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Abstract. This paper reports on the application of wavelet decomposition to SAXS patterns
from human breast tissue produced by a synchrotron source. The pixel intensities of
SAXS patterns of normal, benign and malignant tissue types were transformed into wavelet
coefficients. Statistical analysis found significant differences between the wavelet coefficients
describing the patterns produced by different tissue types. These differences were then
correlated with position in the image and have been linked to the supra-molecular structural
changes that occur in breast tissue in the presence of disease. Specifically, results indicate that
there are significant differences between healthy and diseased tissue in the wavelet coefficients
that describe the peaks produced by the axial d-spacing of collagen. These differences suggest
that a useful classification tool could be based upon the spectral information within the axial
peaks.
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1. Introduction

The association between the supra-molecular structural order of the protein collagen and
breast cancer is receiving an increasing amount of scientific attention. Collagen, a major
structural component of the extra-cellular matrix (ECM) in breast tissue, is known to be
heavily involved in the progression of breast cancer (Raymond & Leong 1991; Kaupilla et
al 1998; Pucci-Minafra 1998; Wang et al 2002). Small-Angle X-ray Scattering (SAXS), a
well-established technique that provides structural information on length scales from 10-1000
nm, is highly sensitive to this supra-molecular structure, particularly when experiments are
performed using the high flux provided by a synchrotron X-ray source. Differences between
normal, benign and malignant breast tissue SAXS patterns have been related to the supra-
molecular structural order of collagen (Lewis et al 2000; Fernandez et al 2002). It has been
suggested that this method offers insight into the mechanisms of tissue invasion and has the
potential to be used as a diagnostic test for malignancy. The research reported in this paper
presents a novel method for analyzing the SAXS images produced, whilst also providing a
means for tissue classification.

Typical SAXS patterns from healthy breast tissue contain sharp maxima in the diffraction
pattern in the meridional (vertical) direction, produced by coherent scattering from the
staggered arrangement of collagen molecules. Results indicate that these peaks are reduced in
height above the background, and increased in width when malignant tissue is present (see for
instance the SAXS patterns contained within Lewis et al (2000)). This suggests a significant
reduction in the ordered collagen structure in the vicinity of breast tumours. There is also
the possibility that the spread in the peak is due to the formation of a novel form of collagen,
OF/LB collagen (Pucci-Minafra 1993). Analysis using mathematical wavelets (Mallat 1998)
is ideally suited to these patterns, efficiently describing the sharp axial peaks whilst also
allowing analysis of the pattern at several levels of spectral resolution. Indeed wavelet-based
spectral analysis of SAXS diffraction patterns has already been used to identify breast tissue
malignancy (Erickson 2003), the detection of malignancy being based upon the magnitude of
the wavelet coefficients at a particular resolution level. It is highly desirable, however, that
a link be formed between the wavelet classification and the systematic structural differences
observed in the SAXS patterns. Understanding the fundamental differences in the wavelet
decomposition for different tissue states (ie normal or malignant), informs the wavelet-based
classification process. Furthermore, a classification based upon specific structural changes in
breast tissue will aid the clinical acceptability of such a diagnostic system.

Our research hypothesis has been developed upon the following facts:
i Significant structural changes occur in collagen in the presence of breast tissue
malignancy (Fernandez et al 2002; Wang et al 2002).

ii Significant differences are observed in the intensity of the diffraction maxima of SAXS
patterns produced by normal, benign and malignant breast tissue (Lewis et al 2000;
Fernandez et al 2002).

iii Research suggests that the differences observed in the SAXS patterns of normal, benign
and malignant breast tissue can be linked to structural changes in collagen (Lewis et al
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2000; Fernandez et al 2002).
iv Successful identification of breast tissue malignancy can be achieved using wavelets
(Erickson 2003).

This work aims to identify spatially where significant differences in wavelet coefficients
of the different diffraction patterns are occurring, linking this with pathological changes in
the collagen present. It is proposed that significant differences occur in the intensity of
the diffraction maxima between tissue types and that this is a key feature in the success of
the wavelet classifier. Extraction of the wavelet coefficients associated with the diffraction
peaks and the examination of the statistical descriptors allow an identification of any such
differences. Furthermore, statistical projection techniques may be used to demonstrate that
useful information on the differences between tissue types can be obtained using wavelets.

