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Abstract: Tree condition, pruning and orchard management practices within intensive horticultural
tree crop systems can be determined via measurements of tree structure. Multi-spectral imagery
acquired from an unmanned aerial system (UAS) has been demonstrated as an accurate and efficient
platform for measuring various tree structural attributes, but research in complex horticultural
environments has been limited. This research established a methodology for accurately estimating tree
crown height, extent, plant projective cover (PPC) and condition of avocado tree crops, from a UAS
platform. Individual tree crowns were delineated using object-based image analysis. In comparison
to field measured canopy heights, an image-derived canopy height model provided a coefficient
of determination (R2) of 0.65 and relative root mean squared error of 6%. Tree crown length
perpendicular to the hedgerow was accurately mapped. PPC was measured using spectral and
textural image information and produced an R2 value of 0.62 against field data. A random forest
classifier was applied to assign tree condition into four categories in accordance with industry
standards, producing out-of-bag accuracies >96%. Our results demonstrate the potential of
UAS-based mapping for the provision of information to support the horticulture industry and
facilitate orchard-based assessment and management.

Keywords: unmanned aerial system; horticulture; avocado; canopy structure; tree condition

1. Introduction

Genetic variation, phenological growth stage and abiotic and biotic constraints can all influence
tree structural parameters such as height, canopy extent and foliage density [1–12]. For instance,
vigorous trees usually result in tall and dense canopies that influence the productivity [9–11]. As such,
measurements of these parameters can provide growers with a strong indication of plant health or
vigour, photosynthetic capacity and yield potential [13,14]. In most Australian horticultural industries,
such assessment is usually conducted by on-ground visual evaluation, which is time-consuming,
labour-intensive, subjective and often inconsistent [7,15–17]. Therefore, there is a demand for more
efficient, accurate and quantitative alternatives for such assessments.

Remote sensing has been used to estimate tree canopy structural attributes, such as tree
height, canopy extent, and plant projective cover (PPC), for decades [18–22]. Conventionally,
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these types of data were acquired by either satellites or aircrafts, which are time and weather
constrained. In the case of satellite data, it is difficult to acquire data with on-demand spatial,
spectral, and temporal specifications that is tailored for specific sites, products, and delivery times
for horticultural applications [23]. More recently, UAS have been considered as a useful platform to
acquire suitable remotely sensed data for measuring horticultural tree crop structure, as it provides both
higher spatial and temporal resolution and the flexibility of operations [6–8,18]. Airborne image data,
initially stereo-photography, were analyzed using soft-copy photogrammetry to provide information
for extracting ground and canopy heights [2–7,24], while more recently this has been done by collection
and processing of LiDAR point clouds [1,25–28]. Similar products are now generated from UAS
multi-band image data using multiple forms of softcopy photogrammetry, such as structure from
motion (SfM). As SfM algorithms have become part of the standard procedure of UAS image processing
workflows, UAS imagery has the potential to become a more accepted method for measuring tree
structure, providing a similar degree of accuracy and better spectral fusion compared to LiDAR
systems [6,29].

Canopy structural dimensions can be expressed by the tree height and the tree crown extent [4],
while the canopy density can be expressed by the PPC [21]. PPC is defined as the vertically projected
fraction of leaves and branches in relation to sky, which is often referred to as canopy cover or crown
cover [20–22]. It has been proved to be a good indicator of biomass [20,21]. Previous studies have
estimated PPC at the site scale [22,30]. However, for tree crop managers, the plant-scale condition of
individual trees is more relevant when applying agricultural inputs at the tree level [16]. Plant-scale
PPC estimation using near-infrared (NIR) brightness from multi-spectral UAS imagery has proved to
be an accurate approach for lychee trees [7]. As the canopy structure of lychee trees is considered to be
‘rhythmic’ [31], little is known about whether such plant-scale PPC estimation techniques are feasible
for other tree crops such as avocado trees, as the architecture of avocado trees is significantly different
to lychee trees [32]. Although Salgadoe, et al. [33] suggested that photo-derived PPC is also a good
indicator of avocado tree condition, the difference of canopy density is not significant to differentiate
trees between moderate and poor condition [33]. Hence, combining the canopy structural dimension
for tree vigour estimation may be beneficial [13]. The estimated tree height and canopy extent derived
from UAS imagery are now considered highly accurate in comparison to ground measurements [4–8],
yet limited research has integrated the dimension and PPC to express tree condition.

