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Diagonal elements of the coefficient matrix are necessary to calculate the genomic

prediction accuracy. Here an improved methodology is described, to update the inverse

of the coefficient matrix (C) for new individuals with a genotype, with and without

phenotypes. Computational performance is significantly improved by re-using parts of the

coefficient matrix inverse calculations that do not change from one animal to another, in

combination with updated calculations for those that do change. This method expedites

calculation of accuracy for new individuals with genotypes, without re-doing the whole

population, by using the previously calculated matrices.
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1. INTRODUCTION

In the last decade, technological advances have significantly decreased genotyping costs,
particularly for agricultural livestock and cropping species. This reduction in costs has enabled
regular genomic best linear unbiased prediction (GBLUP) (VanRaden, 2008) analyses for the
production of genomic breeding values. Currently, genomic information is routinely used in the
Australian beef industry in producing estimated breeding values (EBVs). Low costs and high
industry uptake has resulted in a rapid increase in the number of new genotypes and thus the
size of the genomic population is growing larger. GBLUP requires inversion of the genomic
relationship matrix (G) and the coefficient matrix (C), which is computationally demanding. More
efficient methods such as APY (Algorithm for Proven and Young animals) (Misztal, 2016) and
PICD (Partial Incomplete Cholesky Decomposition) (Hancock, 2017) can handle large numbers of
genotyped animals by approximating the inverse ofG only and not the coefficient matrix. However,
these approaches do not address the need for diagonal elements of the coefficient matrix inverse
(left hand side) required for calculating EBV accuracies. With the increasing speed at which new
genotypes are provided, inversion of the coefficient matrix for accuracy calculation is increasingly
computationally demanding and time consuming, requiring more efficient methods.

Here we propose a method to calculate the accuracy of new individuals, with and without
phenotypes, by updating the coefficient matrix inverse (C−1) for new individuals only, without re-
doing the whole population. Using this method, we significantly reduce time and computational
demand by updating the accuracy of new individuals and reducing redundancy in the
reference population.

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.00596
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.00596&domain=pdf&date_stamp=2019-06-25
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mferdos3@une.edu.edu
https://doi.org/10.3389/fgene.2019.00596
https://www.frontiersin.org/articles/10.3389/fgene.2019.00596/full
http://loop.frontiersin.org/people/659300/overview
http://loop.frontiersin.org/people/718924/overview


Ferdosi et al. Efficient Prediction Accuracy Estimation

2. METHODS

2.1. Theory
We consider a simple animal model without fixed effects. This
model is

y = Zu+ e (1)

where y, Z, u, and e are vector of observations, design matrix,
vector of solutions, and vector of random residual effects,
respectively. The solutions and residual variances are var(u) =

Gσ
2
u and var(e) = Iσ 2

e . The mixed model equations (MME) for
the above model are

Cu = [Z′Z+ αG−1]u = r, (2)

where C is the coefficient matrix and α =
σ
2
e

σ
2
u
. Henderson derived

a method by using the diagonal of C−1 and the diagonal of
G to calculate the accuracy of each estimated breeding value
(Henderson, 1975). Accordingly, the accuracy can be calculated

with this formula
√

1− α
cii

gii
, where cii is the diagonal element

of C−1 for individual i, and gii is the diagonal element of G for
individual i.

2.1.1. Updating C−1 to Illustrate the Proposed Method
To calculate the accuracy of individuals with or without
phenotypes, each individual can be added to C−1 separately. In
this case, the partitioned matrix of MME (Equation 2) is

[

Cpp Cpq

C′
pq Cqq

] [

up
uq

]

=

[

rp
rq

]

(3)

where subscript p and q are core individuals forming the
reference population and new individuals respectively. New
individuals may or may not have phenotypes.

As demonstrated in Equation (2), Z′Z becomes
( (Z′Z)pp 0

0 (Z′Z)qq

)

where (Z′Z)pp is a diagonal matrix with

dimension equal to the number of core animals in the population,
and the (Z′Z)qq in the lower diagonal represents new animals.

