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Abstract: The main objective of this work was to study the feasibility of using the green red vegetation
index (GRVI) and the red edge ratio (RE/R) obtained from UAS imagery for monitoring the effects of
soil water deficit and for predicting fibre quality in a surface-irrigated cotton crop. The performance
of these indices to track the effects of water stress on cotton was compared to that of the normalised
difference vegetation index (NDVI) and crop water stress index (CWSI). The study was conducted
during two consecutive seasons on a commercial farm where three irrigation frequencies and two
nitrogen rates were being tested. High-resolution multispectral images of the site were acquired on
four dates in 2017 and six dates in 2018, encompassing a range of matric potential values. Leaf stomatal
conductance was also measured at the image acquisition times. At harvest, lint yield and fibre
quality (micronaire) were determined for each treatment. Results showed that within each year,
the N rates tested (> 180 kg N ha−1) did not have a statistically significant effect on the spectral
indices. Larger intervals between irrigations in the less frequently irrigated treatments led to an
increase (p < 0.05) in the CWSI and a reduction (p < 0.05) in the GRVI, RE/R, and to a lesser extent in
the NDVI. A statistically significant and good correlation was observed between the GRVI and RE/R
with soil matric potential and stomatal conductance at specific dates. The GRVI and RE/R were in
accordance with the soil and plant water status when plants experienced a mild level of water stress.
In most of the cases, the GRVI and RE/R displayed long-term effects of the water stress on plants,
thus hampering their use for determinations of the actual soil and plant water status. The NDVI was
a better predictor of lint yield than the GRVI and RE/R. However, both GRVI and RE/R correlated
well (p < 0.01) with micronaire in both years of study and were better predictors of micronaire than
the NDVI. This research presents the GRVI and RE/R as good predictors of fibre quality with potential
to be used from satellite platforms. This would provide cotton producers the possibility of designing
specific harvesting plans in the case that large fibre quality variability was expected to avoid discount
prices. Further research is needed to evaluate the capability of these indices obtained from satellite
platforms and to study whether these results obtained for cotton can be extrapolated to other crops.

Keywords: optical remote sensing; unmanned aerial vehicle; soil matric potential; stomatal
conductance; vegetation indices; irrigation

1. Introduction

Soil and plant water status monitoring is considered essential to properly manage irrigation of
crops [1]. This is because maintaining an adequate soil water content and plant water status for each
crop phenological stage is fundamental for good crop performance. Soil water deficit usually triggers
a variety of physiological responses in plants, which if prolonged over time, may detrimentally affect
plant growth and yield [2]. In the case of cotton (Gossypium hirsutum L.), water stress has been linked
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to a decrease in stomatal conductance and photosynthesis [3], reduction of leaf water potential and
the Rubisco binding protein content as well as an increase in anthocyanin content [4]. Water stress
may reduce plant growth and total number of bolls at harvest due to a decrease in the total fruiting
positions as well as boll shedding, which detrimentally affects lint yield [5]. Cotton is more sensitive to
water stress at early stages of the crop than later in the season although severe water stress from peak
bloom to maturity may also have a negative impact on lint yield and fibre quality [6]. Lint quality
parameters such as fibre length and micronaire, for instance, can be impaired when the crop is water
stressed from early to mid-boll filling stage [7]. Severe water stress during this period may significantly
increase micronaire, which can prevent cotton producers from meeting the quality standards needed
to achieve premium prices.

Detection of some of the physiological changes in plants in response to water stress is the basis of
conventional and alternative plant-based methods for crop water status monitoring (see [8,9]). Methods
such as the measurement of the stomatal conductance, leaf water potential and sap flow, among others,
have been successfully used in cotton to detect plant water stress [10–12]. These methods, however,
are based on data collected from a few point source locations of a field, which may not be representative
of the current crop water status at the field scale. Sensing of crops from platforms such as satellites
or unmanned aerial systems (UASs) allows large areas to be monitored and thus presents as a more
appropriate method to use for extensively planted crops such as cotton. The flexibility in terms of
revisit of the sites, improvement in flight times and the higher resolution that the use of low-cost
UASs present in comparison to traditional satellites make the UASs an interesting platform to use for
crop monitoring.

