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Abstract: Accurate estimates of tree crop orchard age and historical crop area are important to
develop yield prediction algorithms, and facilitate improving accuracy in ongoing crop forecasts.
This is particularly relevant for the increasingly productive macadamia industry in Australia,
where knowledge of tree age, as well as total planted area, are important predictors of productivity,
and the area devoted to macadamia orchards is rapidly increasing. We developed a technique to
aggregate more than 30 years of historical imagery, generate summary tables from the data, and search
multiple combinations of parameters to find the most accurate planting year prediction algorithm.
This made use of known planting dates of more than 90 macadamia blocks spread across multiple
growing regions. The selected algorithm achieved a planting year mean absolute error of 1.7 years.
The algorithm was then applied to all macadamia features in east Australia, as defined in an recent
Australian tree crops map, to determine the area planted per year and the total cumulative area of
macadamia orchards in Australia. The area estimates were refined by improving the resolution of
the mapped macadamia features, by removing non-productive areas based on an optimal vegetation
index threshold.
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1. Introduction

The macadamia nut is indigenous to Australia, but is now grown in many places including
Hawaii, Central America, and South Africa [1]. It accounts for ~2% of global tree nut consumption.

Crop yield prediction is important for growers and industry, as it guides marketing,
finance and logistic decisions. Region-scale predictions rely on accurate estimates of crop productive
area [2]. In addition, predicting the yield of tree crops also requires accurate estimates of tree age.
For example, macadamias are typically unproductive until the tree is 5 years old, then productivity
rises between 5 and 10 years, and plateaus for trees greater than 10 years old [3]. Other applications
for historical planted area data for tree crops are to facilitate forecasts of future productivity and water
resource usage at a regional or national level [4,5].

Estimates of crop productive area per year may be obtained from land cover maps based on
automatic classification methods [6]. This is challenging for tree crops, where there are many trees
with similar reflectance and phenological characteristics [7], such as macadamia, avocado, and mango
trees in Australia. Another possibility is to use a fixed-time map of particular crops, for example,
that provided by the 2017 Australian Tree Crop Rapid Response Map (ATCRRM) [8]. Then, using a
planting date estimate within each of the identified locations, the newly planted area per year and total
area per year can be calculated.

Predicting tree planting date from satellite imagery has been the subject of several studies.
The authors of [9,10] estimated tree age using regression against reflectances measured by Landsat TM
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for oil palm and rubber plantations, respectively. The work in [11] estimated oil palm crown area from
high-resolution WorldView-2 data, and tree age was then predicted from crown area.

Recent work has used satellite image time series (SITS) to detect features indicating the year trees
were planted. Rubber plantations were classified into 5-year age categories using multiple vegetation
indices by the authors of [12]. For the same crop, the work in [13] predicted the planting year by finding
the last year an area was non-vegetated, indicated by the normalized difference moisture index (NDMI)
being less than 0. The authors of [14] compared NDVI growth curves per-pixel to expected rubber
tree characteristics to estimate tree age. The work in [15] found the maximum normalized difference
vegetation index (NDVI) per year for fruit and nut orchards in the Central Valley, California. The mean
and standard deviation of the resulting time series was computed, and planting year predicted based
on when there was a significant “dip” in the time series, assuming that planting year is coincident with
low NDVI due to removal of previous vegetation. Apple age was predicted by the authors of [16] by
comparing typical apple phenological curves with those extracted from each known orchard area over
previous years.

In this work, we consider the problem of determining the planting year of macadamia orchards,
which is an important variable in yield prediction models [2]. We aim to predict the planting year
of macadamia trees at the pixel scale, then apply these predictions to calculate total productive area
per year across the macadamia industry in Australia. First, the study area is defined in Section 2.
The methods used are described in Section 3, including remote sensing data preprocessing, plant-year
detection algorithms, and how we apply the selected algorithm to estimate total productive area
per year across Australia. Section 4 contains the results, including assessment of the accuracy of
the optimal plant-year prediction algorithm, extraction of the productive macadamia area from a
national fruit map, and prediction of the total macadamia area per-year and per-region in Australia.
We then discuss the relationship of this work to other plant-year prediction work, the limitations of
our method, and other possible methods that could be investigated in Section 5, before conclusions
are drawn.

