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Abstract: Bananas are the world’s most popular fruit and an important staple food source. Recent
outbreaks of Panama TR4 disease are threatening the global banana industry, which is worth an
estimated $8 billion. Current methods to map land uses are time- and resource-intensive and result
in delays in the timely release of data. We have used existing land use mapping to train a U-Net
neural network to detect banana plantations in the Wet Tropics of Queensland, Australia, using
high-resolution aerial photography. Accuracy assessments, based on a stratified random sample of
points, revealed the classification achieves a user’s accuracy of 98% and a producer’s accuracy of
96%. This is more accurate compared to existing (manual) methods, which achieved a user’s and
producer’s accuracy of 86% and 92% respectively. Using a neural network is substantially more
efficient than manual methods and can inform a more rapid respond to existing and new biosecurity
threats. The method is robust and repeatable and has potential for mapping other commodities and
land uses which is the focus of future work.

Keywords: convolutional neural network; U-Net; segmentation; deep learning; land use; banana
plantation; Panama TR4; aerial photography

1. Introduction

1.1. Panama TR4

Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), is a soil-borne fungus that causes
Panama TR4, a form of fusarium wilt that eventually kills infected banana plants [1,2]. Since the 1980s,
Foc TR4 has been regarded as the most important biosecurity threat to the global banana industry,
and an unparalleled botanical epidemic [2], persisting indefinitely in the soil with no effective control
method. There is currently no suitable replacement variety for Cavendish that can meet the needs of
the market [1,3,4]. The disease can spread anthropogenically and naturally through the transportation
of infected plant material, soil, and water [5].

Bananas are the world’s most popular fruit and an important staple food [6], with a global industry
worth $8 billion annually [7]. The potential impact of Panama TR4 is severe, because Cavendish
accounts for approximately 47% of bananas produced globally, predominantly sourced from Asia,
Latin America, and Africa [7].

Foc TR4 was first identified in Sumatra, Indonesia, in 1992 [8], and to date, has spread across several
continents [1,9,10] including Australia; the Northern Territory in 1997 and the state of Queensland
in 2015 [4,8]. The Queensland Government Department of Agriculture and Fisheries (DAF) initiated
the Panama TR4 Program in response to the first detection in the Tully River catchment, within the
Wet Tropics bioregion. The program successfully controlled and contained the impact of Panama TR4
within a section of the Tully River catchment, however, three additional plantations within this location
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were infested in 2017, 2018, and 2020 [9,10]. At the time of the outbreak there was no accurate spatial
dataset of all banana plantations [11]. The absence of this data jeopardized the banana industry and
DAF’s abilities to respond rapidly. Approximately 94% of the national banana supply is concentrated
in the Wet Tropics, and is worth approximately AUD 480 million annually to the national economy [12].
Therefore, it is essential that the locations and extents of affected, and unaffected, banana plantations
are monitored—particularly where vectors are likely to be transported, for example through erosion of
contaminated soil, distribution and processing facilities, and machinery and equipment used across
multiple plantations.

1.2. Land Use Mapping

The Queensland Government, currently through the Department of Environment and Science,
has mapped land use and land use change throughout Queensland since 1999. The Queensland Land
Use Mapping Program (QLUMP) maps land use in accordance with the Australian Land Use and
Management (ALUM) classification [13]. In 2015, when Panama TR4 was first detected in the Wet
Tropics, banana plantations had not been specifically classified, as they did not explicitly appear in
the ALUM classification. For DAF and the banana industry to manage the Panama TR4 infestation,
Système Pour l’Observation de la Terre (SPOT) 6 imagery was acquired over the Wet Tropics, for
QLUMP to manually digitize the extent of banana plantations.

Timely land use mapping is fundamental for responding to biosecurity incidents, and for other
applications such as natural disaster response, natural resource management and environmental
monitoring [14]. Advances in big data and imagery availability have created an opportunity to develop
methods to automatically and efficiently classify land use features over large geographical areas to
allow for higher spatial and temporal resolutions and a more detailed classification for commodity
level observations.