This paper reports on results from the above analysis. Section 2 discusses the use and
appropriateness of wavelet decomposition for this application. Section 3 then details the
statistical analyses used, giving a justification for choice of wavelet basis and an examination
of the wavelet decomposition of the various tissue types in order to determine where
differences occur. Statistical test results are presented that indicate significant differences
occur between the wavelet coefficients of the different tissue types used. These differences
occur amongst features that are produced by the supra-molecular structure of the protein
collagen.

2. Method

2.1. Data set

The SAXS patterns used in this study were those reported in Lewis et al (2000).
The data consisted of:

• 20 SAXS patterns of apparently normal human breast tissue. This is labelled the
‘Normal’ data set.

• 22 SAXS patterns of breast tissue with invasive carcinoma present. This is labelled the
‘Malignant’ data set.

• 7 SAXS patterns of breast tissue containing fibroadenoma. This is labelled the ‘Benign’
data set.

The SAXS experiments were performed in September 1999 at the Daresbury Synchrotron
Radiation Source, Station 2.1. The tissue samples were either core-cut biopsy specimens or
tissue samples frommammoplasty patients, informed consent and ethics approval having been
given. Full experimental details may be found in Lewis et al (2000). Wavelet decomposition
was applied to 512 x 512 pixel digital images of the SAXS patterns. Statistical analysis of the
wavelet coefficients was conducted in order to compare tissue groups. This section provides
an overview of the sequential steps in the analysis.
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2.2. Wavelet-based Feature extraction

The observable in SAXS patterns is the intensity due to coherently scattered radiation
registered on a detector at a sufficiently large enough distance away to be considered in the
Fraunhofer diffraction region. The intensity can be given as a function of scattering vector h
as,

I(h) = F (h)F ∗(h) =

∫ ∫
ρ(r1)ρ(r2) exp[ih · (r1 − r2)]dV 1dV 2 (1)

(Koch 1991)
where h = 4π sin θ/λ, 2θ is the scattering angle, λ is the incident x-ray wavelength and ρ(r)

is the electron charge distribution of the scattering object. The observable on the detector can
be considered the power spectrum of the electron density distribution of the scattering object
under examination. The SAXS pattern is therefore a spectral representation of the object
under study.

As has been mentioned, results presented in Lewis et al (2000) and Fernandez et al
(2002) highlighted systematic differences in features within SAXS patterns from normal,
benign and malignant breast tissue samples. These features have been specifically related
to the supra-molecular structural arrangement of collagen. Several of these features are of
interest when considering the use of wavelets as a means of analysing the patterns. The first
set of features of interest arise from the well known periodic axial d-spacing, a consequence
of the staggered arrangement of tropocollagen molecules within the fibrils (Bigi & Roveri
1991). For the case where the collagen fibres are partially aligned in the vertical direction
in the capillary tube (as in our experiment), scattering from the axial d-spacing structure
results in a series of maxima and minima in the meridional direction of the pattern. These
features are referred to as the axial peaks. The second set of peaks, occurring in the equatorial
region of the pattern, arises from the lateral packing of the fibrils in a quasi-hexagonal lattice
(Eikenberry et al 1982a, 1982b). The diffracted intensity in the equatorial region can be
approximated by a Bessel function. This set of features will be referred to as the Bessel
peaks. The SAXS patterns acquired using tissue containing normal or malignant breast tissue
show distinct differences in the sharpness and hence spectral content of the axial and Bessel
features.

The wavelet decomposition allows the SAXS patterns to be decomposed into a variety of
spatial frequency bandwidths whilst still allowing particular peaks to be identified. Therefore,
changes in the spectral content of a particular feature between tissue types can be clearly
identified. The discrete wavelet transform (DWT) effectively decorrelates the image data and
inference about features in the wavelet domain is done using a decomposition of energy. This
is akin to the statistical technique, analysis of variance. Energy is defined in the wavelet
domain as,

E =
1

N
ΣN

j=1||dj||2 (2)

where dj is the jth wavelet coefficient describing the image. The advantage of processing in
the wavelet domain as compared to the image domain is that a greater proportion of energy is
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compacted into a few coefficients in the wavelet domain. The results of this property is that
it is relatively straightforward to identify those coefficients that describe features of interest
in the SAXS pattern. The statistical analysis is therefore based upon the differences in the
energy of the wavelet decomposition of the SAXS patterns.

