reported 
means and standard deviations. There was no clear difference; thus, 
all features and their effectiveness were assumed to be normally dis-
tributed, allowing conversion of medians, interquartile ranges, and 
confidence intervals (CI) into means and standard deviations (SD), and 
vice versa. Four studies did not provide adequate numerical informa-
tion, presenting their results only graphically. For these articles, an 
attempt was made to contact the authors. If it was not possible to 
obtain the original numerical values, these were estimated as accu-
rately as possible from the published graphs.

For every article, the discriminatory power of every feature ana-
lyzed was represented as an effect size (ES), defined as the difference 
between the means of PD and HC groups divided by the variance 
of the two groups. ESs were then collapsed across different articles 
using two separate methods: a weighted average, weighted by num-
ber of PD participants in each study, and pooling, which generates 
an ES equivalent to that which would be generated if data from 
every individual participant in all experiments were available, rather 
than a simple average of summary statistics (Rudmin, 2010) (see 
Multimedia Appendix S1 for more details). These two methods cap-
tured different aspects of the data, such that a large difference in the 
results would cast doubt on the reliability of a particular feature's ES.

Effect size was also analyzed as a function of the sampling rate 
used by the force plate, medication/clinical status, and visual status 
of PD patients (i.e., eyes open or closed). Regarding medication/clin-
ical status, “ON” and “OFF” referred to a patient being less affected 
by their PD (i.e., more mobile and less tremulous) and at “baseline”/
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unmedicated parkinsonian state, respectively. A 95% CI was calcu-
lated for each ES.

3  | RESULTS

As shown in Figure 1, the literature search generated 443 articles, 
which was reduced to 218 after removing duplicates. This was fur-
ther reduced to 61 on the basis of the titles and abstracts of the arti-
cles. After applying the inclusion/exclusion criteria to the full article, 
39 remained, of which 31 included the quantitative information we 
were looking for (Figure 1). A full list of articles reviewed is provided 
in Multimedia Appendix S2—Table S1.

3.1 | Features and effectiveness

Overall, 129 different features were used in the 31 studies. The fea-
tures that were used in at least 4 studies for analysis of postural 
sway are listed in Table 1. The ES could only be derived for 23 of the 

31 studies. These were collapsed across studies where appropriate 
(Figure 2). The other six studies did not provide adequate informa-
tion to allow calculation of ES or did not meet the conditions for 
subanalysis.

The most commonly used features, for example, PathLength or 
SwayArea, did not appear to be the most effective. Total energy in 
the mediolateral direction had the largest ES but was only used in 
one article (27 participants), and this is reflected in its wide confi-
dence intervals. SD of displacement in anteroposterior and medio-
lateral directions were used in two articles (total of 79 participants) 
with medium-to-large ES (see Multimedia Appendix  S2—Figure  S1 
and Table S3 for complete graph and numerical values).

3.2 | Experimental conditions

Figure 3 shows the effect of clinical status (ON or OFF) and visual 
state, that is, eyes open (EO) or eyes closed (EC) on ES. PathLength 
and SwayArea demonstrated larger ES when the patient was OFF 
compared to ON but there was no clear effect of visual status.

F I G U R E  1  PRISMA flow diagram
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Of the 23 papers which allowed for subanalysis, 14 reported the 
sampling rate of the force plate used. A low sampling rate resulted in 
a smaller ES (Figure 4). Note that in Figure 4, ESs of several features 
are represented as very small circles, for example, pooled ES for 
SwayArea, RMS of displacement in the AP direction, and displace-
ment range in both AP and ML directions at 10 Hz, and averaged ES 
for RMS of displacement in the AP direction at 10 Hz. These have 
been marked with a red asterisk for visibility.

