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1 |  INTRODUCTION

The 2009 Declaration of the World Summit on Food Security 
requires a sustainable increase in global food production of 
70% by 2050. However, the rate of increase in global crop grain 

yield, which rose during the late 20th century, is now declining 
(Alexandratos & Bruinsma, 2012), and most studies predict a 
decrease in grain yield of 10%–25% in the late 21st century as a 
result of higher global temperatures (IPCC, 2014). Grain crops 
such as wheat, maize, and rice produce more than 60% of the 
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Abstract
Simultaneous genetic improvements in grain yield and heat stress tolerance (HST) 
are necessary to avoid a fall in crop yields caused by global warming during the 21st 
century. Future food security depends on crop breeding solutions to this challenge, 
especially in developing countries where the need is greatest. We stochastically 
model a wheat breeding program during 60 years of rapid global warming based on 
rapid 2- year cycles, with selection in early generations for HST, grain yield, disease 
resistance, and stem strength. In each cycle, breeding values were estimated by best 
linear unbiased prediction using all pedigree and phenotypic information (including 
selfing) back to the founders. We compared two methods of selection and mating 
design with similar costs. The first method was truncation selection for HST to match 
predicted increases in land temperatures followed by selection for an economic index 
composed of weighted estimated breeding values for each trait, followed by random 
pair- wise mating among selections. The second method was optimal contributions 
selection (OCS) for the economic index with an overriding constraint to increase 
HST in each cycle to match global warming trends, and mating prescribed by OCS. 
Truncation selection caused a rapid loss of genetic diversity, and HST did not keep 
pace with global warming. Consequently, grain yield began to decline due to heat 
stress before 60 years. With OCS, HST matched global warming trends, the eco-
nomic index almost tripled and grain yield nearly doubled during 60 years of global 
warming. OCS on an economic index, with a priority to meet HST, increased grain 
yields and avoided a major threat to global food security caused by global warming.
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calories for global human consumption (Nelson et al., 2010), 
and they are sensitive to heat stress during reproduction (Atlin, 
Cairns, & Das, 2017; Farooq, Bramley, Palta, & Siddique, 
2011; Kaushal, Bhandari, Siddique, & Nayyar, 2016). The pro-
cess of breeding, delivery, and adoption of new grain crop vari-
eties must be accelerated to avoid a major threat to global food 
security during the 21st century (Atlin et al., 2017; Challinor, 
Koehler, Ramirez- Villegas, Whitfield, & Das, 2016).

Global average surface temperatures are expected to in-
crease between 0.5 and 3.0°C from 2017 to 2077, and the 
increase will be higher on land than at sea (IPCC, 2014). 
Extreme heat events will become increasingly common 
and severe (Battisti & Naylor, 2009) and represent a major 
threat to human health (Mora et al., 2017), animal produc-
tion (Misztal, 2017), and global grain production systems 
(Lesk, Rowhani, & Ramankutty, 2016; Teixeira, Fischera, 
van Velthuizena, Walter, & Ewert, 2013). Plant breeders are 
faced with the challenge of improving crop yields and heat 

stress tolerance (HST) simultaneously as the climate warms 
(Battisti & Naylor, 2009).

We stochastically model a rapid- cycle spring wheat 
(Triticum aestivum L.) breeding program based on best linear 
unbiased prediction (BLUP) of breeding value with pedigree 
relationships (known as pedigree BLUP, or ABLUP) and com-
pare truncation selection with optimal contributions selection 
(OCS) during 60 years of global warming. Complex polygenic 
variation exists for HST in wheat landraces and contemporary 
lines (Atlin et al., 2017; Farooq et al., 2011), and is assumed to 
be present in the founder population. Model conditions for the 
founder population include genetically diverse contemporary 
spring wheat lines with moderate to low heritability for grain 
yield, disease resistance, stem strength, and HST during an-
thesis. HST is selected to match expected increases in average 
temperature during anthesis from 2017 to 2077, as predicted by 
global warming models (IPCC, 2014), while simultaneously 
selecting for an economic index composed of grain yield, stem 
strength, flowering time, and disease resistance.