Using high-resolution imagery, many different land uses can be identified with human vision,
including banana plantations. This is a result of human operators combining a number of image
properties including colors, textures, pixel proximity, geometric attributes, and contextual information
such as related built infrastructure [15]. Spectral information alone cannot successfully distinguish
land use features as some land uses can appear spectrally similar [16] and are usually restricted to a
single sensor without cross calibration. Using ancillary datasets and decision trees to derive land use is
not always an accurate representation of what is on the ground [14].

The greater availability of high-resolution imagery introduces more complexity into the
data, requiring more computing power to process the imagery and more detailed classifications.
The integration of textural properties through object-based segmentation techniques have significantly
improved the classification results for remote sensing applications [15]. For land use mapping, it has
been found that using spatial as well as spectral information outperforms pixel-based classifications [17].
However, object-based image analysis approaches still require human input [16,18] and these complex
workflows tend to be just as time- and resource-intensive as entirely drawing the land use features
manually [19–21].

1.3. Deep-Learning Classifications

Neural networks have been around for many decades (see review by Schmidhuber [22]). However,
only since the recent advancements in GPU technology have they been able to be trained with large
amounts of data in a reasonable amount of time [23]. Neural networks simulate the processes of
the human brain—interconnected neurons which process incoming information [24]. The solution is
obtained by nonalgorithmic and unstructured methods, and by the adjustment of weights connecting
the neurons in the network [25]. They can adaptively simulate complex and non-linear patterns [24,26]
such as those found in high-resolution aerial photography.

Deep learning methods are based on neural networks [22]. These networks consist of many layers,
which can transform images into categories through learning of high-level features [27]. Convolutional
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Neural Networks (CNN) are situated at the fringe between machine learning and computer vision,
combining the power of deep learning with contextual image analysis. CNNs have been used in
applications such as number-plate reading, facial recognition, and aerial image classification [28,29].
CNNs have gained momentum for image classification since the AlexNet architecture won the ImageNet
contest by a wide margin in 2012 [30].

Mnih [31] and Romero et al. [32] found that deep CNNs outperform shallow CNNs (with
fewer hidden layers), Support Vector Machines (SVM), Kernel-based Principal Component Analysis
(KPCA), and spectral classifications for land use classification in aerial photography, multispectral and
hyperspectral imagery. As CNN classifications integrate spatial as well as spectral information, they
achieve higher accuracy compared to SVM and Random Forest (RF) classifications [23].

CNNs evaluate large amounts of contextual information over multiple scales that can result in
classifications at a lower resolution than the original image. To overcome this, the review article by
Ma et al. [23] suggests using U-Net [33] or an ensemble of models trained with different variables or
different architectures. U-Net was originally developed for image segmentation problems in biomedical
imaging [33] and has been adopted for use with optical earth observation data with overall accuracies
exceeding 90% [34–36]. Issues occur with U-Net at the edges of inference areas and vanishing gradient
problems where the network becomes difficult to train and has insufficient learning [37]. To overcome
this, Sun et al. [37] suggests using an ensemble model approach to counter the edge effects and the use
of concatenation operations and activation functions such as rectified linear units (ReLU) to reduce the
vanishing gradient problem.

1.4. Automated Land Use Mapping

Most studies that have used deep learning to automatically map land use features have a
constrained geographical extent and are limited to a standard set of training images, for example
the University of California Merced Land Use Dataset [38] and Banja-Luka [39]. Although this
is advantageous in benchmarking different methodologies, no studies have operationalized the
applications for real-world land use mapping over a large geographical area [23,40].

Previous work in Queensland has focused on land cover. Pringle et al. [41] developed a time-series
based method to operationally map summer and winter crops, and Flood et al. [42] used U-Net to map
land cover, specifically the extent of woody vegetation cover, to a resolution of 1 m. However, there is
an absence of studies that classify land use in Australia using earth observation data with a resolution
of less than 10 m which is required for detailed land use mapping [43,44] and the resolution in which
CNNs have the most success [23].