Tree condition evaluation methods are generally conducted by classifying trees into condition
categories based on visual assessment of tree canopy structure. This assessment is based on tree canopy
structure, and hence should be quantifiable from the aforementioned structural attributes that derived
from UAS imagery. Johansen, Duan, Tu, Searle, Wu, Phinn and Robson [15] used near-infrared (NIR)
brightness as the input feature of a random forest classifier to predict the condition of macadamia
trees. Different growing stages and levels of stress for avocado trees produce changes in overall
canopy form [33], and the amount of leaf, stem and trunk biomass, these resulted in different NIR
reflectance levels [34–36] which were detected by the classifier in the study. The results indicated a
moderate accuracy, hypothesised to be attributed to the very high spatial resolution of the UAS imagery,
combined with the complex NIR scattering properties of the tree crop leaf and canopy structures.
Based on this foundation, we explored methods that use all the available image-derived structural
attributes and linked these with the field-derived structural measurements for condition assessment.

The objectives of this work were to:

1. use multi-spectral UAS imagery to map and assess the accuracy of tree height, canopy width and
length, and PPC estimates for avocado trees, and

2. use the highly correlated image-derived structural attribute maps to produce a tree condition
ranking matched to on-round observer techniques.

This study explores a novel and innovative approach to assess horticultural tree crop condition
directly related to canopy structural attributes estimated from UAS image data and used to rank
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avocado tree condition. Such a condition ranking strategy could play a role to bridge the gap between
the remote sensing expertise and farmers’ knowledge of their tree crops, delivering information able
to be used immediately as part of on farm management practices.

2. Materials and Methods

2.1. Study Sites

The study site is one of the main Hass avocado producing orchards in Australia, which is located
to the south of Bundaberg, Queensland, Australia. The region experiences a subtropical climate
with long hot summers and mild winters. The post-harvest pruning usually occurs in late Austral
winter (August) or early spring (September), where major limbs are removed to maintain orchard
access between rows and enhance light interception. Flowering occurs between early September
and mid-October, followed by two fruit drop events usually between late October and January for
readjusting fruit load to fit the tree ecological resources [37]. Harvesting of avocado normally occurs
in May. The UAS based focus areas encompassed a 1 ha patch of the avocado orchard, within which
structural parameters of 45 avocado trees were evenly selected and measured (Figure 1). The avocado
trees were planted in 2005 with a 5 m spacing. The average elevation for the avocado orchard was
around 60 m above sea level, and it had relatively flat terrain with an average downward slope of
4 degrees towards east.
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Figure 1. The (a) outline of the study area and (b) aerial view of the avocado orchard in Bundaberg,
Australia. The green dots in (a) represent the selected in-situ measured trees. The Australia basemap in
(a) uses imagery from World-View 2 provided by DigitalGlobe.

2.2. Field Data

Field measurements were collected between 2 and 6 February 2017, where the canopy becomes
dense at the end of summer leave flush [38]. Tree height was measured using a TruPulse 360B laser
rangefinder (Laser Technology Inc, Centennial, USA) from the ground to the tree apex at a distance
greater than 10 m from the trunk to reduce the effect of tree inclination [39]. Canopy widths were
measured, in the direction along the hedgerow, as the horizontal distance between the two staffs placed
at the outermost edge of each side of the tree crown.

PPC for individual trees was estimated via a digital cover photography (DCP) method [21] using
a Nikon Coolpix AW120 digital camera (Nikon Corporation, Tokyo, Japan). Eight representative
cover images were taken at various locations at approximately half way between the trunk and the
outer edge of the tree crown of each tree during dusk. These images were imported into the Can-Eye
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software (French National Institute of Agronomical research, Paris, France) to estimate gap fraction to
calculate PPC.

A total of 66 trees, selected based on their variability in condition, were visually assessed by an
avocado tree expert and classified into four condition categories: (1) Excellent, (2) Good, (3) Moderate,
and (4) Fair (Figure 2), based on the modified Ciba-Geigy scale method for the Australian avocado
industry [33]. Twenty-two of the 66 assessed trees were part of the selected 45 trees, which had
their structural properties measured for validation purposes. The number of trees for each condition
category can be found in Table 1.
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Figure 2. The condition ranking for avocado trees based on farmers’ knowledge. The standard ranking
method classifies the trees into four categories: (a) Excellent, where there was no sign of defoliation;
(b) Good, with few wilting leaves occurring; (c) Moderate, where approximate one third to half of the
green leaf tissues were wilted; and (d) Fair, where more than half of the leaves were dead.

Table 1. Number of avocado trees classified in situ into respective condition rankings.