2.3. Overview of Statistical Analysis

Ten wavelet bases from the Daubechies family, with various degrees of smoothness were used
to decompose the SAXS patterns, the objective being to find the most ’suitable’ basis to apply
to these patterns. Selection of the most suitable basis was determined to aide the feature
extraction process.
Criterion for the choice of wavelet basis included:

(i) How effectively the basis captured the information present in the pattern.
(ii) The absence of ’artifacts’ produced by the wavelet decomposition in the coefficient

matrices.
(iii) The basis that provided the greatest apparent difference between features in the tissue

groups.

One measure of basis efficiency is the integrated squared-error (ISE), which is defined as

ISE =

∫ ∫
(fi,j − f̂i,j)

2dx dy ≈
ni,nj∑
i,j=1

(fi,j − f̂i,j)
2, (3)

where fi,j = intensity value at a given pixel in the image and f̂i,j = intensity value at a given
pixel using the wavelet reconstruction. The ISE is therefore the sum of squares of the error
between the original image and the wavelet reconstruction. To determine how efficiently a
particular wavelet basis represented the pattern, all wavelet coefficients below the pth quantile
were set to zero, the remaining wavelet coefficients then being used to reconstruct the image
and the ISE calculated.

Wavelet coefficient matrices were also examined for artifacts. Several artifacts were
found when using smoother wavelets bases such as the Daubechies wavelet with nine
vanishing moments. These oscillations can be confused with edges in a pattern, and artifacts
of this form are undesirable because they bias the estimates of the energy of the features. Each
wavelet decomposition of a SAXS pattern produces a total of 262144 coefficients, describing
eight resolution levels that each have three matrices describing three different directions
(horizontal, vertical and diagonal). Perspective plots of wavelet coefficient matrices were
used to identify:

(i) The basis with the greatest apparent differences between tissue groups.
(ii) Those sets of coefficient matrices most likely to contain significant differences between

tissue groups.

Based on these criterion, the Haar basis was selected for the decomposition. Apparent
differences between tissue groups were identified in the horizontal and vertical coefficient
matrices from resolution level four upwards.
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The important features that would explain the ’apparent’ differences between tissue types
were selected in a two-stage process. The first stage was to use the Kolomogrov-Smirnov (K-
S) test to compare the distributions of the energies of the tissue groups across resolution levels.
This approach was able to screen the data to indicate which wavelet coefficient matrices
deserve closer scrutiny. The K-S test examines the maximum vertical difference between
two empirical distributions and is used to estimate the probability that the observed difference
is due to random sampling (or alternatively due to tissue types). Significant contrasts were
identified in many of the wavelet coefficient matrices, indicating that differences in the energy
of specific features should be examined in these matrices.

To probe further, we used the wavelet energy of specific crystals (Bruce & Gao 1999).
The wavelet decomposition can be described in terms of ’atoms’ and ’crystals’ by analogy
to lattice structures. An ’atom’ is an individual frequency-location (coefficient at a particular
resolution level and position) and a ’crystal’ is a collection of ’atoms’. The densities of the
energies of crystals corresponding to axial and Bessel features were examined for each tissue
type. Apparent differences between tissue types were found in both the axial and Bessel
features from resolution levels four to eight.

The second step involved determining whether the observed differences in the energies
amongst tissue types are real or simply a result of random sampling. The wavelet coefficients
corresponding to specific features in the scattering pattern were analysed using a Generalised
Linear Model (GLM) (McCullagh & Nelder 1990), the expected value of the response being
related to the linear predictor by the log-link function. The energies of 49 features describing
the axial and Bessel peaks (found in those matrices selected by exploratory analysis and the
K-S test) were anlaysed. In all cases, model checking diagnostics indicated that the model was
reliable. Results from this analysis are presented in the next section. The third and fifth axial
axial peaks showed significant differences amongst all groups from resolution levels four to
eight, suggesting that these features may be useful for classification purposes.