3.3 | Statistical tests

Every article reviewed used a test of statistical significance to assess 
performance of the various features. However, the choice of test 
varied greatly between articles, partly affected by sample size, test 
conditions, assumption of normality, and, possibly, familiarity with 
statistics. Only two articles used a receiver operating characteristic 

TA B L E  1   Most common features used for analysis of 
postural sway (further information available in Multimedia 
Appendix S2—Table S2)

Feature name
Number of studies 
using feature

PathLength 14

Area95 9

SwayArea 9

AVG_Velocity 9

AVG_Veloctiy_AP 5

PathLength_AP 5

PathLength_ML 5

AVG_Velocity_ML 4

RMS_Dispalcement_AP 4

RMS_Dispalcement_ML 4

SD_Displacement_AP 4

SD_Displacement_ML 4

Abbreviations: AP, anteroposterior; AVG, average; ML, mediolateral; 
RMS, root-mean-square; SD, standard deviation.

F I G U R E  2   Forest plot of effect sizes of selected feature. The diameter of each circle reflects the number of articles using that feature. 
Error bars represent 95% confidence intervals. (See Multimedia Appendix S2—Table S2 for definitions and Multimedia Appendix S2—
Figure S1 for complete graph.) AP, anteroposterior; AVG, average; ML, mediolateral; SD, standard deviation

F I G U R E  3   Effect sizes of features common to all experimental 
conditions and used in at least two articles. [Complete data in 
Multimedia Appendix S2—Table S4]. AP, anteroposterior; AVG, 
average
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(ROC) curve, and none presented a confusion matrix or metrics such 
as accuracy, specificity, or sensitivity.

4  | DISCUSSION

The purpose of this review was to begin to move toward more ob-
jective and quantifiable testing of PD. To the best of our knowledge, 
there has been no previous comprehensive analysis of the various 
features of postural sway used in the investigation of PD. Our results 
show that the most commonly used features, such as PathLength 
or Area95, may not be the most effective in terms of discriminative 
power, while there were other promising features that require fur-
ther investigation. Studying patients when OFF appears to increase 
the ES of certain features, but there was no consistent effect of vi-
sion. For any given feature, increased sampling rate was associated 
with an increase in ES. Finally, there was enormous variability in the 
statistical tests used by the various authors.

4.1 | Features and effectiveness

Though ES is a good representation of a feature's discriminative 
ability, the 95% CI can be a bit misleading as they do not take into 
account how many experiments contributed to the overall result. 
Larger numbers of experiments are likely to reduce the effects of 
bias more than larger numbers of subjects in a single experiment 
since the single study may have been subject to bias. With multiple 
independent experiments, there is a smaller chance of the same per-
sistent bias. This nuance is not reflected in the CI. Accordingly, if an 

ES was derived from fewer than three independent articles, it should 
be considered as relatively less reliable.

Of the features that we have confidence in, none has a large ES, 
indicating that current methods probably would not work well on 
their own in discriminating PD patients from controls and that fur-
ther research is needed to find more clinically useful measures. Of 
the features that we are not confident in, ones that have a large ES 
should be investigated further, such as total energy in the mediolat-
eral direction, dynamic Lyapunov exponent, and standard deviation 
of displacement in the mediolateral direction. We think investiga-
tion of certain features, such as ones derived from recurrence quan-
tification analysis (RQA) and diffusion plot analysis, requires added 
caution as the parameters of these can be configured in such a way 
that they result in a large ES for the data in the study, but the find-
ings may not generalize well beyond the sample data. Such methods 
require additional performance evaluation, such as cross-validation 
on an unseen dataset (Kohavi, 1995). It is also important to point 
out that there is a large number of possible features that have not 
yet been investigated (Christ et al., 2018), any one of which may ef-
fectively capture the difference in sway between a PD patient and a 
healthy individual.

4.2 | Experimental conditions

In general, being OFF increased ES, but this was not seen for all fea-
tures. The reason is unclear: It may simply represent overall insen-
sitivity of a particular feature, but alternatively, it may be that some 
features are independent of disease status. Granted that an effect of 
disease statues on SwayArea and PathLength was observed across 

F I G U R E  4  Pooled (left) and averaged (right) effect sizes (represented as circle area) of features as a function of sampling rate. Very 
small effect sizes have been marked with a red asterisk. AP, anteroposterior; AVG, average; ML, mediolateral; RMS, root-mean-square; SD, 
standard deviation
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several studies involving many participants, it is likely that the effect 
is real.