Ranking 1- Excellent 2- Good 3- Moderate 4- Fair

Count 8 21 32 5

2.3. UAS Data Acquisition

The multi-spectral UAS imagery was captured with a Parrot Sequoia®multi-spectral camera
(Parrot Drone SAS, Paris, France) mounted on a 3DR Solo (3D Robotics, Berkeley, USA) quadcopter
under clear sky conditions. The camera acquires imagery in the green (550 nm, 40 nm bandwidth),
red (660 nm, 40 nm bandwidth), red edge (735 nm, 10 nm bandwidth), and NIR (790 nm, 40 nm
bandwidth) part of the spectrum with its 4.8 × 3.6 mm (1280 × 960 pixels) CMOS sensor. The image
acquisition parameters, i.e., flight height, sidelap, and flight speed, etc., were designed based on the
suggestions from previous studies [7,40,41]. The flight was conducted in an along-tree-row pattern at
75 m AGL on 2 Feb 2017 between 2:11-2:17 PM (60◦ solar elevation). The sidelap of the images was
80%, the image capture interval was set to 1 second (92% forward overlap), and the flight speed was
5 m/s.

Ten AeroPoints®(Propeller Aerobotics Pty Ltd, Surry Hills, Australia) and eight gradient
panels in greyscale were deployed for geometric and radiometric correction purposes, respectively.
The locations of the AeroPoints were recorded for five hours and subsequently post-processed using the
Propeller®network correction based on the nearest base station, located within 26 km of the study site.
The calibration panels were designed based on the suggestion of Wang and Myint [42]. The reflectance
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values of the calibration panels were measured with an ASD FieldSpec®3 spectrometer (Malvern
Panalytical Ltd, Malvern, UK) and ranged from 4% to 92% in all spectral bands, corresponding with
the four bands of the Sequoia®camera (Figure 3).Remote Sens. 2018, 10, x FOR PEER REVIEW  5 of 19 

 

 
Figure 3. Spectral reflectance of the eight greyscale radiometric calibration panels measured in-situ 
with a field spectrometer and resampled to match the four Parrot Sequoia® multi-spectral bands. 

2.4. Image Pre-Processing 

Agisoft PhotoScan Pro (Agisoft LLC, St. Petersburg, Russia) was used to process the multi-
spectral UAS data with the aid of an in-house Python script to optimise and automate the process. 
The key point and tie point limits were set as 40,000 and 10,000 respectively for photo alignment. The 
measured ground control points (GCPs) derived from the AeroPoints® were imported to 
geometrically calibrate and geo-reference the images. The geo-referencing root-mean-square error 
(RMSE) of the GCPs was 0.07 m. The overall projection error was 0.6 pixel based on the bundle-
adjustment error assessment report. The projection errors of tie points were taken into account to 
eliminate poor-quality points, and a noise filter was also applied to assure the quality of the final 
products. A mild noise filter was applied during the point cloud densification process to keep as 
many details on the tree structure as possible. The densified photogrammetric point clouds were then 
classified to identify ground points before generating both a digital surface model (DSM) and digital 
terrain model (DTM). Before ortho-rectifying images, colour correction was enabled to calibrate the 
vignetting effect and reduce brightness variation caused by variations in photographic parameters 
(e.g. ISO value, shutter speed, etc.), which cannot be set to a constant value for the Parrot Sequoia 
camera. Orthomosaics were also produced with the colour balance option disabled to preserve the 
pixel values as close to the original images as possible [41,43] (Figure 4).  

  
(a) (b) 

Figure 4. The orthomosaics of the red edge band (a) without colour-balancing and (b) with colour-
balancing. The south part of the mosaic in (a) is darker than the north part, while such brightness 
variation is less pronounced in (b). This phenomenon was caused by dynamic photographic 
parameters and only occurred in the green and red edge bands in this case. 
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with a field spectrometer and resampled to match the four Parrot Sequoia®multi-spectral bands.

2.4. Image Pre-Processing

Agisoft PhotoScan Pro (Agisoft LLC, St. Petersburg, Russia) was used to process the multi-spectral
UAS data with the aid of an in-house Python script to optimise and automate the process. The key
point and tie point limits were set as 40,000 and 10,000 respectively for photo alignment. The measured
ground control points (GCPs) derived from the AeroPoints®were imported to geometrically calibrate
and geo-reference the images. The geo-referencing root-mean-square error (RMSE) of the GCPs was
0.07 m. The overall projection error was 0.6 pixel based on the bundle-adjustment error assessment
report. The projection errors of tie points were taken into account to eliminate poor-quality points,
and a noise filter was also applied to assure the quality of the final products. A mild noise filter was
applied during the point cloud densification process to keep as many details on the tree structure
as possible. The densified photogrammetric point clouds were then classified to identify ground
points before generating both a digital surface model (DSM) and digital terrain model (DTM). Before
ortho-rectifying images, colour correction was enabled to calibrate the vignetting effect and reduce
brightness variation caused by variations in photographic parameters (e.g. ISO value, shutter speed,
etc.), which cannot be set to a constant value for the Parrot Sequoia camera. Orthomosaics were also
produced with the colour balance option disabled to preserve the pixel values as close to the original
images as possible [41,43] (Figure 4).