Projection Pursuit was used to find interesting low-dimensional projections of the high-
dimensional multivariate feature set. The projection pursuit index was defined such that
an ’interesting’ projection corresponds to one in which there are large differences between
observations between different groups. Further details of the algorithm may be found in
Lee et al (2002). Our results clearly demonstrated that projections of the data can be found
that provide discrimination between tissue types and also projections that provide interesting
insights into the data. The next section presents results from this analysis.

3. Results and Discussion

3.1. Choice of Wavelet Basis

Results from the test for basis efficiency (calculated using the ISE) are shown in Figure 1(a)-
(b), the curve of ISE vs 1-p decaying quadratically to zero as more coefficients are included
in the image reconstruction. The basis with the curve that approaches zero (perfect
reconstruction) the fastest is deemed the most efficient. The plot in Figure 1(a) displays one
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Figure 1. Comparing wavelet bases with the ISE:
(a) ISE over selected quantiles:Normal Tissue.
(b) ISE over selected quantiles:Malignant Tissue.
(c)Artifacts produced using the Daubechies Nine basis.
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(c)

such curve for Normal tissue over the range of quantiles likely to be associated with features of
interest. Note that the x-axis is in units of 1 − p, so that the value of 1 − p = 0.05 corresponds
to the removal of all the wavelet coefficients below the 95th quantile in magnitude. A small
ISE value at a particular quantile implies that the reconstructed image is a good approximation
to the original. Therefore, removal of the wavelet coefficients below this quantile does not
degrade the image quality significantly and the discarded coefficients are unlikely to contain
important information. In contrast, a large ISE implies that the wavelet coefficients that were
removed convey important information. Figures 1(a) and (b) indicate that an acceptably small
value of ISE is reached for all bases using the upper 10% (1 − p = 0.1) of all the wavelet
coefficients for Normal tissue and the upper 28% for Malignant tissue. Inspection of both
plots suggests that the Daubechies wavelet basis with two vanishing moments (D2) may have
a significant advantage over the other bases.

Artifacts were observed when the patterns were decomposed using the Daubechies
wavelet basis with nine vanishing moments (D9). Figure 1(c) displays the level 7 horizontal
wavelet coefficients. The important axial features are evident but ’Gibbs-like’ oscillations are
also present (Mallat 1998). Examination of wavelet coefficient matrices for different bases
suggests that these oscillations are related to the smoothness of the wavelet basis used in the
analysis; the D9 basis having the greatest number of visual artifacts whilst the Haar basis the
least.

ISE curves were created and inspected for all SAXS patterns in this study. A similar
result to Figures 1(a)-(c) was found to exist, and the Haar basis was selected since: it has
the smallest support; it is the least smooth of all wavelet bases considered (and thereby
believed to most accurately describe the sharp peaks in Normal tissue data); the use of
the Haar basis removed artifacts found with the other bases. This last consideration was
highly important since one can then be confident that the wavelet coefficients extracted are an
accurate reflection of the true feature values. The cost of using the Haar basis is that there are
many large coefficients across several resolution levels. This makes it difficult to isolate those
spectral components that are different between tissue types. A highly competitive choice is
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the D2 wavelet basis, and future work will examine the issue of basis selection further.
A number of other criteria for the selection of a wavelet basis exist such as the optimal

removal of noise and suitability for image compression. These criteria were not addressed in
this study but will also be the subject of future research.

3.2. Exploratory Data Analysis

Figure 2. Wavelet Coefficient Matrix Plots: (a) Normal (b) Malignant

(a) (b)

The perspective plot of wavelet coefficient matrices is a useful exploratory tool. For
example, Figures 2(a)-(b) display the horizontal wavelet coefficients for a Normal and
Malignant sample at the 7th resolution level. The magnitude of the wavelet coefficient at
each pixel is represented by it’s height in the plot. It is clear that differences in these plots
are associated with the axial peaks. Closer inspection at other projections suggests that
differences also exist in the Bessel peaks. This is encouraging as differences in these two
peaks can be interpreted in terms of changes in the collagen fibres. Similar differences were
found in resolution levels four to eight. This result indicates that the wavelet coefficients
highlight edges in the patterns and that differences in sharpness of these edges, represented
by differences in wavelet coefficient magnitude, may be used as a means of differentiating
between tissue states. The next two sections describe statistical methods used to test whether
these differences are significant and effective as a method of classification.