Studies have shown that UAS-based thermal images can be used to estimate leaf water potential
and map within-field crop water status variability in cotton [13]. This is possible because soil
water deficit often leads plants to close their stomata, decreasing canopy stomatal conductance and
transpiration, which in turn raises canopy temperature (Tc) [14]. Thus, water-stressed plants will exhibit
higher Tc values than non-stressed plants. Expressing the Tc values of a crop relative to a minimum
and maximum levels of stress (wet and dry baselines, respectively), which can be obtained by either
empirical or theoretical methods [15,16], is the basis of the so-called crop water stress index (CWSI).
The authors of [13] calculated the CWSI using Tc obtained from pure vegetation pixels based on [17],
air temperature (Ta) plus 5 ◦C as the dry baseline and compared the results using several alternatives
for the wet reference (representative of a fully transpiring leaves), aiming to map cotton water status at
a commercial scale. Among the alternatives explored, the best results were obtained using a theoretical
(energy balance equation) or bio-indicator references, such as the average temperature of the coolest
5–10% canopy pixels or the temperature of a wet leaf. High-resolution thermal imagery obtained
from UASs has been successfully used also in grapevines and fruit trees to scale up water potential
measurements from a single leaf to the farm level [18–20].

Unlike Tc, indices that can track non-stomatal reductions of photosynthesis under soil water deficit,
such as changes in photosynthetic pigments, are also of great interest because they can provide relevant
insight into the physiological performance of crops ([9] and references therein). Pigments are the
dominant factor determining leaf reflectance in the visible wavelength (400–700 nm), with chlorophyll
considered the most relevant pigment for water stress detection [21]. Changes in foliage colour from
bluish green to dark green have been long pointed out as a visual indicator of the onset of water
stress in cotton and other crops such as beans and peanuts [22]. Under sustained soil water deficit,
leaf chlorophyll content often decreases, leading to a reduction in green reflection and an increase
in blue and red reflections [23]. The transition region of the reflectance between the red and near
infrared regions, named the red edge, has been proven to be sensitive to changes in leaf chlorophyll
content [24]. Pigment-related indices including reflectance from the red edge band obtained from
ground, UASs and satellite platforms have been well correlated with canopy chlorophyll content and
total nitrogen content (directly related to chlorophyll content) in different crops [25–27]. The red edge
ratio (RE/R) in particular, which includes information from the red edge and red bands, was shown
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as a good indicator of the chlorophyll content in a study conducted in a farm composed of five fruit
tree crop species [28]. Other than chlorophyll, changes in carotenoid (e.g., xanthophyll pigments) and
anthocyanin pigments have been also related to plant stresses including water stress [29,30].

Leaf moisture content as well as other aspects of crops such as leaf structure (e.g., cuticle
thickness, number of air water interfaces, leaf hair, surface wax, etc.), leaf angle distribution and
percentage of canopy cover, among others, may affect the relationship between spectral reflectance
and pigment concentrations at both leaf and canopy scales [29,31]. Further, soil background effects
can also detrimentally affect the correlation between vegetation indices (VIs) and remotely monitored
biophysical variables [32], thus highlighting the importance of using vegetation-associated pixels
for computing the VIs when possible. Research aimed at finding the best VIs to predict biophysical,
biochemical and structural parameters of plants has shown that normalised difference spectral indices
in which only two bands are used generally perform better than other type of indices [33,34]. That is the
case of the green red vegetation index (GRVI), which includes information from the green and red bands
and has been shown to correlate well with leaf water content [35]. The GRVI has been reported to detect
changes in canopy vegetation and phenological stages, performing better in this task than the normalised
difference vegetation index (NDVI) [36,37]. In [36], measurements were taken using a hemi-spherical
spectro-radiometer and an automatic-capturing digital fish-eye camera installed on a mast at sites
representative of four ecosystems in Japan. In [37], measurements from an UAS were performed to
assess the feasibility of using the GRVI for determining the vegetation cover. Results showed the
possibility of using the GRVI for crop cover and actual in-field evapotranspiration determinations of
peanuts. The same study [37], also suggested from two flight campaigns conducted in a single season
on a cotton field that irrigation water uniformity could be assessed by GRVI measurements.