2.5. Producing Analysis Ready Data

In order to estimate the tree height, we derived a canopy height model (CHM) by subtracting
the DTM from the DSM. For PPC, we used the brightness of red edge and NIR bands and a range of
vegetation indices based on the at-surface reflectance imagery from the orthomosaic. The brightness
is the direct output of image pre-processing, which was recorded in digital number (DN) and had
a strong causality with at-surface reflectance. At-surface reflectance imagery was created using a
simplified empirical correction based on the radiometric calibration panels, which was suggested by
previous studies [7,41,42], with the aid of an in-house Python script. However, the initial corrected
at-surface reflectance imagery appeared with some negative reflectance values due to shaded leaves
and perhaps inaccurate reflectance estimations from the panel [41]. Therefore, we manually delineated
the tree rows and calculated the zonal statistics within these regions to get the minimum value for
each band of each mosaic. These negative values were applied for dark feature subtraction [35] to
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offset the pixel values in the reflectance images to make sure that most of the at-surface reflectance
values within the tree rows were positive and the spectral signature fitted the spectral characteristic
of vegetation. Subsequently, the two at-surface reflectance orthomosaics were used to generate the
following vegetation indices: (1) Normalised Difference Vegetation Index (NDVI), (2) Normalised
Difference Red Edge Index (NDRE), (3) green NDVI (g-NDVI), (3) Red Edge Normalised Difference
Vegetation Index (RENDVI), and (5) Green Chlorophyll Index (ClGE) (Table 2). These indices were
selected because they are commonly used in precision agricultural applications and have proven useful
for estimating the biomass and productivity with a specific degree of accuracy [12,18,36,44,45].
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Figure 4. The orthomosaics of the red edge band (a) without colour-balancing and (b) with
colour-balancing. The south part of the mosaic in (a) is darker than the north part, while such
brightness variation is less pronounced in (b). This phenomenon was caused by dynamic photographic
parameters and only occurred in the green and red edge bands in this case.

Table 2. Formulae of vegetation indices which were used in this study.

Vegetation Index Formula

Normalised Difference Vegetation Index (NDVI) RNIR−RRed
RNIR+RRed

Green Normalised Difference Vegetation Index (gNDVI) RNIR−RGreen
RNIR+RGreen

Red Edge Normalised Difference Vegetation Index (RENDVI) RRed edge−RRed
RRed edge+RRed

Normalised Difference Red Edge Index (NDRE) RNIR−RRed edge
RNIR+RRed edge

Green Chlorophyll Index (ClGE) RNIR
RGreen

− 1

Rband represents the reflectance of specific bands.

2.6. Individual Tree Crown Delineation and Structural Attribute Estimation

To delineate individual trees, tree rows were first delineated with geographic object-based image
analysis (GEOBIA) using the eCognition Developer software (Trimble, Munich, Germany). The initial
segmentation was conducted using the multiresolution segmentation algorithm [46] based on the
CHM, NDVI, NIR and red bands (Figure 5). The NDVI and NIR bands are commonly used to delineate
vegetation [7,47,48]. The reason we also selected the red band as one of the inputs was that the ground
material is mostly red dirt, creating contrast between trees and the ground. Initially, parts of the tree
crowns were distinguished with segments that had CHM values greater than 3 m. Those segments were
then grown progressively outwards until CHM ≤ 0.3 m and NDVI ≤ 0.1. At this stage, the delineated
tree crown extent excluded significant within-crown gaps and left them as unclassified segments
which were enclosed by tree crown segments. For gap fraction analysis purposes, such unclassified
segments were included as part of the tree crown, if they were surrounded by already classified tree
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crown objects. All the tree segments were eventually merged to create the extent shapefile of tree rows
(Figure 5).Remote Sens. 2018, 10, x FOR PEER REVIEW  7 of 19 
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Figure 5. The workflow of individual tree delineation and attribute extraction.