2. Study Areas

The majority (>99%) of Australia’s macadamias are grown on the east coast of Australia.
One macadamia farm often includes numerous blocks. For the purpose of this study, we define
a block as an area of a farm which has had its annual yields recorded. Often the trees within a
block have identical planting date, variety, and density. This study included 95 macadamia blocks,
belonging to nine orchards. The orchards are grouped in three important macadamia growing
areas in Australia as shown in Figure 1. Block boundaries and planting year per block were obtained
from the growers. Table 1 describes the number of blocks per region, along with the distribution of
block sizes and planting years. The average block size is 6.9 hectares, and the average planting year
is 2004. The total area of the study blocks is 653 hectares, which is more than 2.3% of the total 2017
Australia macadamia growing area, estimated by the ATCRRM.

Table 1. Distribution of blocks, block sizes, and planting years.

Region Blocks Block Size (Ha) Year Planted
Count Min Mean Max Min Mean Max

Ballina 39 0.4 4.0 8.3 1989 2005 2014
Bundaberg 25 1.3 11.6 27.4 2004 2005 2007
Macksville 31 0.2 6.6 24.6 1991 2002 2010

Total 95 0.2 6.9 27.4 1989 2004 2014
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Figure 1. Locations of the macadamia orchards (each encompassing multiple blocks), grouped into
the three regions.

3. Methods

3.1. Remote Sensing Data Preprocessing

All surface reflectance image tiles from the Landsat-5, -7, and -8 satellites overlapping any of
the blocks from 1988 to 2019 were accessed in Google Earth Engine (GEE, ref. [17]). Areas indicated
as being influenced by shadow or cloud were masked. Normalized Difference Spectral Indices (NDSIs)
are defined as a function of two reflectances bands, b1 and b2:

NDSI(b1, b2) =
b1 − b2

b1 + b2
(1)

We calculated all NDSIs formed as combinations of the green (G), red (R), and near-infrared (NIR)
bands, which are related to tree health [18,19]. In addition to these, we calculated two NDSIs using
the shortwave infrared bands (SWIR1 and SWIR2) that have been used in tree age determination
in other studies [13]. The NDSIs are defined in Table 2 and were calculated per-pixel for all images.
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Table 2. Normalized Difference Spectral Index (NDSI) definitions using Equation (1), which were
calculated for each satellite image.

Name Acronym b1 b2

Normalized Difference Vegetation Index NDVI NIR R
Green Normalized Difference Vegetation Index GNDVI NIR G
Green Red Vegetation Index GRVI G R
Normalized Difference Moisture Index NDMI NIR SWIR1
Normalized Burn Ratio NBR NIR SWIR2

Thirty-two yearly images (1988–2019) were produced, by aggregating the yearly minimum, mean,
median, and maximum of each NDSI for each pixel. The total count of images with unmasked pixels
over each block for each year was also computed. The minimum number of images in a year for any of
the 95 blocks was 5, and the mean number of images per year over all blocks and years was 19.

Finally, for each year, the median value of the yearly NDSI aggregate images within each block
was found. The spatial median was used instead of the mean, to avoid outlying pixels (for example,
those lying on block boundaries) with high or low values skewing the data. This resulted in a table
with 3040 rows (32 years × 95 blocks). Table columns included the block identifier, block planting year
and all NDSI yearly aggregates (e.g., NDVImin, NDVImean, NDVImedian, NDVImax, GNDVImin, etc.).

3.2. Search for Optimal Plant-Year Prediction Algorithm

A search was run using the data in the table described above to find the optimal algorithm to
predict planting year. We first tried methods that seek a year where vegetation was removed. We tried
all NDSIs and annual aggregates (min, mean, median, and max), searching for a fixed threshold [13],
and a z-score (mean − z × standard deviation of the NDSI time series [15]) that could predict planting
year. However, because of variable delays between vegetation clearing and tree planting, and variation
in pre-planting vegetation removal across the macadamia industry in Australia, these methods were
not promising.