The aim of this study is to demonstrate that using a convolutional neural network and
high-resolution imagery (<1 m) to automate land use mapping is more rapid and accurate than existing
manual methods. This would be of benefit to the on-going response to Panama TR4, future biosecurity
incidents, and other events requiring a rapid response (e.g., natural disasters). Additionally, the
improved land use data would better inform natural resource planning and monitoring, biodiversity
conservation, and the monitoring and modelling of the effects of land management practices on
water quality.

2. Materials and Methods

2.1. Study Area

The location of this study is within the Wet Tropics and Atherton Tablelands, located approximately
1200 km northwest of Brisbane, Australia (Figure 1). The region of 2.7 million hectares, includes the
Wet Tropics World Heritage Area, and is adjacent to the Great Barrier Reef World Heritage Area.

In 2015, QLUMP reported the major secondary land uses within the project area to be: Nature
Conservation (37.5%); Grazing (31.52%); Other Minimal Use (8.2%); and Cropping (7.2%). There were
14,533 hectares (0.65%) of banana plantations mapped.
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Figure 1. The study area (a) and extents of training (b). Note the Tully River catchment was excluded 
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between 17th July and 14th October 2015, and the 2018 data were acquired between 1st and 27th 
August 2018, by AEROmetrex. At the time of this study, the full extent of the 2018 Wet Tropics 
imagery capture was not available so the training was restricted to the middle and southern sections 
of the region. 

The data were captured with a fixed-wing mounted three-band true-color A3 Edge camera, at a 
spatial resolution of 25 cm and 20 cm for 2015 and 2018 respectively. The data were provided 
orthorectified by AEROmetrex based on a digital terrain model from LiDAR and stereo aerial 
imagery. The quality of the imagery is not consistent across the study area with some blurred areas 
and some discoloration. These artefacts are likely a result of post-processing of the imagery and 
appear to be located along tile boundaries where stitching the tiles and color balancing was not 
perfect. Unfortunately, the metadata supplied with the data does not list specific processing details. 
However the imagery is the best data available for the project area at a resolution suitable for this 
type of application. The Queensland Government has a large archive of aerial photography and it is 
likely these data, along with future captures will contain similar artefacts and any model developed 
will need to be robust enough to account for these inconsistencies. 

2.3. Project Hardware and Software 

Scripts and tools were written using the Python programming language. A combination of 
NumPy and Geospatial Data Abstraction Library (GDAL) were used to process the imagery and 
training data and convert them into multi-dimensional arrays, the format required for machine 
learning data processing. 

A combination of Python, Nvidia’s CUDA [45], CUDA deep neural network library (cuDNN) 
[46], Keras [47], and Tensorflow [48] formed the basis for the deep learning part of the project. Because 
of the volume of data and the number of iterations required to train a model, efficient processing of 
the data is required.  

The Queensland Government’s high performance computing (HPC) infrastructure consists of 
2256 threads, 8.8 TB of memory and eight Nvidia Tesla V100 GPUs, used to process the training data, 
train the U-Net model, and to create the model inference (resulting area of banana plantations 
classified by the model once trained). 

Figure 1. The study area (a) and extents of training (b). Note the Tully River catchment was excluded
from the training and reserved as the extent of the final classification.

2.2. Remote Sensing Imagery

Two aerial imagery captures were used for this study (Figure 1). The 2015 data were acquired
between 17th July and 14th October 2015, and the 2018 data were acquired between 1st and 27th August
2018, by AEROmetrex. At the time of this study, the full extent of the 2018 Wet Tropics imagery capture
was not available so the training was restricted to the middle and southern sections of the region.

The data were captured with a fixed-wing mounted three-band true-color A3 Edge camera, at
a spatial resolution of 25 cm and 20 cm for 2015 and 2018 respectively. The data were provided
orthorectified by AEROmetrex based on a digital terrain model from LiDAR and stereo aerial imagery.
The quality of the imagery is not consistent across the study area with some blurred areas and
some discoloration. These artefacts are likely a result of post-processing of the imagery and appear
to be located along tile boundaries where stitching the tiles and color balancing was not perfect.
Unfortunately, the metadata supplied with the data does not list specific processing details. However
the imagery is the best data available for the project area at a resolution suitable for this type of
application. The Queensland Government has a large archive of aerial photography and it is likely
these data, along with future captures will contain similar artefacts and any model developed will
need to be robust enough to account for these inconsistencies.