3.3. Kolomogrov-Smirnov Test

The empirical cumulative distribution function (ecdf) is an estimator of the underlying
distribution function P{X ≤ x}. It is the fraction of those values in the sample that are
less than or equal to the value, x. In this case, the value of x is the energy of the wavelet
coefficients. Figures 3(a)-(b), display the ecdf over a range of energy values for the level
5 vertical and horizontal wavelet coefficients averaged over the sample values in each group.
The empirical cumulative distribution functions of two samples are compared by analysing the
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Figure 3. Comparisons of the ecdf for:
(a) the level 5 vertical wavelet coefficients (b) the level 5 horizontal wavelet coefficients.
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Table 1. K-S test statistics for significant contrasts
(where * indicates that the probability of a difference arising due to chance is less than 0.001).

Horizontal Vertical

Level 4 5 6 7 8 4 5 6 7 8

N-M 0.07 0.11* 0.09* 0.08* 0.09* 0.16* 0.12* 0.11* 0.08* 0.04*
N-B 0.12 0.07* 0.10* 0.08* 0.04* 0.17* 0.08* 0.11* 0.08* 0.04*
B-M 0.10 0.12* 0.08* 0.06* 0.05* 0.16 0.06* 0.07* 0.04* 0.06*

D-statistic which is the maximum vertical distance between the values of the sample ecdfs.
That is,

|Dn| = |max(FΠ1(x) − FΠ2(x))|, (4)

where F refers to the empirical distribution function, Π1 and Π2 refer to groups one and two
respectively.

The pairwise test of differences between distributions of wavelet coefficients from the
three tissue types are summarised in Table 1. This table shows the D-statistic for the
contrasts, ‘Normal’ and ‘Malignant’ (N-M), ‘Normal’ and ‘Benign’ (N-B) and ‘Benign’ and
‘Malignant’ (B-M), for the horizontal and vertical wavelet coefficient matrices at the 4th, 5th,
6th, 7th and 8th resolution levels. The larger the D-statistic the larger the maximum difference
in the ecdfs between the two groups. For example, the B-M level 5 horizontal contrast in
Table 1 displays a statistically significant difference of D = 0.12. Therefore, the level 5
horizontal ecdfs between the benign and malignant groups differ in values of some point
by up to twelve percent of the total. As seen in Figure 3 this implies that the ecdfs between
benign and malignant tissue have a different rate of change as the energy increases. In other
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words, one group has more wavelet coefficients of a certain absolute value of magnitude than
the other. This then implies a spectral difference at this resolution level. Inspection of Table 1
indicates that there is evidence for very strong statistically significant differences between
groups from resolution level four upwards. No strong statistical differences were found at any
level in the diagonal direction. Comparisons were not performed below level four because the
resolution is too low to adequately identify features of interest. From this analysis, we can
focus our modelling using wavelet coefficients from frequency level four upwards.

3.4. Generalised Linear Models

Figure 4. Density Plot of Spectral Energy for the
(a)third bessel and (b) third axial peak.
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Figures 4(a)-(b) show the distribution of spectral energies for Normal, Benign and
Malignant tissue using wavelet coefficients from (a) the third Bessel peak and (b) the third
axial peak region of the SAXS images. These figures illustrate that the energy reveals
differences amongst tissue types at different sites (Bessel and axial peaks) and resolutions
(level 8 in (a) and 7 in (b)). Interpretation of Figure 4(a) suggests that the malignant
group contains high-frequency spectral components in this Bessel feature that are of larger
magnitude than the other groups. A physical interpretation of this evidence is that there is a
high frequency structure present in the 3rd-order Bessel peak, which may be more sharply-
defined than for the other tissue types. It is noted that the density observed in the Malignant
tissue samples actually overlaps the other groups. Possible explanations for this could be
related to the amount of collagen in a particular sample or that some of the samples only
contain a small percentage of malignant tissue and when imaged most of the signal is in fact
from normal tissue.