Once the tree rows had been delineated, the next step was to identify individual tree crowns for the
45 selected trees, which had been measured in the field, as well as the 66 trees that had their condition
ranked. Because the trees had been pruned mechanically and many of the tree crowns overlapped
with the adjacent tree crowns, it was not possible to separate them automatically based on height and
spectral information. Therefore, we visually delineated the 45 individual tree crowns based on visual
interpretation of the orthomosaics and knowledge of tree location and planting distance. Some of the
overlapping crown areas were split in half when the real extents were not visually distinguishable.
Nevertheless, this method kept the majority of the extent of individual tree crowns, hence reducing
bias in the comparison with field-derived PPC information. Although the proposed GEOBIA method
could not further delineate individual neighbouring trees within tree rows, it reduced the potential
error and processing time caused by manual delineation of tree row extent.
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The semi-automatically delineated individual tree crown extents were used as the final objects to
extract individual tree crown parameters. Tree height was estimated by the maximum CHM value
within each object to correspond to field measurements. Crown width and length, which represented
the horizontal diameter of the tree crown in the direction along and perpendicular to the hedgerows,
respectively, was calculated using the width and length of the minimum rectangle that covered each
crown extent (Figure 6a). Crown length for each tree was also manually measured from the orthomosaic
for comparison with the calculated length using the GEOBIA method. The mean, standard deviation,
and Haralick texture grey level co-occurrence matrix (GLCM) [7,46,49–52], including homogeneity,
dissimilarity, contrast, and standard deviation, were extracted for the red edge brightness, NIR
brightness, and five vegetation indices (Table 2) and exported for further analysis. These image-derived
parameters were then compared to field measurements, and their coefficient of determination (R2) of
linear regressions and RMSE were calculated to assess their correlation and accuracy at the tree crown
object level.
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Figure 6. The delineated tree extent for the 45 selected trees that had in-situ structural measurements
and the 66 trees that had on-ground condition evaluation. The rectangles which are highlighted in
green in (a) represent the minimum rectangle to measure crown width and length, representing the
horizontal distance in the direction along and perpendicular to the hedgerow, respectively. The yellow
highlighted trees in (b) include the 22 trees for which tree crown were condition ranked and measured
structure in field.

2.7. Canopy Condition Ranking

After finishing the accuracy assessment of the extracted structural attributes, only the variables
such as the maximum CHM value, average pixel value and texture from spectral bands and vegetation
indices, which were highly correlated with the field measurements, were selected for the condition
ranking classification of the 66 field assessed trees (Figure 6b), using a parallel random forest
classifier [53] with the aid of an in-house Python script. For the random forest classification, 80% of
the 66 avocado trees were selected randomly to train the classifier with the aforementioned selected
variables as training features and the condition ranking as training labels. Every time the classifier was
trained, it randomly picked a number of training features that equalled the square root of total number
of features to grow the tree. The accuracy of the trained classifier was estimated using out-of-bag
error that was calculated by the bootstrap aggregating (bagging) predictor, which is the method for
generating random subsets that have a uniform probability of each label and with replacement for
prediction [53,54]. The classifier was trained repeatedly 300 times with different random subsets to
allow nodes to grow until the out-of-bag error was stable [55]. The trained random forest classifier
was then used to predict the condition ranking for all 66 trees based on the extracted variable sets.
The prediction was compared with the in-field condition ranking to generate a confusion matrix
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to assess the model accuracy. The relative importance of the features used as decision nodes was
calculated by averaging the probabilistic predictions, which were estimated by the mean decrease
impurity method, to decrease the variance as well as bias [56,57].

3. Results

3.1. Accuracy of CHM-Derived Tree Height

The maximum value of the UAS-derived CHM was extracted for the individual trees and
compared against the field-based tree height measurements. The result shows that the CHM had a
positive correlation with the field-derived tree height and produced a coefficient of determination (R2)
of 0.65 using a linear model (Figure 7). Of the 45 trees measured, the average field-derived tree height
was 8.7 m (n = 45), while the average CHM-derived tree height was 8.4 m. The RMSE of the estimated
tree height was 0.5 m. The average tree height was slightly underestimated using the CHM-derived
method possibly due to the inaccuracies of 3D reconstruction on some branches.
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3.2. Accuracy of Image-Derived Crown Width and Length

The correlation between the image-derived and field measured canopy width was low, because of
the overlapping canopies and lack of height variation between them, preventing accurate delineation
of the edges between neighbouring tree crowns from the CHM and spectral imagery. From Figure 8a,
we can tell that there is no correlation between the measured canopy width and image-derived canopy
width. Because of this limitation to estimate the canopy width accurately, it is not feasible to use the
estimated canopy width as an indicator of tree condition.

The estimation of crown length using a linear model had a R2 value of 0.88 compared to the
manually measured length using the orthomosaic (Figures 6a and 8b). From Figure 8b, we can tell
that there was an outlier in the scatter plot, which was caused by a branch of sparse leaves that failed
reconstructed with SfM. Therefore, it was excluded from the statistical analysis. The average of the
manually measured canopy length was 8.45 m (n = 45), while the average of the calculated canopy
length based on the semi-automatic delineation results was 8.32 m. The calculated canopy length
was underestimated for most of the trees with an RMSE at 0.2 m, because the leaves at the edge
of canopy were usually sparse and hence not well-reconstructed with SfM. The tree canopies were
pruned mechanically so that the edge of canopies in the direction along the hedgerow aligned very
well. Hence, the canopy length is dictated by the pruning rather than the real condition of individual
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tree crowns. While the pruning effects prevent measured length from being used as an indicator of tree
condition, tree crown length and gap length between hedgerows can still provide useful information
for future pruning operations and management purposes.Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 19 
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Figure 8. Scatter plot and linear regression of (a) canopy width in the direction along the hedgerow,
and (b) canopy length in the direction perpendicular to the hedgerow. The outlier in (b) caused by a
branch of sparse leaves at the lower part of a tree was not taken into account in the linear regression.