There was no consistent effect of vision status. Some authors 
have suggested that vision helps to stabilize posture in PD (Bronstein 
et al., 1990; Frenklach et al., 2009; Louie et al., 2009; Panyakaew 
et al., 2015), while others disagree (Cattaneo et al., 2016; Paolucci 
et al., 2018, Schmit et al., 2006). One possible explanation of these 
contradictory results is that the effects of vision might vary with 
disease severity: Like healthy individuals, less severely affected pa-
tients might rely on visual input while more severe patients do not 
(Paolucci et al., 2018). As above, this study was not designed to look 
at the effects of disease severity so it is not possible to make further 
comment on this.

The ES was influenced by sampling rate. The sampling rate of 
the force plate is known to affect the numerical value of certain fea-
tures (Raymakers et al., 2005). However, this does not explain why 
a lower sampling rate is associated with a smaller ES. While chance 
is always a possible explanation, it is possible that lower sampling 
rates reflect lower-quality equipment which might be more suscep-
tible to noise. Alternatively, it could also be that a lower sampling 
rate really does decrease effectiveness. The Nyquist–Shannon sam-
pling theorem states that if a function contains no frequency higher 
than B Hz, it can be completely determined by sampling at 2B Hz 
(the Nyquist rate) (Shannon, 1949). Accordingly, a sampling rate of 
approximately 10 Hz should be adequate since parkinsonian tremor 
occurs at 3–6 Hz (Baumann, 2012) and postural sway occurs at fre-
quencies below 5 Hz (Loram et al., 2006). However, as sampling rate 
decreases and approaches the Nyquist rate, a given signal needs to 
be sampled for a longer time period, particularly with nonperiodic 
signals such as postural sway. Shorter time periods result in imper-
fect signal reconstruction, an effect, which can be avoided by using 
a sampling rate much higher than the Nyquist rate.

4.3 | Statistical analysis

All studies used some form of test to determine whether a given 
feature differed significantly between groups. However, statistical 
significance is not the same as clinical meaningfulness or usefulness: 
Significance simply indicates how likely the results are, or are not, 
to be due to chance, and is heavily influenced by the number of par-
ticipants (Sullivan & Feinn, 2012). An ES, on the other hand, gives 
a better indication of whether a feature is capable of meaningfully 

differentiating between individuals, as it takes account of both the 
magnitude of the mean difference between groups and the overall 
variance of the feature in question (i.e., it is a measure of signal-to-
noise ratio).

Of course, the p value is important, but including the ES renders 
results more meaningful and more easily comparable (Ialongo, 2016). 
It is easy to calculate the ES, and we therefore suggest that this 
measure should be provided in future studies. Other metrics that 
demonstrate the true discriminative power of a feature include a 
confusion matrix (when testing on an unseen data set) or a receiver 
operator characteristic (ROC), and these should also be considered.

4.4 | Call for standardization and objectivity

There was a clear lack of standardization of both the experimental 
setup (such as stance width, medication status, device used, and 
tasks performed) and the statistical testing, meaning that it is diffi-
cult to make reliable comparisons between studies. This heterogene-
ity may be one of the key reasons why objective testing methods in 
PD are not yet clinically useful. In an attempt to reduce heterogene-
ity between studies, thereby facilitating the discovery of clinically 
useful features, we offer a few recommendations when assessing 
sway during quiet, static standing (Table 2).

4.5 | Machine learning

Machine learning is an established tool that can discriminate be-
tween groups by learning an optimal set of parameters for a given 
model. This review of the literature suggests that it is well suited 
to the analysis of postural sway in PD for several reasons. First, it 
has the potential to be more objective than the current methods 
used in diagnosis. Second, ML methods can utilize complex nonlin-
ear interactions between many features to increase discriminative 
power. Third, the standard performance metrics applied to ML are 
more easily compared across studies. Importantly, a trained model 
that performs well in distinguishing participants with PD from HC is 
likely to be a strong contender as an objective measure of severity.