In contrast, Figure 4(b) suggests that the Normal group has much greater high-frequency
spectral components in the axial features than malignant tissue, indicating that at this
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frequency it is probable that normal tissue has a much more sharply defined edge in the axial
feature. Once again there is overlap of the density distributions, which will have implications
in future work on classification. It is likely that any future classification system based upon
spectral energy features will have to consider multiple features to be accurate. Apparent
spectral differences between tissue types were found in both the axial and Bessel features
from resolution levels four to eight.

Figure 5. 95% Confidence Intervals for the logarithm of energy statistics of features found to
have significant differences,
* indicates a significant difference from the Normal contrast at the p = 5x10−5 level.
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To determine whether the observed group differences are real or simply a result of
random sampling, the wavelet coefficients corresponding to specific features were analysed
with a Generalised Linear Model (GLM). The GLM was used to find significant differences
in the third and fifth axial peaks between all tissue groups at a range of resolution levels.
Results are presented in Figure 5. The key reads as follows, L(N) indicates the Nth resolution
level, (H,V,D) indicates the direction (horizontal, vertical or diagonal), (3,5) gives the orders
of the peaks concerned whilst (ax and B) distinguishes the axial from the Bessel peaks. Since
changes in the axial d-spacing of collagen are linked with malignant conditions, the finding of
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significant differences in wavelet energy amongst tissue types suggests a wavelet classification
model based on physical structures that are known to change in the presence of malignancy.
These figures indicate that the lower resolutions, levels four to six, appear to be useful in
distinguishing Normal tissue from Malignant tissue, whilst higher resolution levels (seven
and eight) appear to be useful in distinguishing Benign from Malignant tissue.

No convincing evidence was found for significant differences between tissue types that
are associated with the Bessel peaks above resolution level four. Exploratory work, as in
Figure 4(a) suggests that the Bessel peaks may be a useful indicator when a sufficiently large
proportion of malignant tissue is present in the sample. The differences or lack thereof may
be related to the choice of wavelet basis. The use of the Haar basis may have made the
differences in the axial peaks apparent but at the cost of the detection of any differences in the
Bessel peaks. Analysis was also limited by the fact that it was not possible to isolate specific
features related to the structure of collagen in wavelet coefficient matrices below resolution
level four. The above issues will form the basis of future research. Results are now presented
that demonstrate that the extracted features are useful for classification.

3.5. Exploratory Supervised Classification

In the GLM, the response was the wavelet energies and the explanatory variable was the
tissue type. For classification we wish to predict the category of a future observation based
upon the wavelet energy of selected features. Projection pursuit regression (PPR) was used to
find interesting low-dimensional projections of the high-dimension multivariate feature data
set. Such projections can yield important insights into the data set. Figure 6(a) displays
a two-dimensional projection of the entire data set based upon the maximum of the LDA-
index (Lee et al 2002). We see that this projection separates the tissue classes quite well,
suggesting that an accurate classification system based upon these features may be able to be
produced. Interpretation of the combination of features that yielded a particular projection is
quite difficult, but the dominant effects will be stated. Projection one (PP1) in Figure 6(a)
includes the dominant effects of the amorphous background scatter and the level four axial
peaks (L4H3ax & L4H5ax) interacting with the high-resolution (L5,L7,L8) Bessel peaks.
This combination appears to be an excellent discriminator of tissue type. The second
projection (PP2) in Figure 6(a) corresponds to a mixture of both high and low resolution
axial (L6H5ax,L2H135ax) and Bessel features (L8V1B,L8V2B,L8V3B). This projection
direction appears to differentiate the Benign class from the Normal. These results suggest
that classification of tissue type can be achieved by considering the interaction of the axial
features, Bessel and background scatter features.