3.3. PPC Correlation

Figure 9 shows the different R2 values for the PPC regression between and field derived PPC
values and different spectral indicators, including the brightness of the red edge and NIR bands and five
vegetation indices and texture bands, with and without colour correction. Colour correction improved
the observed relationship of image derived structure values to ground measurements. Comparing the
results derived with and without colour correction, the R2 value using the vegetation indices showed
higher variation between the two radiometric corrections than the red edge and NIR band brightness.
The PPC correlation among all the indicators was highest when integrating mean, standard deviation
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(Stdev), and the four Haralick texture GLCMs for multi-variate linear regression. The input of Haralick
texture GLCM improved the R2 value more than the standard deviation, except for the use of the NIR
brightness. The R2 value using the mean of NIR brightness was 0.38 without colour correction but
increased to 0.42 with colour correction. With the extra input of standard deviation and four Haralick
texture GLCMs, the R2 value increased to 0.59 and 0.61 for the NIR brightness using multi-variate
linear regression without and with colour correction, respectively. When used to explain the variation
in PPC, NDVI had the second highest R2 value without colour correction and the highest R2 of 0.62
with colour correction. The R2 value using the mean NDVI value without colour correction was 0.31
and improved to 0.54 when both standard deviation and texture information were added. On the
other hand, an R2 of 0.56 was achieved using only the mean NDVI value with colour correction per
tree crown, whereas this value was increased to 0.62 when including both standard deviation and
texture information.
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3.4. Tree Condition Prediction

The mean, standard deviation, and four Haralick texture GLCMs of the NIR brightness and NDVI,
derived from the colour-corrected orthomosaic, were extracted for the 66 trees. CHM-derived tree
height was also selected as one of the features for predicting tree condition. The prediction results from
both NIR and NDVI classifiers were identical (Figures 10 and 11). The seven-feature classifier had a
higher tree condition prediction accuracy than the two-feature classifier for both the NIR brightness
and NDVI. Both classifiers which used seven features had the accuracy of 98.48%, while the result
based on two features produced an accuracy of 96.97%. In one and two cases for the seven and
two-feature classifiers, respectively, the trees were mapped as moderate condition, while ranked in the
field as fair condition.

The feature importance order was different between the NIR and NDVI classifiers (Tables 3 and 4).
The variables enabling the greatest discrimination for both classifiers were the mean value, texture
GLCM standard deviation, and the CHM-derived tree height, with their combination providing
more than 50% probability of prediction. While the mean value was the top one feature for both
the NIR and NDVI classifiers, the NDVI classifier relied on the mean value slightly more than the
NIR classifier for predicting tree condition, which was 22.30% compared to 19.76%. The second and
third most important features for the NIR classifier were the CHM-derived tree height (18.39%) and
GLCM standard deviation (14.62%), respectively, while the order for the NDVI classifier was the
opposite, with the GLCM standard deviation and CHM-derived tree height explaining 17.31% and
15.71% probability, respectively. In other words, the NIR classifier relied less on the spectral and
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textural information compared to the NDVI classifier, which may be because the NIR brightness
contains shadow-induced noise, which means that its derivatives may not properly reflect the actual
canopy condition.Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 19 
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Figure 10. The confusion matrix and out-of-bag accuracy of the random forest classification for the tree
condition prediction based on the CHM-derived tree height and (a) NIR-related features, including
the mean, standard deviation, and four Haralick texture GLCMs; and (b) predicted PPC using all the
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Table 3. The feature importance of each classifier using CHM-derived tree height and NIR-brightness-
related features.

Classifier Feature Feature Importance

7-features classifier (Figure 10a)

Mean NIR 19.76%
CHM-derived tree height 18.39%

GLCM Standard deviation 14.62%
GLCM contrast 12.77%

GLCM dissimilarity 12.06%
Standard deviation 11.59%

GLCM homogeneity 10.81%

2-features classifier (Figure 10b) CHM-derived tree height 51.16%
NIR-derived PPC 48.84%
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Figure 11. The confusion matrix and out-of-bag accuracy of the random forest classification for the tree
condition prediction based on the CHM-derived tree height and (a) NDVI-related features, including
the mean, standard deviation, and four Haralick texture GLCMs; and (b) predicted PPC using all the
six NDVI-related features. The condition ranking from one to four represents condition from excellent
to fair.

Table 4. The feature importance of each classifier using CHM-derived tree height and NDVI-related
features.