Optimal contributions selection was developed in animal 
breeding to maximize genetic gain for an economic index 
under the constraint of the maximum permissible target in-
breeding rate (Woolliams, Berg, Dagnachew, & Meuwissen, 
2015), and was recently applied to self- pollinating grain crops 
(Cowling et al., 2017). OCS produced sustainable and supe-
rior long- term genetic improvement in an economic index 
including grain yield compared with truncation selection 
(Cowling et al., 2017). Here, we compare OCS vs. trunca-
tion selection to improve both HST and grain yield simul-
taneously in a model wheat breeding program, and thereby 
avoid the threat of reductions in grain yield caused by global 
warming during the 21st century.

The value of HST for grain yield depends on the prevail-
ing climate, with little benefit from excess tolerance, but 
probable disaster resulting from insufficient tolerance. We 
thus use strict constraints to ensure that HST levels match the 
prevailing requirements predicted by global warming mod-
els, while targeting maximum long- term response in the eco-
nomic index and its components.

Grain yield of spring wheat is expected to decrease by 10% 
per 1°C increase above the critical temperature threshold of 
25°C during anthesis, reaching zero yield at the limiting tem-
perature of 35°C (Deryng, Conway, Ramankutty, Price, & 
Warren, 2014). This is in line with other studies which show 
that yield of wheat is reduced as growing season tempera-
ture increases (Lobell & Field, 2007), with a failure tempera-
ture during anthesis of 34°C (Hatfield et al., 2011) or 35°C 
(Prasad & Djanaguiraman, 2014). We use this information 
to model HST in wheat at an effective temperature of 30°C 
(HST30) (Figure 1). Effective temperature is the temperature 
half- way between the mean and the highest temperature each 
day for four consecutive days during anthesis (Deryng et al., 
2014). Our founder wheat population is assumed to have a 

F I G U R E  1  A model of heat stress tolerance (HST30) during 
anthesis and yield penalty in wheat, following Deryng et al. (2014). (a) 
Yield penalty begins when the threshold effective temperature during 
anthesis exceeds 25°C in 2017 (blue line) or 29°C in 2077 (red line), 
following successful selection for HST30 score of +4 between 2017 and 
2077. Grain yield decreases by 10% for every 1°C increase in effective 
temperature above the threshold temperature, such that a 50% yield 
penalty occurs at 30°C in 2017 or 34°C in 2077 following successful 
selection for HST30 score of +4. (b) Normal curve of true breeding 
values for HST30 in 2017 (blue curve), and in 2077 (red curve) after 
successful selection for a target increase in HST30 score of +4 between 
2017 and 2077
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mean HST30 score of 30 in 2017, which must increase by 
2077 to match global warming models (IPCC, 2014). In our 
model, if selection for HST30 fails to meet the target in each 
year, grain yields are penalized by 10% per unit below target 
HST30, following the yield loss assumptions of Deryng et al. 
(2014) (Figure 1, Supporting information Table S1).

Plant breeders of inbred crops often use independent 
culling, where a minimum performance is set for each trait 
(Bernardo, 2010). In this process, individuals which survive 
culling for the first trait are selected for the next trait, and so 
on, until only a few selected individuals are available for mat-
ing to begin the next cycle. Independent culling was shown 
to be less efficient than index selection for economic traits in 
animal breeding (Hazel & Lush, 1942) and in self- pollinating 
crops (Pesek & Baker, 1969).

During the past 30–40 years, index selection based on 
BLUP breeding values has been adopted widely in animals 
and perennial tree crops, but not in self- pollinating grain 
crops (Bauer & Léon, 2008). High accuracy of BLUP breed-
ing values was obtained with 2- year cycles of recurrent se-
lection in a self- pollinating crop (Cowling et al., 2015), and 
long- term genetic gain in an economic index composed of 
several low heritability traits was greater with OCS compared 
to truncation selection (Cowling et al., 2017).