2.3. Project Hardware and Software

Scripts and tools were written using the Python programming language. A combination of
NumPy and Geospatial Data Abstraction Library (GDAL) were used to process the imagery and
training data and convert them into multi-dimensional arrays, the format required for machine learning
data processing.

A combination of Python, Nvidia’s CUDA [45], CUDA deep neural network library (cuDNN) [46],
Keras [47], and Tensorflow [48] formed the basis for the deep learning part of the project. Because of
the volume of data and the number of iterations required to train a model, efficient processing of the
data is required.

The Queensland Government’s high performance computing (HPC) infrastructure consists of
2256 threads, 8.8 TB of memory and eight Nvidia Tesla V100 GPUs, used to process the training data,
train the U-Net model, and to create the model inference (resulting area of banana plantations classified
by the model once trained).
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2.4. Existing Land Use Data Set

As described in Section 1.2, state-wide land use information is mapped by QLUMP. Land use
is mapped to a national standard, according to the ALUM Classification—which has a three-tiered
hierarchical structure broadly structured by the potential degree of modification from essentially native
land cover [13]. The (six) primary and (32) secondary classes relate to land use, and (159) tertiary classes
include commodity and land management practice information (e.g., “Tree fruits” as demonstrated in
Figure 2. While tertiary-level information is particularly valuable for many applications, including
biosecurity response, it has historically been expensive and impractical to collect, and as a result not
consistently recorded.
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Figure 2. This diagram shows the three-tiered hierarchical structure of the Australian Land Use and
Management (ALUM) classification and an extract demonstrating bananas as a commodity within the
“Tree fruits” tertiary class, “Perennial horticulture” secondary class, and “Production from irrigated
agriculture and plantations” primary class.

The QLUMP methodology has been an accurate, reliable, and cost-effective option since the late
90s—making use of available technology, data, and imagery. Mapping is undertaken primarily at
the desktop, combining imagery interpretation and ancillary data to derive land use products. These
products are field validated, peer reviewed, and accuracy assessed prior to publishing.

Because of the large area of Queensland (1.85 million squared kilometers), it has not been feasible
to update land use information across the entire state at once, therefore updates occur regionally, using
natural resource management (NRM) region boundaries. As a result, the currency of data varies from
region to region. The most recent data is 2017 (Fitzroy and Burnett Mary NRM regions) and the most
dated is 2012 (South East Queensland NRM region). The Wet Tropics NRM region was last updated
to 2015. Regional updates occur on an ad hoc basis, dependent on state government priorities—for
example the most recent updates were in the Great Barrier Reef catchments to support the Paddock to
Reef Monitoring, Modelling and Reporting Program, and the Reef 2050 Water Quality Improvement
Plan. A user survey conducted by QLUMP in 2020 indicates that there is a growing need for more
current, and higher resolution land use information. The current QLUMP methodology, while proven,
requires an intensive amount of manual image interpretation and spatial data analysis. There is a need
for a more automated methodology that enables faster publishing of land use information, and CNNs
are a possible solution.

2.5. Training Data

The generation of training data was an iterative process (Figure 3). Initially a subset of the
existing QLUMP data in the study area was edited to better represent the land use features within the
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2015 imagery. This editing was required as the QLUMP data were compiled using lower resolution
imagery (SPOT 6 with a resolution of 1.5 m) and mapped land use features at a scale of 1:50,000
(using a minimum mapping unit area of 2 ha and width of 50 m) [13,49]. From these data, image
and corresponding mask chips were randomly generated for model training. An initial inference
was produced, converted to a polygon using a prediction probability threshold of 50%, and edited
to fix any areas of omission and commission errors. This resulted in a more accurate and detailed
training dataset compared to the QLUMP data. The image and mask chips were then regenerated for
additional training.
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A total of 91,129 image chips with a size of 256 × 256 pixels were randomly generated from the
2015 and 2018 imagery. Of the total number of chips, 16,560 (18.2%) contained banana plantations,
with the remainder located over a range of other land uses. No data were generated which intersected
the Tully River catchment (Figure 1b) and this area was not included in the training stage of the study.