Classifier Feature Feature Importance

7-features classifier (Figure 11a)

Mean NDVI 22.30%
GLCM standard deviation 17.31%
CHM-derived tree height 15.71%

Standard deviation 12.96%
GLCM homogeneity 10.81%

GLCM contrast 10.75%
GLCM dissimilarity 10.16%

2-features classifier (Figure 11b) CHM-derived tree height 51.44%
NDVI-derived PPC 48.56%

4. Discussion

The average tree height was underestimated with the CHM-derived method. A similar
phenomenon was also observed in previous studies of lychee and olive trees [7,8], and may be
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attributed to inaccuracies in the 3D reconstruction of some branches that full of leaves in the
SfM-generated point cloud [29]. The R2 value was 0.65, which was very similar to previous studies
conducted at similar flying altitude for lychee trees [7] and similar ground sample distance (GSD)
on hedgerow olive trees [4]. Although the R2 value showed a moderate correlation between the
CHM-derived tree height and ground-measured tree height, it was significantly lower compared to
the correlation between the estimated and measured tree height for olive trees in previous studies [6,8].
One reason could be differences in the configuration of UAS flight settings. In the study of Zarco-Tejada,
Diaz-Varela, Angileri and Loudjani [6] on olive trees, the images were acquired using a grid flying
pattern, which increased the parallax variation and the accuracy of the SfM 3D reconstruction.
The second reason is the difference of canopy structure complexity. The canopy of a single avocado
tree is usually formed by about 5 small branches that derivate from the main stem and alternatively
become the major stem [10]. The more complex canopy structure of avocado trees compared to olive
trees may have reduced the accuracy of the generated CHM. Nevertheless, the RMSE was 0.5 m and
the relative RMSE in this study was around 6%, which was almost identical or even better than the
relative error observed in other studies of olive trees. Previous studies suggested that higher image
spatial resolution could lead to higher R2 of tree height estimation [6–8]. Besides, studies also argued
that lower flight altitude may improve the R2 even if the spatial resolutions were almost identical [4,8].
This phenomenon may because higher parallax variation increased the visibility of tie points when
acquiring images at a lower altitude [7,34]. However, other studies have also suggested to acquire
UAS data at approximate 80 m AGL to prevent serious bidirectional reflectance distribution function
(BRDF) effect and achieve a balance between data acquisition efficiency and quality for measuring
trees [40,41].

The highest R2 value of the PPC regression occurred when combining the mean, standard
deviation and Haralick texture GLCMs, including homogeneity, standard deviation, dissimilarity,
and contrast. It is known that the reflectance of visible light is influenced significantly by the
concentration of photosynthetic pigments, while the reflectance of NIR is sensitive to the leaf and
canopy structure of vegetation [34–36]. Unlike a previous study of lychee trees, where the use of
mean NIR brightness explained 80% of the variability of PPC [7], the achieved R2 based on mean NIR
brightness was only 0.38 and 0.42 without and with colour correction, respectively. We suspected that
the more complex canopy structure of avocado tree crops contributed to the lower R2 value. Based
on the ‘rhythmic’ canopy expansion pattern of lychee trees compared to the higher trunk-branch
differentiation of avocado trees [31,32], it is likely that the different types of canopy geometric
characteristic had different influences on the spectral reflectance that observed by the sensor. Studies
on the radiometric correction for multi-spectral UAS imagery show that complex canopy structure
produce more diffuse radiant flux within the canopy [41,58]. Therefore, we suspect that the observed
reflectance of avocado trees was less representative of the actual reflected radiant energy due to the
aforementioned reason, causing the lower correlation between the observed reflectance and PPC.
Figure 9 shows that a smaller improvement in correlation was achieved for NIR brightness than that of
NDVI by just adding texture GLCMs. The shadow-induced noise in NIR brightness may be due to less
accurate PPC prediction using only NIR mean and texture information (Figure 9). Comparing NIR and
NDVI to the other indicators, the remaining indicators had fewer issues with saturation due to high
canopy density and were more sensitive to pigment concentration variation [36,44,45,59]. Surprisingly,
the saturation drawback of NIR and NDVI turned out to be the advantage for better PPC estimation
for avocado trees.

The radiometric correction of the multi-spectral UAS imagery played an important role in the
PPC estimation. As mentioned in Figure 4, brightness variation in the green and red edge bands
was observed because of the dynamic photographic parameter settings of the camera. Therefore,
the estimated reflectance would have been less accurate if such variation had not been addressed,
which would have affected the calculated vegetation indices. The R2 values of the PPC regression
with vegetation indices were all higher after reducing the brightness variation with colour balancing
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(Figure 9). However, to radiometrically correct the image brightness to accurate reflectance, previous
result showed that effective BRDF correction, accurate sensor-information-based calibration, and
simultaneous irradiance measurement are all potential procedures that can be considered [41,58].
Based on our study, we suggest that if the image is radiometrically corrected, the multi-variate linear
regression of mean, standard deviation, and four Haralick texture GLCMs of NDVI could be a strong
indicator of PPC over NIR brightness, as it provided the highest correlation with field-derived PPC.
Nevertheless, radiometric correction of UAS imagery has proven to be a sophisticated process and
sometimes difficult for delivering accurate results [41,58,60].