Figure 6(b) is another ‘interesting’ two-dimensional projection based upon a local
maximum of the LDA index. It is seen that a linear relationship has been found between
the two projections that approximately separates the Normal and Malignant tissue classes.
The first projection direction (PP1) corresponds to a dominant influence of the Level
7 Vertical 3rd Bessel feature (L7V3B), other strong influences includes high-resolution
axial features(particularly L6H3ax) and the Bessel feature, L6V23B. The second projection
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direction has very strong axial feature influence (particularly L8H1ax) but again includes
high resolution Bessel peak features. This projection suggests that a representation can be
found that progressively ’charts’ the deterioration of normal breast tissue towards abnormal
histopathology as a function of the information present in breast tissue SAXS patterns.

Figure 6. Projections found using exploratory projection pursuit.
(a) Global Maximum of LDA index. (b) Local Maximum of LDA index.
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The GLM indicated that the axial peak features were important for classification.
Projection Pursuit has shown that both the low-resolution wavelet coefficients (that cannot
be attributed to a specific physical structure) and the interaction of Bessel and axial features
provide important information about the changes that occur in breast tissue in the presence of
malignant disease.

4. Conclusion

This paper has reported on the application of wavelet decomposition analysis to SAXS
patterns as a means of uncovering statistically significant differences between patterns from
‘Normal’, ‘Benign’ and ‘Malignant’ tissue. Wavelet coefficients have been used to seek
correlations between the SAXS patterns and the disease state of the tissue. These have
been combined with statistical tests in order to indicate whether the differences between
tissue state are statistically significant and indeed related to changes in collagen structure.
Significant differences in the spectral energy of the axial features of ‘Normal’, ‘Benign’
and ‘Malignant’ tissue types have been found. Furthermore, projection pursuit regression
suggests that the low-resolution wavelet coefficients and the interactions between axial and
Bessel peak features may provide additional discriminatory power. These results suggest
that a useful classification tool can be based upon the spectral content of these peaks. This
work also supports the hypothesis that differences in SAXS patterns for different tissue states
are produced by changes in the collagen structure. The next stage in this project is the
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development of an accurate wavelet-based classification system using the SAXS patterns in
which the classification is linked to the supra-molecular structural changes that are known to
occur in breast tissue in the presence of disease.

Acknowledgments

The authors would like to acknowledge the support of the CCLRC Daresbury Synchrotron
Radiation Source, and Dr E Kendall and Ms C Erickson of the University of Saskatchewan,
Canada for their initial work and support in this area. This research was partially supported by
the Access to Major Research Facilities Program, funded by the Commonwealth of Australia,
and ongoing support has been provided by the University of New England, Australia. This
work was prepared using the R statistical environment (R Development Core Team 2004)
using the lattice (Deepayan 2004), Wavethresh (Nason et al 2004) and ClassPP (Lee 2002b)
packages. Finally, the primary author would like to thank and give appreciation to the many
people who have assisted in the preparation of this document.

References

Bigi A and Roveri N 1991 Fibre diffraction: collagen Handbook of Synchrotron Radiation edited by S.Ebashi,
M.Koch & E.Rubenstein 4 (Amsterdam: North- Holland).

Bruce A and Gao HY 1996 Applied Wavelet Analysis with S-PLUS(New York:Springer-Verlag).
Deepayan S 2004 lattice: Lattice Graphics. R package version 0.10-14.
Eikenberry EF, Brodsky BB, Craig AS, Parry DAD 1982a Collagen fibril morphology in developing chick

metatarsal tendon: 1. X-ray diffraction studies Int. J. Biol. Macromol. 4 322-28.
Eikenberry E F, Brodsky B and Parry D A D 1982b Collagen fibril morphology in developing chick metatarsal

tendon: 2. Electron microscope studies Int J Biol Macromol 4 393-98
Erickson C 2003 Automated Detection of Breast Cancer Using SAXS Data and Wavelet Features, PhD Progress

Report (Division of Biomedical Engineering, University of Saskatchewan, Canada).
Fernandez M, Keyrilinen J, Serimaa R, Torkkeli M, Karjalainen-Lindsberg M-L, Tenhunen M, Thomlinson W,

Urban V, Suortti P 2002 Small-angle X-ray scattering studies of human breast tissue samples Phys. Med.
Biol. 47 577-92.
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