We build on this experience to model wheat breeding 
from 2017 to 2077 to improve an economic index composed 
of grain yield and three other economic traits (Cowling et al., 
2017), while precisely controlling HST30 to match prevail-
ing climatic conditions. We have chosen an ABLUP breeding 
method based on all pedigree relationship information across 
cycles, including selfing, which results in high accuracy of 
predicted breeding values (Cowling et al., 2015) at relatively 
low cost, and is suitable for implementation in developing 
countries. Three levels of selection of HST30 are modeled: (a) 
no selection, (b) selection for an increase in HST30 of +2 units 
by 2077, which matches the “average” climate change model 
predictions for +2°C increase in land temperatures in 2077 
(IPCC, 2014), and (iii) selection for an increase of HST30 of 
+4 units by 2077, which matches the “high” model prediction 
of +4°C increase in land temperatures in 2077 (IPCC, 2014). 
For each HST30 target, we evaluate two methods of selection 
(OCS and truncation) and two intensities of selection (high 
and moderate), for a total of 12 scenarios. Achieving HST30 
targets in each year was a primary constraint, and the eco-
nomic index was improved in the face of that constraint.

2 |  MATERIALS AND METHODS

2.1 | Simulations
The starting values for mean, phenotypic standard devia-
tion, narrow- sense heritability, genetic correlations among 

traits, and economic weights for grain yield, resistance to 
a hypothetical disease, stem strength, and flowering time 
in the model wheat breeding program were the same as re-
ported previously (Cowling et al., 2017), except the eco-
nomic weight for flowering time was adjusted from −0.020 
to −0.025, and a new trait for heat stress tolerance (HST30) 
was added (Supporting information Table S2). The founder 
population of genetically diverse wheat had a mean yield of 
1.5 t/ha in 2017, which is close to the projected average yield 
of rainfed wheat in developing countries in 2017 (1.8 t/ha) 
(Alexandratos & Bruinsma, 2012).

The recurrent selection scheme was based on 2- year cy-
cles in the population improvement phase of crop breeding 
(Supporting information Figure S1). Records from Sx- derived 
Sx+1 plots were used to predict breeding values of Sx individ-
uals, following the theory that the self- family mean provides 
an improved estimate of the breeding value of the parent for 
crossing (Walsh & Lynch, 2018). Records were obtained on 
both cross progeny and selfs of parent plants, because this in-
creased the accuracy of estimated breeding value (EBV) due 
to inclusion of self- relatives in the analysis (Cowling et al., 
2015, 2017). When a genotype was selected for crossing, rem-
nant self- progeny seeds were used in crossing (Cowling et al., 
2017). We follow the nomenclature in crop breeding where “F” 
denotes progeny of crosses among homozygous parents, and 
“S” denotes progeny of crosses among heterozygous parents.

Simulations were carried out using the PopSim module 
of Genup (http://bkinghor.une.edu.au/genup.htm, accessed 3 
March 2018), which was developed and used in the context 
of the infinitesimal model (Webb et al., 2012). PopSim was 
modified to include OCS as an option for mate selection and 
mate allocation decisions at each breeding cycle (Kremer, 
Newman, Wilson, & Kinghorn, 2010), and to handle bi-
sexuality and selfing as required for self- pollinating crops 
(Cowling et al., 2017).

2.2 | Preparation of founder lines
Cycle 0 was used to prepare the founder populations 
(Supporting information Figure S1). In the moderate selec-
tion intensity scenario, 100 non- inbred individuals were gen-
erated by the simulation software on the basis of the starting 
values (Supporting information Table S2), and the founder 
population of 100 inbred individuals was formed by single 
seed descent for 6 generations. Fifty random pair- wise mat-
ings were made among these founder inbred lines, and their 
offspring were intermated again (25 matings) to generate 
32 heterozygous segregating S0 progeny per mating (800 S0 
progeny), plus four selfs per parent plant (200 F2 progeny), to 
give a total of 1,000 progeny to begin cycle 1. BLUP- derived 
EBVs of the 1,000 progeny were used to construct an eco-
nomic index for use in selection of parents to begin cycle 1 
(Cowling et al., 2017).