However, ML has potential drawbacks. Some modern and pow-
erful algorithms, such as neural network-based deep learning models, 
require a very large amount of annotated (training) data, something 
which is rarely available from medical studies. Also, these models may 

Recommended

Sampling rate 100 Hz

Medication state OFFa 

Visual state Record both eyes open and eyes closed conditions (but the difference may 
not be meaningful, particularly in patients with more severe disease)

Performance 
metric

In addition to statistical significance testing, provide effect size, confusion 
matrix, and ROC where relevant

aAt least 12 hr after last dose of antiparkinsonian medication (Frenklach et al., 2009). 

TA B L E  2   Recommendations for data 
acquisition when assessing postural sway
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be too abstract, making them difficult to apply in clinical practice. 
Simpler ML models, such as support vector machines (SVM) or random 
forests, do not require as much training data but can still create robust 
models. One example is the well-studied handwritten digit recognition 
task (Lecun et al., 1998; LeCun, n.d.); the best performing SVM has a 
classification error or only 0.56% (Decoste & Schölkopf, 2002), while 
the best deep network has a classification error of 0.23% (Cireşan et al., 
2012). Also, the use of transfer learning may enable the use of deep 
learning in the medical field where data is limited (Zhou et al., 2019).

4.6 | Limitations

Publication bias may mean that the real ESs of some features are 
smaller than the values reported here, especially for those features 
that have been used less frequently. The small group sizes of some ar-
ticles mean it is not possible to test normality. Nevertheless, we have 
treated the features as normally distributed; otherwise, it would not be 
possible to draw any meaningful conclusions, since it was necessary to 
assume normality when calculating ES. These kinds of assumptions are 
inherent to meta-analysis and could be tested in future studies.

Four articles did not report numerical values of means and SDs, 
but instead presented their results graphically. Wherever possible, 
these authors were contacted in order to obtain their original data. If 
the authors could not be contacted, values were estimated directly 
from graphs, so some values may have been subject to interpretation 
error.

It is possible that any of the studies may have included patients 
with atypical PD, such as progressive supranuclear palsy or multiple 
system atrophy, rather than idiopathic PD. This may have increased 
heterogeneity and reduced ES. However, it is often very difficult to 
distinguish these patients in the early stages of their disease and 
this problem therefore applies to all studies of postural sway. It is 
hoped that finding a more objective measure of Parkinson's disease 
will make it possible to distinguish these conditions more accurately 
in the future.

5  | CONCLUSION

Objective and quantifiable PD classification is not yet possible, and 
much work is still required. However, this systematic review has re-
vealed many important points. The most commonly used features 
for analyzing postural sway are unlikely to be the most effective, and 
there are many other features which have not yet been adequately 
explored. We have also identified relationships between the ES of 
a feature and certain experimental conditions such as clinical state 
and sampling rate of the force plate.

One possible reason why objective diagnostic tools for PD are 
still not available relates to the heterogeneity of experimental de-
tails, analysis tools, and methods of reporting used in different stud-
ies. We have recommended experimental conditions that are likely 
to increase the effectiveness of certain features in discriminating PD 

patients from healthy controls, along with performance metrics that 
are better able to demonstrate clinical importance and discrimina-
tive ability and, in turn, allow comparison between studies. We hope 
this review will assist in guiding future research.

ACKNOWLEDG MENTS
We gratefully acknowledge funding from the Australian Government 
Research Training Program Domestic Scholarship for the first au-
thor's PhD studies. This research has been delivered in partnership 
with Our Health in Our Hands (OHIOH), a strategic initiative of the 
Australian National University, which aims to transform health care 
by developing new personalized health technologies and solutions in 
collaboration with patients, clinicians, and healthcare providers. We 
would also like to acknowledge Rachel Karasick, the research librar-
ian, and Robert Clark, the consulting statistician, for their valuable 
contribution to this study.

CONFLIC T OF INTERE S TS
Nothing to declare.