Since G−1 becomes
( Gpp Gpq

G′
pq Gqq

)−1
, and C−1 becomes

[Z′Z+ αG−1]−1
≈

(

[

(Z′Z)pp 0
0 (Z′Z)qq

]

+ α

[

Gpp Gpq

G′
pq Gqq

]−1
)−1

(4)

based on Equations (2) and (3). Inverting C is computationally
demanding, as both G and the entire C should be inverted in
each analysis for all individuals. G−1

pp needs to be updated as the
new individuals are added to G. This can be performed by the
method explained in Meyer et al. (2013). However, since we want
to know the accuracy, we must invert C as well as G. Equation
(4) can be converted with the following inversion lemma which
is equivalent to theWoodbury’s formula (Henderson, 1963, 1975;
Henderson and Searle, 1981):

(A− BD
−1

E)−1
= E

−1
D(D− EA

−1
B)−1

EA
−1. (5)

With C we can consider A = Z′Z, B = −I, D−1
= G−1 and

E = αI. Thus C−1 is

(Z′Z+ αG−1)−1
= α

−1G(G+ α(Z′Z)−1)−1
α(Z′Z)−1

= GM−1(Z′Z)−1 (6)

where M−1 as (G + α(Z′Z)−1)−1 is used for simplification and
is shown below in Equation (8). For the partitioned matrices in
Equation (4), C−1 becomes

(

[

(Z′Z)pp 0
0 (Z′Z)qq

]

+ α

[

Gpp Gpq

G′
pq Gqq

]−1
)−1

≈

[

Gpp Gpq

G′
pq Gqq

]([

Gpp Gpq

G′
pq Gqq

]

+ α

[

(Z′Z)−1
pp 0

0 (Z′Z)−1
qq

])−1

[

(Z′Z)−1
pp 0

0 (Z′Z)−1
qq

]

≈

[

Gpp Gpq

G′
pq Gqq

] [

Gpp + α(Z′Z)−1
pp Gpq

G′
pq Gqq + α(Z′Z)−1

qq

]−1

[

(Z′Z)−1
pp 0

0 (Z′Z)−1
qq

]

, (7)

where ≈ is approximation sign. By using lemma (6) G−1 is not
required and we only need to invert the middle matrix (M)
in Equation (7). With this simplification M−1 can be updated
for each new individual using Cholesky decomposition and

multiplying the Cholesky factors, i.e., M−1
= L−TL−1 (Harville,

1997; Meyer et al., 2013).

M−1
=

[

L−T
pp L−1

pp + L−T
pp L′qpL

−T
qq L−1

qq LqpL
−1
pp −L−T

pp L′pqL
−T
qq L−1

qq

−L−T
qq L−1

qq LqpL
−1
pp L−T

qq L−1
qq

]

=

[

S1 S2
S3 S4

]

. (8)

Therefore, Equation (7) can be written as

[

Cpp Cpq

C′
pq Cqq

]−1

=

[

Gpp Gpq

G′
pq Gqq

] [

S1 S2
S3 S4

] [

(Z′Z)−1
pp 0

0 (Z′Z)−1
qq

]

=

[

GppS1 + GpqS3 GppS2 + GpqS4
G′
pqS1 + GqqS3 G′

pqS2 + GqqS4

] [

(Z′Z)−1
pp 0

0 (Z′Z)−1
qq

]

=

[

(GppS1 + GpqS3)(Z
′Z)−1

pp (GppS2 + GpqS4)(Z
′Z)−1

qq

(G′
pqS1 + GqqS3)(Z

′Z)−1
pp (G′

pqS2 + GqqS4)(Z
′Z)−1

qq

]

, (9)

based on Equation (8) S2 = −L−T
pp L′qpL

−T
qq L−1

qq and S4 =

L−T
qq L−1

qq . By multiplying back the Cholesky factors of M the

solutions for L′pq and LqqL
T
qq are

L′qp = L−1
ppGpq (10)

and

LqqL
T
qq = Gqq +α(Z′Z)−1

qq −G′

pq(Gpp +α(Z′Z)−1
pp )

−1Gpq, (11)
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and Cqq which is the inverse of Cqq becomes

Cqq
= (G′

pq(−L−T
pp L′qpL

−T
qq L−1

qq )+ Gqq(L
−T
qq L−1

qq ))(Z
′Z)−1

qq

= (G′

pq(−L−T
pp L′pqS4)+ GqqS4)(Z

′Z)−1
qq

= S4(G
′

pq(−L−T
pp L′qp)+ Gqq)(Z

′Z)−1
qq

=

−G′
pqL

−T
pp L′qp + Gqq

(Gqq + α(Z′Z)−1
qq − G′

pq(Gpp + α(Z′Z)−1
pp )−1Gpq)(Z

′Z)qq

=

−G′
pqL

−T
pp L−1

ppGpq + Gqq

(Gqq + α(Z′Z)−1
qq − G′

pq(Gpp + α(Z′Z)−1
pp )−1Gpq)(Z

′Z)qq

(12)