http://bkinghor.une.edu.au/genup.htm
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In the moderate selection intensity scenario, 40 non- 
inbred individuals were generated by the simulation 
software on the basis of the starting values (Supporting in-
formation Table S2), and the founder population of 40 in-
bred individuals was formed by single seed descent for six 
generations. Twenty random pair- wise matings were made 
among these founder inbred lines and their offspring were 
intermated again (10 matings) to generate 80 heterozygous 
segregating S0 progeny per mating (total 800 S0 progeny), 
plus 10 selfs per parent plant (200 F2 progeny), to give a 
total of 1,000 progeny to begin cycle 1. BLUP- derived 
EBVs of the 1,000 progeny were used to construct an eco-
nomic index for use in selection of parents to begin cycle 1 
(Cowling et al., 2017).

2.3 | Economic index
The emphasis placed on each trait was calculated using the 
desired gains approach (Brascamp, 1984), implemented using 
the program Desire (http://bkinghor.une.edu.au/desire.htm, 
accessed 3 March 2018). Economic weightings were adopted 
for calculation of BLUP- based economic index values:

where e is a vector of implied economic weights, and EBVi,j 
is a vector of estimated breeding values for individual i cal-
culated by BLUP.

BLUPindexi was calculated from EBVs based on multiple- 
trait BLUP analysis on phenotypes and pedigree information 
generated in the simulations. Simulation was based on the 
starting values and genetic parameters for traits (Supporting 
information Table S2).

2.4 | Optimal contributions selection
The selection and mate allocation method used previously 
(Cowling et al., 2017; Kinghorn, 2011) involves a function 
whose key components relate to genetic gain and genetic 
diversity. The optimization of this function results in OCS. 
OCS was based on the breeding program implementation 
platform “Matesel” (Kinghorn & Kinghorn, 2018). The prac-
tical implementation of this method is based on an evolu-
tionary algorithm, with constraints easily invoked to ensure 
practical relevance and precise control of response in HST30. 
Matesel dictates which individuals to select and the actual 
mating allocations and/or selfings to be made.

2.5 | Four selection scenarios
From the beginning of cycle 1, we evaluated four scenarios 
based on two methods of selection (OCS and truncation) 

and two intensities of selection (high and moderate). The 
model was run 10 times for each scenario, and the mean 
and standard deviation reported for each cycle (Supporting 
information Table S3). The cost of each breeding scenario 
was approximately the same, since the same total num-
ber of genotypes was phenotyped in each scenario in each 
cycle.

2.5.1 | Truncation with moderate selection 
pressure (“truncation- moderate”)
Progeny from the previous cycle were ranked on economic 
index, and the top- ranked 100 progeny out of 1,000 (10% 
selection proportion) were used in 50 random pair- wise mat-
ings with 16 S0 progeny per mating (800 S0 progeny) and 
two selfs per parent plant (200 selfs) for a total of 1,000 prog-
eny. HST30 was the priority trait for independent culling (see 
below).

2.5.2 | Truncation with high selection 
pressure (“truncation- high”)
Progeny from the previous cycle were ranked on economic 
index, and the top- ranked 40 progeny out of 1,000 (4% selec-
tion proportion) were used in 20 random pair- wise matings 
with 40 S0 progeny per mating (800 S0 progeny) and five 
selfs per parent plant (200 selfs) for a total of 1,000 prog-
eny. HST30 was the priority trait for independent culling (see 
below).

2.5.3 | OCS and moderate selection pressure 
(“OCS- moderate”)
Economic index of progeny and their relationships from the 
previous cycle were used to optimize a design for 50 mat-
ings (the same number of matings as in truncation- moderate) 
based on a balance strategy of target 45 degrees, where 0 de-
grees gives full emphasis to short- term genetic gain in index 
and 90 degrees gives full emphasis to minimizing parental 
coancestry, and a maximum of five matings per selection 
(Cowling et al., 2017), with 16 S0 progeny per mating and 
two selfs per parent plant for a total of 1,000 progeny. This 
process was slightly modified for selection on HST30 (see 
below).