2.6. The U-Net Convolutional Neural Network

In this study, we aimed to classify every pixel in the image as banana or non-banana plantation
through semantic segmentation using a convolutional neural network. The structure of the CNN
follows the U-Net architecture [33] and is shown in Figure 4. It consists of two parts: (i) An encoding
stage that downsamples the resolution of the input images; and, (ii) a decoding stage that upsamples
and restores the images back to the original resolution. At each level of the encoding stages, two 3 × 3
convolution operations are applied using the rectified linear unit (ReLU) activation and a 2 × 2 max
pooling operation to downsample the input images. The first level consists of the original satellite
image and mask chips (256 pixels in width and height) where 64 3 × 3 filters are applied to each chip.
At each subsequent level of the encoding side of the U-Net, the number of filters is doubled, doubling
the number of bands of the images and the resolution halved until the bottom level where 1024 filters
are applied to images 16 × 16 pixels in size.

The decoding stage also uses two 3 × 3 convolution operations but upsamples the data and
concatenates the corresponding information in the encoding stage to double the resolution of the
images, eventually restoring the original resolution of the input images in the final level. The final step
is to conduct a 1 × 1 convolution using a sigmoid activation to produce a single band output probability
classification with values ranging from 0 to 1. Values closer to 1 are more likely to be banana plantations.
Using this configuration of the U-Net allows for the training of 31.4 million parameters overall.
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2.7. U-Net Training

The purpose of the training stage is to allow the model to learn how to identify banana plantations.
This is achieved by iterating over the training image and mask chips to determine their relevant
color, texture, and context attributes [50]. As the images were captured over a range of image dates,
subjected to color balancing and not corrected to surface reflectance, the training patches were randomly
augmented by flipping, rotating, and changing the brightness of the image. This creates a more robust
model for these image types [51,52].

A loss function of binary cross entropy and the Jaccard Index was used to judge the performance
of the model while training. The Nesterov Adam optimizer [47] with an initial learning rate of
1 × 10−5 was used and reduced to 1 × 10−6 at epoch 47 as the model accuracy was no longer improving.
The model was trained from scratch for a total of 50 epochs. One epoch represents one complete
iteration over all training images and masks. The model took approximately 30 h to train on one
Nvidia Tesla V100 GPU.

2.8. U-Net Inference

Sun et al. [37] found in previous studies that the edges of each image chip have a lower accuracy
than the center region. To overcome this, a two-pass ensemble inference strategy was adopted. This was
done by breaking the whole image into 256 × 256 image chips, iteratively applying the model to the
original patch and three rotated versions of the patch and averaging the results. The second pass of
the image was conducted, offset by 128 pixels. The result from the two passes are combined using a
weighted average with pixels toward the center of the patch given a higher weight than the pixels
toward the edge.

A prediction probability threshold of 90% was used to classify areas of banana plantations.
Small features and gaps of 0.01 hectares or less were removed or filled and the data were converted
into a polygon feature class with the edges smoothed to remove the square edges of individual pixels.

To increase the performance of the classification, the original aerial images were split up into
overlapping tiles, allowing the inference to be conducted on all eight Nvidia Tesla V100 GPUs. It took
approximately 12 h to run the model on the 2015 imagery.
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2.9. Accuracy Assessment

Two independent assessment measures were conducted to assess the accuracy of the U-Net and
QLUMP classifications of banana plantations in the Tully River catchment.

The first assessment was based on a stratified random sample of 9805 points using the ALUM
Classification tertiary classes as the strata, following the method described in [53]. As the scale of
the QLUMP data was different to the high-resolution imagery used to map land use classes, every
point was visually inspected to ensure they were correctly classified as a banana plantation or other
land use. If there were inconsistencies between the classification of a point and the imagery, the point
was reclassified to the correct land use class. For example, if a banana plantation point fell on an
area of fallow or a narrow road between the banana plantations, these points were reclassified as
land-in-transition or road. The points were used to calculate the user’s, producer’s, and total accuracies
for the U-Net and QLUMP classifications of banana plantations. In total, 701 out of 9805 points were
located on banana plantations (7.15%).