Cqq
=

−G′
pqL

−T
pp L−1

ppGpq + Gqq

(Gqq + α(Z′Z)−1
qq − G′

pq(Gpp + α(Z′Z)−1
pp )−1Gpq)(Z

′Z)qq

(13)

where “—” is the right division sign (multiplying numerator by
inverse of denominator) and L−T

pp L−1
pp = (Gpp + α(Z′Z)−1

pp )
−1 so

Cqq
=

−G′
pq(Gpp + α(Z′Z)−1

pp )
−1Gpq + Gqq

(Gqq + α(Z′Z)−1
qq − G′

pq(Gpp + α(Z′Z)−1
pp )−1Gpq)(Z

′Z)qq

(14)

Only G′
pq, Gpq, Gqq, and (Z′Z)qq change with each new

genotyped individual.
For animals without phenotypes (Z′Z)qq is a null matrix and

the denominator in equation 14 becomes zero. However, we can
assume the limit approach to α as (Z′Z)qq approach to zero.
Thus, Cqq is

lim
(Z′Z)qq→0

−G′
pq(Gpp + α(Z′Z)−1

pp )
−1Gpq + Gqq

(Gqq + α(Z′Z)−1
qq − G′

pq(Gpp + α(Z′Z)−1
pp )−1Gpq)(Z

′Z)qq

=

−G′
pq(Gpp + α(Z′Z)−1

pp )
−1Gpq + Gqq

α

(15)

In summary, Equations (14) and (15) can be used to calculate
the prediction accuracies of individuals with and without
phenotype, respectively.

2.1.2. Updating the M−1 for New Individuals
Based on Equations (14) and (15) only (Gpp + α(Z′Z)−1

pp )
−1

=

M−1
pp changes (see Equation 7) in order to update the reference

population. The updatedM−1
pp , i.e.,M

−1
ppnew

is

M−1
ppnew

=

[

Sn1 Sn2
Sn3 Sn4

]

=

[

M−1
− S2G

′
pqM

−1
−M−1GpqS4

S′n2 (Gqq + α(Z′Z)−1
qq − G′

pqM
−1Gpq)

−1

]

(16)

by regarding previous assumptions and Equation (8).M−1 is the
largest matrix that was generated in the previous run and can
be compressed and stored in binary format to avoid memory
issues. The other matrices were small and can be built efficiently
by using optimized Linear Algebra PACKage (LAPACK). The
equations (14, 15, and 16) were implemented as an R function
(Appendix A) to show the prototype and in C++ with Armadillo
library (Sanderson and Curtin, 2016) to assess its performance—
single thread.

2.1.3. Simulated Data
Matrices with seven columns representing seven single-
nucleotide polymorphisms for each individual and 1000, 2000,
3000, ... 24000, and 25000 rows were created and filled with 0
(AA), 1 (AB), and 2 (BB) randomly. The genomic relationship
matrices (G) were built by using VanRaden (2008) method
1, with dimension individuals by individuals. Importantly,
increasing the number to SNPs does not affect the computational
time. These matrices were used to assess the performance of the
proposed method to calculate accuracy.

2.1.4. Performance Evaluation
To evaluate performance, each set was run in three steps. In
the first step, the elapsed time to build the coefficient matrix by
using the classic approach (i.e., invertingG andC) was measured.
In the second step, the time to build (Gpp + α(Z′Z)−1

pp )
−1—

initial matrices required to update cqq was measured. In the
third step, the time to calculate cqq by using the initial matrices
was measured.

3. RESULTS AND DISCUSSIONS

By calculating the accuracy of young individuals using Equations
(14) and (15) computational times have been significantly
reduced. Computational performance using this method is
considerably faster, in comparison with existing methods, as
shown in Figure 1, with only negligible differences in accuracy
due to rounding errors (less than 8.88 × 10−16). The proposed
approach using Z′Z (a diagonal matrix) resulted in shorter time
to build the matrices used to update cqq compared to when using
the classic approach to calculate accuracies. This method can be
extended in order to accommodate fixed effects and dense Z′Z

when cqq is updated. Furthermore, the part of C for animals
with phenotype (Cpp) must be updated as more individuals
are phenotyped.