2.5.4 | OCS and high selection pressure 
(“OCS- high”)
Economic index of progeny and their relationships from the 
previous cycle were used to optimize a design for 20 matings 
(the same number of matings as in truncation- high) based on 
a balance strategy of target 45 degrees and a maximum of 
five matings per selection (Cowling et al., 2017), with 40 S0 

BLUPindexi =

nTraits
∑

j=1

ej.EBVi,j

http://bkinghor.une.edu.au/desire.htm
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progeny per mating and five selfs per parent plant for a total 
of 1,000 progeny. This process was slightly modified for se-
lection on HST30 (see below).

2.6 | Selection for HST30 score
HST30 score was simulated as follows: for two days before 
and two days after anthesis, at least 30 plants of each geno-
type of the founder population were exposed to an effective 
temperature of 30°C in a controlled environment while keep-
ing soil moisture at field capacity (Supporting information 
Table S1). Effective temperature is the temperature half- way 
between the mean and the highest temperature each day for 
4 days during anthesis (Deryng et al., 2014). In our simu-
lation, an effective temperature of 30°C was achieved for 
4 days during anthesis in a growth room which ranged from 
21°C minimum, 27°C mean, and 33°C maximum, which rep-
resents a heat wave during flowering of wheat. This effective 
temperature will cause 50% yield loss in contemporary wheat 
varieties (Deryng et al., 2014), and contemporary wheat va-
rieties are therefore allocated an average HST30 score of 30.

The founder wheat population starts with a mean HST30 
score of 30 with a standard deviation of true breeding val-
ues of 1 (Figure 1). The starting narrow- sense heritability 
of HST30 score is 0.3, and we assume HST30 is not geneti-
cally correlated with any other traits in the selection index, 
assuming these traits are expressed in a non- heat stressed 
environment (Supporting information Table S2). We also as-
sume HST30 is not affected by genotype × environment inter-
actions because it is assessed under controlled environment 
conditions. Under our simulated environment, a HST30 score 
of 30 is recorded when 50% of the tested plants set viable 
seed at an effective temperature of 30°C, and the score ranges 
from 25 when no plants set seed to 35 when all plants set 
viable seed (Supporting information Table S1).

Three strategies for selection of HST30 were imple-
mented (a) no selection (ΔHST30 score = 0), (b) moderate 
selection (ΔHST30 score increases by +2 over 30 cycles), 
and (c) high selection (ΔHST30 score increases by +4 over 
30 cycles). For ΔHST30 score +2, the target population 
mean HST30 score was increased by 0.0667 in each cycle 
for a mean HST30 score of 32 at the end of cycle 30. This in-
crease in HST30 allowed for the predicted increase in global 
average surface temperatures of +1.8°C by 2077 (average 
of all models) (IPCC, 2014) and we use +2°C since tem-
peratures will be higher on land than on sea (IPCC, 2014). 
For ΔHST30 score +4, the target population mean HST30 
score was increased by 0.1333 in each cycle for a mean 
HST30 score of 34 at the end of cycle 30. This increase in 
HST30 allowed for the predicted increase in global aver-
age surface temperatures of +3°C by 2077 (highest model) 
(IPCC, 2014) and we use +4°C since temperatures will be 
higher on land than on sea (IPCC, 2014).

HST30 was the priority trait for independent culling. EBVs 
for HST30 were sorted into descending order, and the low-
est scoring candidate was discarded. This continued until the 
mean HST30 in the remaining candidates at least equaled the 
target mean HST30 for the next cycle. The remaining candi-
dates then competed on index using independent culling as 
described above.

Under OCS, the overriding constraint was to achieve the 
predicted HST30 score in the progeny generation to meet the 
target HST30 score set for the year of their production, while 
economic index selection was optimized in the face of that 
constraint.

2.7 | Heat- adjusted grain yield
Based on Deryng et al. (2014), we calculate the heat- adjusted 
grain yield in each cycle as the predicted grain yield less 
10% for every degree Celsius by which the achieved HST30 
falls below the target HST30 in selected parents in the pre-
vious cycle (Figure 1). Future research may demonstrate a 
non- linear relationship between temperature and the effects 
of heat stress; in that case, an updated relationship between 
HST30 and heat- adjusted grain yield (Figure 1) can be ac-
commodated in the model.