AUTHOR CONTRIBUTION
Wenbo Ge contributed to all aspects of this work. Christian Lueck 
contributed significantly to the conceptualization and writing of this 
work. Deborah Apthorp contributed significantly to the analysis and 
with valuable resources. Hanna Suominen contributed significantly 
to data curation and the supervision of this work. Additionally, all 
three (Christian, Deborah, and Hanna) provided invaluable contribu-
tions in the conceptualization, supervision, reviewing, and editing of 
this work.

PEER RE VIE W
The peer review history for this article is available at https://publo​
ns.com/publo​n/10.1002/brb3.1929.

DATA AVAIL ABILIT Y S TATEMENT
The data that support the findings of this study are all from the lit-
erature and can be found online. The specific articles are listed in 
Appendix S2—Table S1. Additionally, data generated from the analy-
sis of the literature are available from: https://osf.io/v53rg/​?view_
only=c6cbb​fb9b4​614e4​188a8​d4348​97492b4

ORCID
Wenbo Ge   https://orcid.org/0000-0002-0429-3061 
Hanna Suominen   https://orcid.org/0000-0002-4195-1641 

R E FE R E N C E S
Baumann, C. R. (2012). Epidemiology, diagnosis and differential diagno-

sis in Parkinson's disease tremor. Parkinsonism & Related Disorders, 18, 
S90–S92. https://doi.org/10.1016/S1353​-8020(11)70029​-3

Bronstein, A. M., Hood, J. D., Gresty, M. A., & Panagi, C. (1990). VIsual 
control of balance in cerebellar and Parkinsonian syndromes. Brain, 
113, 767–779. https://doi.org/10.1093/brain/​113.3.767

Cattaneo, D., Carpinella, I., Aprile, I., Prosperini, L., Montesano, A., 
& Jonsdottir, J. (2016). Comparison of upright balance in stroke, 

https://publons.com/publon/10.1002/brb3.1929
https://publons.com/publon/10.1002/brb3.1929
https://osf.io/v53rg/?view_only=c6cbbfb9b4614e4188a8d434897492b4
https://osf.io/v53rg/?view_only=c6cbbfb9b4614e4188a8d434897492b4
https://orcid.org/0000-0002-0429-3061
https://orcid.org/0000-0002-0429-3061
https://orcid.org/0000-0002-4195-1641
https://orcid.org/0000-0002-4195-1641
https://doi.org/10.1016/S1353-8020(11)70029-3
https://doi.org/10.1093/brain/113.3.767


8 of 9  |     GE et al.

Parkinson and multiple sclerosis. Acta Neurologica Scandinavica, 133, 
346–354. https://doi.org/10.1111/ane.12466

Christ, M., Braun, N., Neuffer, J., & Kempa-Liehr, A. W. (2018). Time 
series feature extraction on basis of scalable hypothesis tests (ts-
fresh–a python package). Neurocomputing, 307, 72–77. https://doi.
org/10.1016/j.neucom.2018.03.067.

Cireşan, D., Meier, U., & Schmidhuber, J. (2012). Multi-column deep neu-
ral networks for image classification. ArXiv, 12022745 [cs].

de Souza Fortaleza, A. C., Mancini, M., Carlson-Kuhta, P., King, L. A., 
Nutt, J. G., Chagas, E. F., Freitas, I. F., & Horak, F. B. (2017). Dual task 
interference on postural sway, postural transitions and gait in peo-
ple with Parkinson's disease and freezing of gait. Gait & Posture, 56, 
76–81. https://doi.org/10.1016/j.gaitp​ost.2017.05.006

Decoste, D., & Schölkopf, B. (2002). Training invariant support 
vector machines. Machine Learning, 46, 161–190. https://doi.
org/10.1023/A:10124​54411458

Fahn, S. (2005). Group and the PS. Does levodopa slow or hasten the rate 
of progression of Parkinson's disease? Journal of Neurology, 252(S4), 
iv37–iv42. https://doi.org/10.1007/s0041​5-005-4008-5