The second measure of accuracy for both classifications was conducted using a similarity coefficient,
the Jaccard Index defined in Equation (1). The benefit of using the Jaccard index for measuring the
accuracy of the banana plantation classification is that it accounts for all the validation data excluded
from the training of the U-Net model for the Tully River catchment. It is a similarity index and
compares how well the validation and classification banana plantation locations match.

J(C, G) =
C∩G
C∪G

(1)

where C is the classification (U-Net or QLUMP) and G is the validation data.

3. Results

3.1. U-Net Training

After 50 epochs, the model achieved a Jaccard Index of 0.961 and a loss of 0.01 (Figure 5). Because
of the high-quality training data used, the model achieved a Jaccard Index of 0.8 after 4 epochs and 0.9
after 11 epochs.
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3.2. U-Net Classification

The model was applied to the Tully River catchment section of the aerial imagery that was
excluded from the training. It took approximately two hours to create the output rasters and an
additional 2.5 h to threshold, filter, and merge the classification tiles to a single polygon feature class.
The result was the model-inferred extent of banana plantations, with a probability of 90% or greater.

Figure 6 shows examples of the U-Net classification of banana plantations in the Tully River
catchment. In all examples the U-Net classification matches the validation data except in Figure 6(4c)
where the U-Net classification was identified a new banana plantation that was missed in the validation
dataset because of the young age of the plants and low canopy cover resulting in this area not being
identified as a banana plantation by the human operator.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 16 
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Figure 6. Examples (1–4) show correctly classified areas of banana plantations for the U-Net model.
The left column (a) shows the 3-band true-color aerial photography. The middle column (b) shows
the validation data and the right column (c) shows the output U-Net model classification. Note in
Figure 6(4c), the U-Net classification identified a new plantation that was missed in the validation dataset.
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Figure 7 shows areas where the U-Net classification did not perform well. Figure 7(1,2) show a
papaya plantation and sugarcane crop respectively which the U-Net has incorrectly classified both
as banana plantations. Figure 7(3) shows an area of misclassification possibly related to the effects
of shadow on the banana plantation, and Figure 7(4) shows the U-Net classification not correctly
classifying blurred areas of the aerial photography.
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3.3. Accuracy Results

The results from the accuracy assessments can be found in Table 1. Overall, both classifications had
a high total accuracy of >0.995. As the focus of this work is specifically mapping banana plantations
which only represent 2.3% of the total area of the Tully River catchment, Table 1 shows the user’s and
producer’s accuracy for this class. We found the QLUMP banana plantation classification had a user’s
and producer’s accuracy of 0.862 and 0.921 respectively and the U-Net banana plantation classification
had a user’s and producer’s accuracy of 0.983 and 0.959 respectively (Table 1). The Jaccard Index for
the QLUMP classification was 0.341 and U-Net classification was 0.943.

Table 1. Accuracy assessment results showing the Jaccard Index, User’s, Producer’s, and total accuracies,
assessed on independent validation data. The Total, User’s, and Producer’s accuracies were based on
a stratified random sample of 9805 points, 701 of which were banana plantation points. The Jaccard
Index used all the validation data for the Tully River catchment.

Classification Total Accuracy User’s Accuracy Producer’s Accuracy Jaccard Index

QLUMP Banana
Plantations 1 0.996 0.862 0.921 0.341

U-Net Banana
Plantations 0.999 0.983 0.959 0.943

1 The cartographic scale of the QLUMP mapping is smaller than the scale of the U-Net classification.

As Table 1 indicates that both classifications are more likely to miss areas of banana plantations
(false negatives) than classify other land use features as banana plantations (false positives). It must
be reiterated that the QLUMP data were compiled using lower resolution imagery and mapped land
use features at a scale of 1:50,000. As a result, small-area and narrow land uses (e.g., farm sheds
and roads) were aggregated into surrounding land uses. Also, banana plantations were mapped as
bananas, regardless of them being active or fallow in the imagery. The scale of QLUMP data and
fallow plantations affected the accuracy of the mapping, when compared with the U-Net classification.
When specifically analyzing the location and extent of banana plantations, the accuracy assessment
results suggest the U-Net classification is more accurate than the QLUMP data.