3 |  RESULTS

Under truncation selection, there was rapid early gain in index, 
but this slowed over 60 years as population coancestry in-
creased and genetic diversity decreased (Supporting informa-
tion Figures S2–S4). Truncation- high failed to reach the goal of 
+2 or +4 units in HST30 in 2077 (Figure 2), despite the priority 
selection for HST30. In the absence of global warming, the eco-
nomic index (Figure 3) and grain yield (Figure 4) reached an 
early plateau and heat- adjusted grain yield began falling before 
2077 due to a +2°C (Figure 5) or +4°C (Figure 6) increase in 
global temperatures. The plateau and fall in heat- adjusted grain 
yield before 2077 resulted from the failure of truncation selec-
tion to achieve target HST30 and economic index, simultane-
ously, especially at high selection intensity.

Without selection for HST30 over the next 60 years, 
under all scenarios there were major losses in heat- adjusted 
grain yield before 2077 due to a +2°C (Figure 5) or +4°C 
(Figure 6) increase in global temperatures, despite continued 
investment in wheat breeding.

In contrast, selection for HST30 under OCS- moderate kept 
pace with target HST30 levels (Figure 2), economic index nearly 
tripled its starting value in 2017 (Figure 3), and heat- adjusted 
grain yield in 2077 was more than double the founder popula-
tion yield in 2017 after an increase in global temperatures of 
+2°C or +4°C (Figures 5 and 6). OCS- moderate achieved an 
average rate of increase in grain yield over 60 years of 1.8% per 
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F I G U R E  2  Change in heat stress tolerance (HST30) over 30 cycles of recurrent selection with truncation selection or optimal contributions 
selection (OCS) and moderate or high selection intensity. (a) HST30 is not selected (ΔHST30 = 0). (b) HST30 is selected for an increase of 2 units 
(ΔHST30 = +2). (c) HST30 is selected for an increase of 4 units (ΔHST30 = +4). The black lines show the minimum HST30 value targeted at each 
cycle, as set by the constraint placed on the parental selections made in the previous cycle. Diameter of dots is in linear proportion to 1—population 
coancestry (“1−Coancestry”)

F I G U R E  3  Change in economic index over 30 cycles of recurrent selection with truncation selection or optimal contributions selection 
(OCS) and moderate or high selection intensity, and no change in global temperature over time. (a) HST30 is not selected (ΔHST30 = 0). (b) HST30 
is selected for an increase of 2 units (ΔHST30 = +2). (c) HST30 is selected for an increase of 4 units (ΔHST30 = +4). Diameter of dots is in linear 
proportion to 1—population coancestry (“1−Coancestry”)

F I G U R E  4  Change in grain yield (t/ha) over 30 cycles of recurrent selection with truncation selection or optimal contributions selection 
(OCS) and moderate or high selection intensity, and no change in global temperature. (a) HST30 is not selected (ΔHST30 = 0). (b) HST30 is selected 
for an increase of 2 units (ΔHST30 = +2). (c) HST30 is selected for an increase of 4 units (ΔHST30 = +4). Diameter of dots is in linear proportion 
to 1—population coancestry (“1−Coancestry”)
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year, which is twice the rate of gain in wheat production ex-
pected in the 21st century (Alexandratos & Bruinsma, 2012), 
and double historical rates of improvement in yield of wheat 
(<1% per year) (Brancourt- Hulmel et al., 2003; Robertson, 
Kirkegaard, Rebetzke, Llewellyn, & Wark, 2016).

There was a small “cost” of increasing HST30 by +2 or 
+4 units by 2077 in the absence of global warming, observed 
as a slightly reduced economic index and grain yield com-
pared with no selection for HST30 (Figures 3 and 4), but 
major potential benefits when HST30 was improved suffi-
ciently to prevent catastrophic yield declines in the presence 
of global warming (Figures 5 and 6).