We therefore propose an alternative threshold method, which attempts to find the most recent
year that an NDSI crosses a fixed threshold, due to growth of newly planted trees. The method is
illustrated in Figure 2, and described by the equation and description below.

yp = y0 − y∆ = most recent year (NDSIagg < threshold)− y∆ (2)

• The time-series for each NDSI and annual aggregation was searched backwards to find the most
recent year where the NDSI fell below a predefined threshold. This year is designated y0.
If a crossing was not found, the earliest year of the imagery (1988) is assigned.

• A delta was subtracted to find the predicted planting year yp = y0 − y∆.
• All unique NDSIs, aggregations, thresholds (from −0.2 to 0.8), and year deltas were tried, each

combination called a parameter set.
• For each parameter set, the root mean squared error (RMSE) of the actual plant year ya vs predicted

plant year yp over the 95 blocks was calculated. RMSE was used instead of mean absolute error
(MAE) to rank the parameter sets, as it penalizes larger errors more.

• The parameter set that produced the lowest RMSE was selected.
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Figure 2. Search for optimal planting year prediction algorithm, by sweeping over all NDSIs, thresholds,
and deltas, and finding RMSE and R2 between predicted (yp) and actual (ya) planting years.

3.3. Creating a Productive Macadamia Area Mask

The Australian Tree Crop Rapid Response Map (ATCRRM) [8] provides vector features of all
avocado, mango, and macadamia orchards in Australia, with a minimum mapping unit of 2 hectares,
current at 2017. We accessed the shapefile, then filtered and retained only macadamia features on
the east coast of Australia. Features often encompass large farms, or several farms. They thus include
non-productive areas such as roads, houses, dams, and very recently planted blocks. To determine
the actual productive macadamia area, we created a mask, retaining only pixels with a selected NDSI
above a threshold. The method to select the NDSI and threshold are now described.

The features from the ATCRRM that intersect the 95 study blocks were selected. Two multi-polygons
were then calculated:
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• The polygons that exactly delineate the blocks used in this study, which we define as productive
macadamia areas.

• The geometric difference between the features from the ATCRRM that overlap the study
macadamia blocks, and the geometries of these blocks. The resulting multi-polygon areas are
outside the actual macadamia tree blocks (but inside the corresponding ATCRRM macadamia
feature) and so are defined as the non-productive areas.

The productive area mask made use of all Sentinel-2 surface reflectance images from 2019
intersecting the above polygons. Sentinel-2 was used instead of Landsat images to take advantage
of the 10 meter resolution. The NDSIs defined in Table 2 were computed, and an aggregate image
(minimum, mean, median, and maximum per-pixel) from the 2019 image collection was produced.

The pixels of this aggregate image from within the non-productive and productive multi-polygons
were sampled, and a table of all the NDSIs for these two classes produced. A threshold for each NDSI
was found, such that NDSI values above this threshold included 90% of the productive area pixels
(resulting in a 10% omission error, i.e., productive macadamia area pixels that are misclassified
as non-productive). Then, for each of these NDSI threshold combinations, the proportion of pixels
from the non-productive samples above the threshold was computed (which is the commission error,
i.e., proportion of non-productive pixels that are included in the productive class). The NDSI threshold
combination that gave the lowest commission error was selected. This mask could then be applied to
the 2019 Sentinel-2 aggregate images intercepting the ATCRRM macadamia features over the whole
growing region of the east of Australia. The area of the macadamia features with the mask applied
gives an estimate of the actual productive area of macadamias in 2017 (the year of the ATCRRM).

3.4. Computing the Historical Area of Macadamia Orchards Per Year

It is now possible to compute a yearly estimate of total macadamia area. In GEE, the yearly
aggregate Landsat images are used together with the optimal planting year prediction algorithm to
calculate the planting year for all pixels within the ATCRRM macadamia features. The total area
was computed with and without the productive area mask applied. Previous versions of regional
yield estimation have not used this mask [2], but it is expected that using the mask will enhance
prediction accuracy.

Within many of the ATCRRM macadamia features, there are multiple planting dates. Therefore,
simply assigning a single median planting date to each feature will not produce accurate results so
area computations were done pixel-by-pixel. To find the newly planted area for a given year we did
the following.