The quality of the imagery for U-Net is restricted to data processed by a commercial third-party.
Inconsistencies in the geometric and radiometric corrections and post-processing operations (such as
tile mosaicing and color balancing) have affected the output classification.

4. Discussion

In this paper we have presented an automated approach to mapping banana plantations using
the U-Net CNN architecture [33] to assist the biosecurity response to Foc TR4. The U-Net has been
successfully applied to other land uses around the world, but not at an operational level [40,54,55].
Until this study, there were no existing automated classifications to detect banana plantations using
high-resolution aerial photography in Queensland, Australia or globally.

One perceived benefit of manually mapping is that humans can draw on undefined experiences
or obscure learnings, such as past, present, or regional knowledge about land uses [15]. Despite this,
when comparing the CNN approach to existing methods, we found the new classification technique is
more accurate (>0.94). This is consistent with other similar studies mapping land uses using deep
learning [34,40,54] except in this study we have applied our model over a broad geographical area.

We have also found the CNN method to be more rapid, allowing the automatic classification of
banana plantations within hours when compared with existing methods requiring weeks of manually
digitizing features. There were some misclassifications associated with blurred sections of aerial
imagery due to third party post-processing, which caused some sections of banana plantations to be
missed. Additionally, some papaya plantations and small areas of sugarcane crops were misclassified
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as banana plantations. To address these issues and to create a more robust model, we suggest additional
training data be generated in these problem areas to allow the CNN to better learn these features.
It is important for a model classifying land use features within high resolution aerial photography to
have the ability to account for these types of artefacts as past and future imagery captures are likely to
contain similar issues. Stratifying the random generation of training data by land uses or targeting
similar land uses (such as papaya plantations) would also ensure the CNN has enough examples of
non-banana plantations, and will improve the classification result.

While the U-Net has enabled greater accuracy and a more rapid land use product, it is limited by
the availability of extensive training data which is a prerequisite. Initially this work was made possible
using the data produced by the QLUMP methodology which was used to map the initial extent of
banana plantations in 2015. This will also be the case for any future land use classes mapped using
the U-Net. Therefore, there are implications for both the QLUMP and U-Net methodologies going
forward. A logical option would be to iteratively update and improve the original QLUMP data, using
the proposed U-Net methodology.

Future work will focus on updating the location and extent of all banana plantations within
the Wet Tropics to 2018 which was only partially available for this work (Figure 1). We will also be
expanding this method to other land uses and commodities, developing methods for monitoring land
use change and investigating if these methods can be used to detect damaged plantations either from
wilt associated with Foc TR4 or as a result of wind damage from natural disaster such as Tropical
Cyclones. Developing a framework to automatically map land use features would benefit mapping
programs in Australia and globally. The automated and efficient classification of land use features from
high-resolution imagery will be extremely valuable in responding to current and future biosecurity
incidents as well as other events requiring a rapid response such as natural disasters. This will
have applications in agricultural productivity and sustainability, land use planning, natural resource
condition monitoring and investment, biodiversity conservation, and improving water availability
and quality [14].

5. Conclusions

Current methods to map land use in Queensland are based on manual image interpretation, which
are time- and resource-intensive. Land use information is fundamental for informing the response to
biosecurity incidents, such as the detection of Panama TR4 in the Tully River catchment. Advances in
big data and imagery availability have created an opportunity to develop methods to automatically
and efficiently classify land use features over large geographical areas. This allows for higher spatial
and temporal resolutions, and a more detailed classification for commodity-level observations.

In this paper we have presented an automated and efficient classification technique for detecting the
location and extent of banana plantations in the Wet Tropics, which we have shown is an improvement
on the existing mapping methodology. The new classification approach used a refined version of the
existing QLUMP mapping to train a CNN using the U-Net architecture [33].
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