4 |  DISCUSSION

Breeding for HST in the world’s major food crops (wheat, 
maize, rice) is very important for improving future global 
food security (Atlin et al., 2017). Rapid cycles of crop 

breeding with frequent phenotyping for HST and adoption 
of new technologies were considered essential for crop im-
provement during global warming (Atlin et al., 2017). Our 
simulation of wheat breeding shows that rapid cycles of re-
current selection with OCS and moderate selection intensity 
is the best strategy in the long run to improve all traits in 
the economic index. In contrast, truncation selection failed 
to reach targets for HST and heat- adjusted grain yield began 
falling before 2077. A potentially serious disruption to global 
food security may be averted by adopting OCS with moder-
ate selection intensity on an economic index, with priority 
selection for HST.

In self- pollinating grain crops, most breeders practice 
some form of independent culling (Bernardo, 2010). In our 
BLUP- based simulations based on the infinitesimal model, 
high intensity selection with truncation for HST and an eco-
nomic index (“truncation- high”) caused a rapid loss of ge-
netic diversity in the population as population coancestry 
approached unity (Supporting information Figures S2–S4). 

F I G U R E  5  Change in adjusted grain yield (t/ha) over 30 cycles of recurrent selection with truncation selection or optimal contributions 
selection (OCS) and moderate or high selection intensity, and a global temperature rise of +2°C. (a) HST30 is not selected (ΔHST30 = 0). (b) HST30 
is selected for an increase of 2 units (ΔHST30 = +2). (c) HST30 is selected for an increase of 4 units (ΔHST30 = +4). Diameter of dots is in linear 
proportion to 1—population coancestry (“1−Coancestry”)

F I G U R E  6  Change in adjusted grain yield (t/ha) over 30 cycles of recurrent selection with truncation selection or optimal contributions 
selection (OCS) and moderate or high selection intensity, and a global temperature rise of +4°C. (a) HST30 is not selected (ΔHST30 = 0). (b) HST30 
is selected for an increase of 2 units (ΔHST30 = +2). (c) HST30 is selected for an increase of 4 units (ΔHST30 = +4). Diameter of dots is in linear 
proportion to 1—population coancestry (“1−Coancestry”)
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Under high selection intensity, genetic drift caused a reduc-
tion in genetic gain in the long term, and reduced the viability 
of investment in crop breeding. OCS reduced the negative 
impact of drift, and OCS- moderate always achieved a better 
result in the long term than OCS- high.

Our focus is on the population improvement phase of crop 
breeding (Supporting information Figure S1), which is the 
most logical place to apply pedigree BLUP or genomic se-
lection (Hickey, Chiurugwi, Mackay, & Powell, 2017), and 
selection is based on S0- derived S1 family selection with 2- 
year selection cycles. Cowling and Li (2018) modeled inde-
pendent culling on near- homozygous S5- derived wheat lines 
following rapid single seed descent in 3- year cycles from 
2017 to 2077, for the same traits, and compared independent 
culling to selection on economic index and OCS. All meth-
ods achieved target HST30 of +4 (the first trait in order of 
independent culling) by 2077, but OCS on economic index 
was superior overall, and especially for grain yield which was 
last in the order of independent culling (Cowling & Li, 2018). 
This confirms the conclusions of Hazel and Lush (1942) and 
Pesek and Baker (1969) that index selection out- performs in-
dependent culling in self- pollinating crops.

In the famous 100- year University of Illinois maize ex-
periment, under moderate selection intensity (approximately 
20%) for higher oil or protein content, genetic gain continued 
continuously over 100 years of annual cycles of recurrent 
selection (Dudley & Lambert, 2004). The response largely 
followed predictions from the infinitesimal model, with po-
tentially new (small effect) mutations contributing to the 
long- term gain in oil or protein content (Walsh, 2004). In 
contrast, modern crop breeding programs are normally based 
on high selection intensity for multiple traits by independent 
culling, and are therefore very vulnerable to the detrimental 
effects of genetic drift. Our models show that BLUP breeding 
with OCS based on an economic index improves outcomes 
from crop breeding for multiple traits, especially when HST 
must be added to meet the demands of global warming 
(Figures 2–6).