• Selected all macadamia features from the ATCRRM.
• Optionally, mask non-productive areas (Section 3.3).
• Selected all pixels with predicted planting year yp equal to the given year.
• Summed the area of all these pixels.

The result is a table with a row for each year, and the total area planted in that year as columns.
This was further be broken down into regional areas in separate columns to enable per growing region
area prediction. The cumulative sum of the area columns in this table produces the total area planted
up until and including each year.

4. Results

4.1. Optimal Plant-Year Prediction Model

Examples of the annual mean of NDVI for three blocks, one from each of the three study regions,
are shown in Figure 3. The red vertical line shows the actual planting year as recorded by the growers.
The figure highlights some challenges with macadamia planting year prediction.
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• In Figure 3a, there is no significant dip in the NDVI around the planting year, which appeared
common for the Macksville region. This may be due to grower practices, such as less extensive
vegetation removal before planting. The orchards in that region are relatively old, so that the time
series statistics are weighted towards post-planting characteristics.

• In Figure 3b, there is a significant drop in vegetation in 2007, and NDVI drops to below
the mean − 2 × SD in that year. However, planting did not occur until two years later. Discussion
with growers revealed that planting can be delayed due to cash flow, weather and tree availability.
In case of planting occurring after clearing, grass can regrow before planting, thus causing a rise
in NDSIs which is not due to tree growth.

• In Figure 3c, there is large variation in the annual mean NDVI before planting macadamias,
probably indicating annual cropping where fields are left fallow some years and have crops
with high NDVI in other years. This leads to a very large standard deviation in the time series,
so reduced probability that planting will coincide with a significant deviation from the mean.

(a) (b)

(c)

Figure 3. Mean NDVI per year for three macadamia blocks. Actual planting year is indicated by
the vertical red line, the selected threshold of NDVImean = 0.62 by the horizontal red lines, time-series
mean by the green lines, and mean − 2 × SD by the blue lines. One example from each of the three
regions is shown: (a) Macksville, (b) Ballina, and (c) Bundaberg.
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We tested a similar z-score method to that proposed in [15], but because of the large variation
in planting practices noted above, the z-score had to be as small as 1 to find the planting year
consistently. Similarly, other approached of finding the most recent year with no vegetation
(e.g., NDMImin < 0 in [13]) could not find planting year consistently, because there was often vegetation
present in the year the macadamia trees were planted. Therefore, we focused on the threshold method
depicted in Figure 2.

A total of 80 × 51 = 4080 parameter sets were tested (five NDSIs, with four yearly aggregations,
four year offsets × 51 thresholds) to find the best set using the threshold method. The plant year
prediction RMSE of two example parameter combinations ((NDMImin,y∆ = 3) and (NDVImean,y∆ = 3))
with swept NDSI threshold are shown in Figure 4. Each point on each curve summarizes the prediction
RMSE for the 95 blocks.

The best results were achieved using NDVImean, y∆ = 3 with a threshold of 0.62. This is
the selected parameter set for the rest of the study, and produced an RMSE of 2.3 years and MAE
of 1.7 years. To find the planting date for each block, the time series (such as shown in Figure 3)
is searched backwards to find when NDVImean most recently dropped below 0.62, then subtracting
3 years from this. This indicates the average NDVImean for a 3-year-old orchard is 0.62.

Figure 4. Search for optimal plant-year prediction algorithm by minimizing prediction error. Two of
the 80 parameter sets are shown, including the best set (NDVImean, y∆ = 3 with a threshold of 0.62).

To assess stability of the optimal parameters considering regional differences, the planting year
prediction algorithm search was run for the blocks from each of the three study regions independently.
The best three parameter sets from each region are shown in Table 3. In all cases, the best parameter
set was exactly the same as when the data from all regions was pooled, NDVImean, y∆ = 3 with a
threshold of 0.62. This is equivalent to training a model on a subset of regions, and holding out a test
set from a separate region. The consistency of the selected optimal parameter set gives confidence
in the ability of the algorithm to be generalized to other areas. The RMSE was 2.8, 2.5, and 1.7 years for
the Ballina, Bundaberg, and Macksville regions, respectively.
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Table 3. Best 3 parameter sets when the optimal parameter search was performed per region.