The proposed GEOBIA workflow showed its limitation to accurately delineate individual tree
crown extents for avocado hedgerows. Although a previous study suggested that there was a strong
correlation between measured and image-derived canopy diameter for hedgerow olive trees [4]
and mango trees [13], the semi-automatically delineated canopy width in the direction along the
hedgerow did not match the ground measurement in our study area, because of adjacent overlapping
tree crowns with limited height variation between the tree apex and crown perimeter caused by
mechanical pruning. Such delineation limitation occurs very often when applying remote sensing
data in a hedgerow avocado orchard [61]. Therefore, it is necessary to make some assumptions
such as a fixed distance between two adjacent trees to delineate individual tree crowns from a UAS
orthomosaic. The semi-automatically delineated canopy length in the direction perpendicular to
the hedgerow proved to be accurate. However, the canopy length is mainly controlled by pruning
practices, and therefore, not suitable for tree condition assessment. Nevertheless, our study also
showed that as long as the delineated tree crown extent contains the majority of the realistic tree crown
extent, tree height can still be predicted and attributes, which include mean value, standard deviation,
and texture GLCMs that are highly correlated to PPC, can be extracted for predicting tree condition.
Alternatively, having an accurate GPS layer of individual tree centroids can assist with the delineation
of individual trees. Most tree planting undertaken in recent times occur with GPS guidance and as
such, these layers are readily available [12,13].

Our results showed that the estimated tree height and canopy spectral and textural attributes
could be used as explanatory variables to predict the condition of avocado trees. Both the NIR
and NDVI classifiers with seven feature inputs yielded accurate results for predicting avocado tree
condition. The accuracy of both the NIR and NDVI classifiers were identical, though the NIR classifier
had less variability using spectral and texture information for predicting tree condition. Considered the
difficulty of applying accurate radiometric correction on multi-spectral UAS imagery, this characteristic
may turn out to become a benefit as the variation of correlation between the NIR brightness derivatives
and PPC is less influenced by the radiometric correction (see Figure 9). The seven-feature NIR classifier
is recommended at this stage. It is noted that our data was acquired in the pre-pruning period, when
tree structure was less influenced by previous limb removal. The tree height is usually controlled for
management purposes. Therefore, the importance of tree height for condition ranking in different
growing stages may be different. The ranking result in fair-conditioned trees had two trees ranked
as fair, where were incorrectly classified as moderate. In the study of Salgadoe, Robson, Lamb, Dann
and Searle [33] on root rot disease severity ranking for avocado trees, the results showed that the
lower ranked trees had less differences in PPC and VI values. Hence, smaller PPC and spectral
variation between different condition categories may cause mis-classification for lower ranked trees.
Such mis-classification may cause farmers to miss the opportunity to apply appropriate treatments
on a tree with fair condition, which might result in further tree condition degradation. It is therefore
imperative that farmers are well informed about how UAS-based tree condition mapping approaches
work and what their limitations might be to ensure appropriate interpretation and evaluation of results.

5. Conclusions

The study identified the accuracy of UAS-based mapping of avocado tree height and
GEOBIA-derived canopy dimensions, as well as the correlation between PPC and both spectral
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and textural attributes. The CHM-derived tree height and the spectral and textural attributes were
used to rank the tree condition using a seven-feature NIR random forest classifier and achieved a
98.48% accuracy. Such techniques could potentially provide essential information for the horticulture
industry to achieve plant-scale precision agricultural orchard management. Radiometric correction
of UAS imagery is essential as a prerequisite for accurate PPC estimation using NDVI or any other
spectral information. Future research should focus on testing condition ranking methods over larger
areas to scale up to the orchard level. It would also be important to include more sampled trees with
all four condition categories to train the classifier to more accurately meet the avocado industry’s tree
condition ranking standards in Australia. Furthermore, such condition ranking technique needs to
be tested in different phenological stages to assess the robust features for condition ranking and its
all-season performance. Eventually, the condition ranking method might be tested and adapted to
different horticultural tree crops. By understanding the plant-scale tree condition, the farmers could
potentially estimate the general tree crop productivity to develop better management strategies by
applying appropriate agricultural treatments accordingly. Such condition ranking strategy could play a
role to bridge the gap between the remote sensing expertise and farmers’ knowledge of their tree crops.
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