While we do not explicitly accommodate genotype x envi-
ronment x management (GxExM) interaction in our models, 
we make allowance for this by using low starting values for 
narrow- sense heritability (h2 = 0.3) for grain yield, disease 
resistance and other traits (Supporting information Table 
S2). The relative ranking of the four breeding scenarios will 
not change if strong GxExM exists in the target region of 
the breeding program, or if patterns of GxExM change over 
time—OCS will out- perform truncation selection. If ad-
verse genetic correlations are discovered between HST and 
other traits, or if new research suggests a different relation-
ship between HST30 and yield penalty (Figure 1), this will 
not change the relative merit of OCS compared to trunca-
tion selection. Similarly, the effects of climate change may 
require that economic weightings (Supporting information 

Table S2) are adjusted in future, for example, to select earlier 
flowering types in a warmer climate, or to reduce weighting 
on disease resistance which is less economically important 
in a drier climate. It is also possible that HST30 may be neg-
atively correlated with other economic traits. The strategic 
implementation of OCS in Matesel can be adjusted for these 
changes as knowledge improves over time.

Two approaches to genomic selection have been pro-
posed recently in wheat: (a) combining existing pedigree 
and genomic information in “single- step” genomic predic-
tion (Ashraf et al., 2016), and (b) “parallel cycles” of recur-
rent selection based on genomic predicted breeding values 
(Gaynor et al., 2017). With parallel cycles, trained genomic 
markers are available from the previous phenotypic cycle, 
and selections are returned to the next phenotypic cycle. The 
accuracy of genomic EBVs decreases rapidly in each cycle 
until genomic markers are retrained (Gaynor et al., 2017). 
With single- step genomic prediction (Ashraf et al., 2016), all 
relationship information is included (pedigree and genomic 
relationships), so that selection accuracy increases in each 
cycle.

Genomic selection may accelerate genetic progress 
through shorter crossing cycles and higher accuracy of se-
lection in individuals without records (Gaynor et al., 2017; 
Hickey et al., 2017), but efficient genomic selection depends 
on accurate phenotyping on training populations that are 
closely related to the commercial breeding program (Jonas & 
de Koning, 2016).

We deliberately based our model on spring wheat in a 
low- yielding rainfed environment, typical of many develop-
ing countries, because these environments offer the greatest 
opportunity for substantial increases in global food produc-
tion (Tester & Langridge, 2010) and this is where food secu-
rity is under greatest threat due to climate change. The cost of 
OCS or truncation selection is similar (1,000 progeny tested 
in each cycle), but the outcomes of each breeding program 
are strikingly different from 2017 to 2077 during a period of 
global warming (Figures 5 and 6). In our modeling, the wheat 
breeding option of OCS based on an economic index will 
achieve significantly higher rates of genetic improvement in 
grain yield, HST, and other economic traits during 60 years 
of global warming than the option based on truncation se-
lection. OCS with moderate selection intensity was the only 
method to achieve a 70% increase in wheat yield by 2050 
(from 1.50 to 2.55 t/ha) during global warming, as motivated 
by the 2009 World Summit on Food Security (Figure 6).

ABLUP breeding with OCS is readily implemented into 
existing breeding programs, and is a low- cost approach with 
high potential value in developing countries, where it may 
improve grain yields during climate change. ABLUP can be 
readily “upgraded” to GBLUP or single- step HBLUP based 
on “single- step” genomic prediction as defined in (Ashraf 
et al., 2016). OCS will be important to optimize genetic 
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progress with genomic selection and with new alleles from 
gene editing (Jenko et al., 2015; Yin, Gao, & Qui, 2017). 
OCS should help to reverse the trend toward lower heat toler-
ance in recent US wheat varieties (Tack, Barkley, & Nalley, 
2015), and to reverse the trend toward narrow genetic diver-
sity in many crop breeding programs (Cowling, 2013; Tack, 
Lingenfelser, & Jagadish, 2017). BLUP breeding with OCS 
will provide greater opportunity to select for HST and to 
adapt crops to climate change (Tack et al., 2015, 2017), by 
maximizing the rate of genetic gain for a given “acceptable” 
rate of population inbreeding.
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