Region NDSIagg y∆ Threshold R2 RMSE

Ballina
NDVImean 3 0.62 0.69 2.78
GNDVImean 3 0.62 0.69 2.79
NDVImean 2 0.62 0.64 3.00

Bundaberg
NDVImean 3 0.62 0.81 2.49
NDVImean 2 0.62 0.78 2.64
GRVImean 3 0.04 0.77 2.73

Macksville
NDVImean 3 0.62 0.80 1.65
NDVImean 3 0.60 0.78 1.73
NDMImean 3 0.16 0.76 1.84

A regression plot of actual vs. predicted planting year for the 95 blocks is shown in Figure 5.
The largest prediction error was for a block that was actually planted in 1998, but the prediction
was 1988. Investigation of the data revealed that the minimum NDVImean was 0.63 in 1996. The value
never dropped below 0.62, so the algorithm predicted the earliest possible year (1988). This could be
due to an unusually large amount of vegetation being present around planting. More than 75% of
the plant year prediction errors are 2 years or less, and only 7.5% of the errors are 4 years or more.

Figure 5. Predicted vs. actual planting year, using the best algorithm with NDVImean, y∆ = 3 with a
threshold of 0.62. Slight jitter has been added to the x and y values of each point so multiple points
lying on the same co-ordinates are visible.

4.2. Generating a Productive Macadamia Area Mask

Having developed a plant-year prediction algorithm, we then sought to apply this to the whole
macadamia industry in Australia. The ATCRRM macadamia features are coarse due to aggregating
areas smaller than 2 hectares, so many macadamia features include non-productive areas (roads,
infrastructure, etc.). An example macadamia feature is shown in orange in Figure 6a, with the actual
block boundaries drawn in green.
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The 2019 Sentinel-2 pixels from the blocks used in this study were sampled (productive areas),
as well as areas outside the blocks but still inside the features (non-productive areas). Figure 6b shows
the cumulative density function of the annual median GNDVI pixels inside and outside the macadamia
blocks. GNDVImedian values greater than 0.668 include 90% of the productive area pixels (10% omission
error). On the other hand, the commission error is 33%, which is the proportion of non-macadamia
pixels included. A similar search was run using all NDSIs to find the threshold giving an omission
error of 10%. GNDVImedian > 0.668 was the optimal NDSI and threshold, other NDSIs gave larger
commission errors.

The results of applying this mask to the example feature is shown in Figure 6c. The mask
successfully removes roads, boundaries, and houses. The mask does omit some pixels from actual
macadamia blocks. However, as discussed in [20], macadamia yield is strongly correlated with NDSIs
such as GNDVI. Therefore, areas with low NDSI likely correspond to trees that are less productive
and contribute less to the overall yield and so these omission errors would not have a significant
impact on yield predictions.

The planting year predictions (masked by the productive area mask) are shown for the same
feature in Figure 6d. There are a variety of planting dates within the one ATCRRM feature, leading to
the importance of using a per-pixel calculation of area planted per year, rather than simply taking
the median planting year and assigning this to the total feature area.

(a) (b)

(c) (d)

Figure 6. (a) Example Bundaberg macadamia orchard, with the ATCRRM feature shown in orange,
and block boundaries in green. (b) Cumulative distribution plot showing proportion of pixels inside
and outside macadamia areas as a function of GNDVImedian. (c) The productive area mask for
the Bundaberg example, and (d) per-pixel planting year prediction.
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4.3. Historical Total Planted Area Per Growing Region

Having developed an algorithm to predict macadamia planting year, and a mask to remove
unproductive areas from each macadamia feature of the ATCRRM, it is now possible to estimate total
area of macadamia trees planted each year across the east of Australia. GEE enables the collection of
32 years of Landsat images for plant-year prediction, 1 year of Sentinel-2 images for mask generation,
and all the aggregations and geospatial calculations to produce such results quickly. Planting year maps
such as shown in Figure 6d can be calculated and displayed in a browser in real-time, and national
area calculations can be finished in hours.