This method could be exploited within routine breeding value
estimation for expidited accuracy calculations. Breeding value
accuracy is based on an individual’s relatedness to the core
reference, such that high accuracy indicates high relatedness.
This method to calculate accuracy will affect how the genotypes
are used, based on how informative they are for the prediction,
improving efficiency by reducing redundant information.

New individuals with phenotypes and low accuracy can be
added to the core population, as it is likely these animals are lowly
related. Their addition improves the diversity and informativity
of the core reference population, and can further improve
imputation accuracy of the missing genotypes, with added
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FIGURE 1 | The graph shows the elapsed time required to calculate cqq using different approaches. inv M is the elapsed time to calculate the M matrix which is the

core element to calculate cqq for a new individual. Update Reference is the elapse time to update M matrix, the cqq with and without phenotype shows the

elapsed time to calculate cqq when there is or there is not phenotype for the individual, respectively. Their performances were very similar, and as such the lines overlap.

diversity into the imputation haplotype library. Individuals with
high accuracy are not required to be added to the core, with
or without phenotype, as their accuracy indicates their relatives
are already included in this reference population, making their
addition redundant. New individuals without phenotypes and
low accuracy, should have relatives genotyped to improve
accuracy and/or should have their phenotypes recorded to
improve the core population.

It is possible to exploit the accuracy calculation as a
type of quality control filter for population data, such that
individuals with an expected level of relatedness to the
reference population, obtains a low accuracy, this may be
indicative of genotyping/sampling error, mis-assigned breed, etc.
The rapid accuracy calculation for those individuals without
phenotype can provide important context for quickly developing
a phenotyping strategy.

4. CONCLUSION

Updating the inverse of C for new individuals with and without
phenotype, using the method here, is shown to reduce the
computational effort significantly. With increasing numbers
of genotyped animals in genetic evaluations, computational
efficiency is essential for frequent and timely evaluations.
This method provides an improved and efficient method

to deliver accurate and fast evaluations when few new
young individuals are genotyped but may or may not
have phenotypes.
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APPENDIX A

R functions that show the prototype.

# C r e a t e a p a r t i t i o n ma t r i x from 4 ma t r i c e s
b ind <− f u n c t i o n (A , B , C , D)
{

rb ind ( cb ind (A , B ) , cb ind (C , D) )
}

# C r e a t e a z e ro ma t r i x
zM <− f u n c t i o n ( row , c o l )
{

ma t r i x ( 0 , nrow = row , nco l = c o l )
}

# C a l c u l a t e X ’ X
xpx <− f u n c t i o n ( x )
{

t ( x ) %∗% x
}

# C a l c u l a t e C i n v e r s e by u s i ng t r a d i t i o n a l method
tradMethod <− f u n c t i o n (Zp , Zq , Gpp , Gpq , Gqq , Alpha )
{

A <− xpx (Zp )
D <− xpx ( Zq )
B <− zM( nrow (A) , n co l (D) )
C <− t (B )
s o l v e ( b ind (A , B , C , D) + Alpha ∗

s o l v e ( b ind (Gpp , Gpq , t (Gpq ) , Gqq ) ) )
}

# C a l c u l a t e Cqq when t h e r e a r e pheno type s f o r new
# i n d i v i d u a l s
cqqPhen <− f u n c t i o n (Zp , Zq , Gpp , Gpq , Gqq , Alpha )
{

Minv <− s o l v e (Gpp + Alpha ∗ s o l v e ( xpx (Zp ) ) )
n1 <− −t (Gpq ) %∗% Minv %∗% Gpq + Gqq
n2 <− (Gqq + Alpha ∗ s o l v e ( xpx ( Zq ) ) − t (Gpq ) %∗%
Minv %∗% Gpq ) %∗% xpx ( Zq )
n1 %∗% s o l v e ( n2 )

}

# C a l c u l a t e Cqq when t h e r e a r e no pheno type s f o r
new i n d i v i d u a l s
cqq <− f u n c t i o n (Zp , Zq , Gpp , Gpq , Gqq , Alpha )
{

Minv <− s o l v e (Gpp + Alpha ∗ s o l v e ( xpx (Zp ) ) )
n1 <− −t (Gpq ) %∗% Minv %∗% Gpq + Gqq
n1 / Alpha

}
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