Frenklach, A., Louie, S., Koop, M. M., & Bronte-Stewart, H. (2009). 
Excessive postural sway and the risk of falls at different stages of 
Parkinson's disease. Movement Disorders, 24, 377–385. https://doi.
org/10.1002/mds.22358

Goetz, C. G., Tilley, B. C., Shaftman, S. R., Stebbins, G. T., Fahn, S., 
Martinez-Martin, P., Poewe, W., Sampaio, C., Stern, M. B., Dodel, R., 
Dubois, B., Holloway, R., Jankovic, J., Kulisevsky, J., Lang, A. E., Lees, 
A., Leurgans, S., LeWitt, P. A., Nyenhuis, D., … LaPelle, N. (2008). 
Movement Disorder Society-sponsored revision of the Unified 
Parkinson's Disease Rating Scale (MDS-UPDRS): Scale presentation 
and clinimetric testing results. Movement Disorders, 23, 2129–2170. 
https://doi.org/10.1002/mds.22340

Gonera, E. G., Hof, M. V., Berger, H. J. C., van Weel, C., & Horstink, M. 
W. I. M. (1997). Symptoms and duration of the prodromal phase in 
Parkinson's disease. Movement Disorders, 12, 871–876. https://doi.
org/10.1002/mds.87012​0607

Hawkes, C. H., Tredici, K. D., & Braak, H. (2010). A timeline for Parkinson's 
disease. Parkinsonism & Related Disorders, 16, 79–84. https://doi.
org/10.1016/j.parkr​eldis.2009.08.007

Heldman, D. A., Giuffrida, J. P., Chen, R., Payne, M., Mazzella, F., Duker, 
A. P., Sahay, A., Kim, S. J., Revilla, F. J., & Espay, A. J. (2011). The mod-
ified Bradykinesia Rating Scale for Parkinson's disease: Reliability 
and comparison with kinematic measures. Movement Disorders, 26, 
1859–1863. https://doi.org/10.1002/mds.23740

Ialongo, C. (2016). Understanding the effect size and its measures. 
Biochemia Medica (Zagreb), 26, 150–163. https://doi.org/10.11613/​
BM.2016.015

Jankovic, J. (2008). Parkinson's disease: Clinical features and diagnosis. 
Journal of Neurology, Neurosurgery & Psychiatry, 79, 368–376. https://
doi.org/10.1136/jnnp.2007.131045

Kalia, L. V., & Lang, A. E. (2015). Parkinson's disease. Lancet, 386, 896–
912. https://doi.org/10.1016/S0140​-6736(14)61393​-3

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy es-
timation and model selection (pp. 1137–1143). Proceedings of the 14th 
International Joint Conference on Artificial Intelligence – Volume 2, 
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based 
learning applied to document recognition. Proceedings of the IEEE, 
86(11), 2278–2324. https://doi.org/10.1109/5.726791

LeCun, Y., Cortes, C., & Burges, C. (n.d.). MNIST handwritten digit data-
base. Retrieved from http://yann.lecun.com/exdb/mnist/

Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., 
Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, 
D. (2009). The PRISMA statement for reporting systematic reviews 
and meta-analyses of studies that evaluate health care interventions: 

Explanation and elaboration. PLoS Medicine, 6, e1000100. https://
doi.org/10.1371/journ​al.pmed.1000100

Loram, I. D., Gawthrop, P. J., & Lakie, M. (2006). The frequency of human, 
manual adjustments in balancing an inverted pendulum is con-
strained by intrinsic physiological factors. Journal of Physiology, 577, 
417–432. https://doi.org/10.1113/jphys​iol.2006.118786

Louie, S., Koop, M. M., Frenklach, A., & Bronte-Stewart, H. (2009). 
Quantitative lateralized measures of bradykinesia at different stages 
of Parkinson's disease: The role of the less affected side. Movement 
Disorders, 24, 1991–1997. https://doi.org/10.1002/mds.22741

Mancini, M., Carlson-Kuhta, P., Zampieri, C., Nutt, J. G., Chiari, L., & 
Horak, F. B. (2012). Postural sway as a marker of progression in 
Parkinson's disease: A pilot longitudinal study. Gait & Posture, 36, 
471–476. https://doi.org/10.1016/j.gaitp​ost.2012.04.010