The total macadamia area planted in Australia each year was estimated, and saved as a data table,
as described in Section 3.4. A similar table was produced with columns separating each of the major
growing regions. The planted area per year and the total cumulative area are shown in Figure 7 for
the whole of Australia, and for the Bundaberg region alone. The trend in Bundaberg shows plantings
increasing significantly around 2005–2010, and again after 2015. The productive area curves are
generated using the pixel mask described in the previous section. These curves do not show the uptick
in area in 2017, as the mask was generated from 2019 imagery and the young trees may not have
reached the productivity threshold by that year.

(a) (b)

Figure 7. Estimates of macadamia area in all Australia and just the Bundaberg region, both with
and without the productive area mask applied. (a) Planted per year and (b) cumulative area.

5. Discussion

This work developed techniques that can be used by industry to determine planted macadamia
area per year over large regions. We noted the variability in planting conditions, non-macadamia
vegetation that sometimes is growing before planting, and variable delays between vegetation clearing
and planting. This led us to reject the use of algorithms which search for dips in NDSI time series,
and to instead find an optimal algorithm that defines an NDSI threshold corresponding to the average
NDSI of trees of a particular age (in our case, three years old). In contrast, other works have been able
to predict planting dates from significant dips in the time series for rubber tree [13] and a variety of fruit
and nut crops in California [15], presumably due to more uniform practices around planting than those
seen for the macadamia industry in Australia. Despite the variability we observed in the observed
NDSI growth curves of the macadamia blocks used in this study, the optimum plant-year algorithm
was consistent across growing regions.

This work relied on the ATCRRM, a national commodity-level map [8], that gives a snapshot of
total crop area in a single year. This was combined with automatic per-pixel plant year estimation,
and non-productive area masking, to calculate newly planted and total macadamia area per year.
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Given the rate of increase of macadamia planted area in Australia, to ensure ongoing currency of
area estimates, such maps will need to be updated regularly. There is an effort at present to update
the ATCRRM to 2020, and also to reduce the minimum mapped feature to 1 hectare. Other recent
efforts have made use of machine learning [7] and convolutional neural network techniques [21]
to map specific tree crops. This could potentially be performed annually to provide up-to-date
area estimates. However, using such methods to distinguish between many tree crops with similar
reflectance, phenelogical, and structural characteristics is challenging. Work is still needed to
understand the required spatial and temporal resolutions to achieve required accuracies [22]. Historical
imagery is limited in resolution, so it may not be feasible to use these land cover classification
techniques to produce historical commodity-level area estimates.

We used Landsat images, which are of high radiometric quality and have the required historical
database, but the 30 meter resolution could be a limitation. While this resolution is reasonable
to ensure sufficient pixels covering macadamia blocks of typical sizes, determining planting date
for smaller blocks may be difficult due to a significant number of boundary pixels having mixed
characteristics. Moreover, it is possible that variation in the vegetation between tree rows could
be a source of non-negligible planting year prediction errors [11], as these vary between orchards
and regions. Row spacings in macadamia plantations in Australia are typically 4–10 m. These effects
cannot be easily characterized or removed using the 30 meter pixel resolution, which leads to higher
prediction uncertainty.

6. Conclusions

In this study, we found that due to variation in macadamia pre-planting land preparation practices
across Australia, planting year prediction methods relying on finding the year land was cleared were
not accurate. Instead, we determined the year when trees reached a certain age, indicated by a selected
vegetation index crossing a threshold, which then enabled calculating the planting year. The optimal
vegetation index, threshold, and age was found using a search algorithm. The prediction mean absolute
error was 1.7 years and root mean squared error (RMSE) was 2.3 years for all regions. The RMSE varied
from 1.7 to 2.8 years between regions. The best plant year prediction algorithm was identical between
the regions, indicating the robustness of the technique when generalizing to other areas. The algorithm
was applied to the macadamia industry in Australia, determining the planted area per year from
1988–2017. The outputs of this work are suitable for use in current industry-wide macadamia yield
prediction programs.
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