Media PA (2019). Quarter of Parkinson's sufferers were wrongly diagnosed, 
says charity. The Guardian. Retrieved from http://www.thegu​ardian.
com/socie​ty/2019/dec/30/quart​er-of-parki​nsons​-suffe​rers-were-
wrong​ly-diagn​osed-says-charity

Nutt, J. G., & Wooten, G. F. (2005). Diagnosis and initial management 
of Parkinson's disease. New England Journal of Medicine, 353, 1021–
1027. https://doi.org/10.1056/NEJMc​p043908

Pålhagen, S., Heinonen, E., Hagglund, J., Kaugesaar, T., Maki-Ikola, O., & 
Palm, R. (2006). Selegiline slows the progression of the symptoms 
of Parkinson disease. Neurology, 66(8), 1200–1206. https://doi.
org/10.1212/01.wnl.00002​04007.46190.54

Panyakaew, P., Anan, C., & Bhidayasiri, R. (2015). Visual deprivation elicits 
subclinical postural inflexibilities in early Parkinson's disease. Journal 
of the Neurological Sciences, 349, 214–219. https://doi.org/10.1016/j.
jns.2015.01.022

Paolucci, T., Iosa, M., Morone, G., Fratte, M. D., Paolucci, S., Saraceni, V. 
M., & Villani, C. (2018). Romberg ratio coefficient in quiet stance and 
postural control in Parkinson's disease. Neurological Sciences, 39(8), 
1355–1360. https://doi.org/10.1007/s1007​2-018-3423-1

Post, B., Merkus, M. P., de Bie, R. M. A., de Haan, R. J., & Speelman, J. D. 
(2005). Unified Parkinson's disease rating scale motor examination: 
Are ratings of nurses, residents in neurology, and movement dis-
orders specialists interchangeable? Movement Disorders, 20, 1577–
1584. https://doi.org/10.1002/mds.20640

Raymakers, J. A., Samson, M. M., & Verhaar, H. J. J. (2005). The assess-
ment of body sway and the choice of the stability parameter(s). Gait & 
Posture, 21, 48–58. https://doi.org/10.1016/j.gaitp​ost.2003.11.006

Røgind, H., Lykkegaard, J. J., Bliddal, H., & Danneskiold-Samsøe, 
B. (2003). Postural sway in normal subjects aged 20–70 years. 
Clinical Physiology and Functional Imaging, 23, 171–176. https://doi.
org/10.1046/j.1475-097X.2003.00492.x

Rudmin, J. W. (2010). Calculating the exact pooled variance. ArXiv, 
10071012 [physics].

Savitt, J. M., Dawson, V. L., & Dawson, T. M. (2006). Diagnosis and treat-
ment of Parkinson disease: Molecules to medicine. Journal of Clinical 
Investigation, 116, 1744–1754. https://doi.org/10.1172/JCI29178

Schmit, J. M., Riley, M. A., Dalvi, A., Sahay, A., Shear, P. K., Shockley, K. 
D., & Pun, R. Y. K. (2006). Deterministic center of pressure patterns 
characterize postural instability in Parkinson's disease. Experimental 
Brain Research, 168, 357–367. https://doi.org/10.1007/s0022​
1-005-0094-y

Shannon, C. E. (1949). Communication in the presence of noise. 
Proceedings of the IRE, 37, 10–21. https://doi.org/10.1109/
JRPROC.1949.232969

Sullivan, G. M., & Feinn, R. (2012). Using effect size—or Why the P value 
is not enough. Journal of Graduate Medical Education, 4, 279–282. 
https://doi.org/10.4300/JGME-D-12-00156.1

Whone, A. L., Watts, R. L., Stoessl, A. J., Davis, M., Reske, S., Nahmias, C., 
Lang, A. E., Rascol, O., Ribeiro, M. J., Remy, P., Poewe, W. H., Hauser, 
R. A., & Brooks, D. J. (2003). Slower progression of Parkinson's 

https://doi.org/10.1111/ane.12466
https://doi.org/10.1016/j.neucom.2018.03.067
https://doi.org/10.1016/j.neucom.2018.03.067
https://doi.org/10.1016/j.gaitpost.2017.05.006
https://doi.org/10.1023/A:1012454411458
https://doi.org/10.1023/A:1012454411458
https://doi.org/10.1007/s00415-005-4008-5
https://doi.org/10.1002/mds.22358
https://doi.org/10.1002/mds.22358
https://doi.org/10.1002/mds.22340
https://doi.org/10.1002/mds.870120607
https://doi.org/10.1002/mds.870120607
https://doi.org/10.1016/j.parkreldis.2009.08.007
https://doi.org/10.1016/j.parkreldis.2009.08.007
https://doi.org/10.1002/mds.23740
https://doi.org/10.11613/BM.2016.015
https://doi.org/10.11613/BM.2016.015
https://doi.org/10.1136/jnnp.2007.131045
https://doi.org/10.1136/jnnp.2007.131045
https://doi.org/10.1016/S0140-6736(14)61393-3
https://doi.org/10.1109/5.726791
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1371/journal.pmed.1000100
https://doi.org/10.1371/journal.pmed.1000100
https://doi.org/10.1113/jphysiol.2006.118786
https://doi.org/10.1002/mds.22741
https://doi.org/10.1016/j.gaitpost.2012.04.010
http://www.theguardian.com/society/2019/dec/30/quarter-of-parkinsons-sufferers-were-wrongly-diagnosed-says-charity
http://www.theguardian.com/society/2019/dec/30/quarter-of-parkinsons-sufferers-were-wrongly-diagnosed-says-charity
http://www.theguardian.com/society/2019/dec/30/quarter-of-parkinsons-sufferers-were-wrongly-diagnosed-says-charity
https://doi.org/10.1056/NEJMcp043908
https://doi.org/10.1212/01.wnl.0000204007.46190.54
https://doi.org/10.1212/01.wnl.0000204007.46190.54
https://doi.org/10.1016/j.jns.2015.01.022
https://doi.org/10.1016/j.jns.2015.01.022
https://doi.org/10.1007/s10072-018-3423-1
https://doi.org/10.1002/mds.20640
https://doi.org/10.1016/j.gaitpost.2003.11.006
https://doi.org/10.1046/j.1475-097X.2003.00492.x
https://doi.org/10.1046/j.1475-097X.2003.00492.x
https://doi.org/10.1172/JCI29178
https://doi.org/10.1007/s00221-005-0094-y
https://doi.org/10.1007/s00221-005-0094-y
https://doi.org/10.1109/JRPROC.1949.232969
https://doi.org/10.1109/JRPROC.1949.232969
https://doi.org/10.4300/JGME-D-12-00156.1


     |  9 of 9GE et al.

disease with ropinirole versus levodopa: The REAL-PET study. Annals 
of Neurology, 54, 93–101. https://doi.org/10.1002/ana.10609

Winter, D. (1995). Human balance and posture control during standing and 
walking. Gait & Posture, 3, 193–214. https://doi.org/10.1016/0966-
6362(96)82849​-9

Zhou, L., Suominen, H., & Gedeon, T. (2019). Adapting state-of-the-art 
deep language models to clinical information extraction systems: 
Potentials, challenges, and solutions. JMIR Medical Informatics, 7, 
e11499.

SUPPORTING INFORMATION
Additional supporting information may be found online in the 
Supporting Information section.

How to cite this article: Ge W, Lueck CJ, Apthorp D, Suominen 
H. Which features of postural sway are effective in 
distinguishing Parkinson's disease from controls? A systematic 
review. Brain Behav. 2021;11:e01929. https://doi.org/10.1002/
brb3.1929

https://doi.org/10.1002/ana.10609
https://doi.org/10.1016/0966-6362(96)82849-9
https://doi.org/10.1016/0966-6362(96)82849-9
https://doi.org/10.1002/brb3.1929
https://doi.org/10.1002/brb3.1929