The main objective of this work was to study the feasibility of using the pigment-related indices
green red vegetation index (GRVI) and red edge ratio (RE/R) obtained from an UAS for monitoring the
soil and plant water status in cotton as well as for predicting fibre quality. Cotton (Gossypium hirsutum L.)
is a crop grown in almost eighty countries around the world (between the 45◦N and 35◦S parallels)
because of its relevance for oilseed and fibre production. In Australia, where this study was conducted,
cotton is a major commodity mainly grown in New South Wales (66% of the total production) and
Queensland (33% of the total production) [38]. As an important product for the textile industry, cotton
price is determined based on the quality of each cotton bale and thus, large variability in fibre quality
is undesirable in a cotton field. Among the lint quality parameters, micronaire has been suggested
as the best parameter for prediction in the field [39] and it is the parameter that was considered in
this study. Micronaire variation has been shown to correlate in some extent with the variation in soil
properties. Clay content and electrical conductivity among others, are soil-related factors that have
been closely related to micronaire [39,40]. All these factors influence the soil water holding capacity
and availability of water for the crop and thus, VIs that could track the effects of water stress on cotton
could potentially be good predictors of fibre-quality.

The GRVI was selected because of its reported sensitivity to changes in canopy structure and
green colour, both symptoms of water stress in cotton. Its higher performance as a phenology indicator
than NDVI at full canopy cover points out the GRVI as a possible water stress indicator. The RE/R
was tested because of its sensitivity to the chlorophyll content, which is reduced under sustained soil
water deficit [28]. Further, both indices, GRVI and RE/R, have more potential for scaling to satellite
data than thermal-based indices, which makes them more beneficial in practical use applications by
farmers. Performance of these indices to monitor soil and plant water status of cotton was compared
to that of the NDVI and CWSI, which have been extensively reported in the literature for water stress
detection [9,41–43]. The specific objectives of the study were to (i) explore the relationships between
the GRVI, RE/R, NDVI and CWSI with soil matric potential and stomatal conductance, which are
indicators of the soil and plant water status, respectively; (ii) compare the performance of these indices
in tracking the effects of water stress, and; (iii) assess their performance in predicting the effects of
water stress on lint yield and fibre quality.
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2. Materials and Methods

2.1. Location, Site Characteristics and Treatments

The study was performed during the 2016/17 and 2017/18 cotton-growing seasons in a commercial
syphon-irrigated cotton farm located in the Murrumbidgee Valley at Darlington Point, NSW, Australia
(Figure 1), where an irrigation x nitrogen interaction study was being conducted. The soil at the site
was classified as Chromosol [44] with a 20 cm sandy clay loam A horizon over a dense clay B horizon.
The climate in this area is semi-arid characterized by hot and dry summers, and cool winters.
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Figure 1. Location of the commercial cotton farm at Darlington Point, NSW, Australia, where the study
was conducted.

The cotton was sown on 17 October 2016 and 03 October 2017 with the variety SICOT 746BRF in
beds of 1.80 m width at a row spacing of 0.90 m. The 1.16-ha area monitored in this study consisted of
three irrigation and two nitrogen rate treatments distributed in a split plot design with irrigation as the
main-plot factor replicated three times (nine main plots in total) and N rates as subplots. The dimension
of the plots was 60.0 m × 21.6 m as illustrated in Figure 2. Thus, main plots had an area of 0.13 ha
and consisted of 24 rows (12 beds), of which 16 rows received the highest N rate tested each year
(277 and 309 kg N ha−1 the first and second season, respectively) and the remaining eight rows the
lowest (180 kg N ha−1 in the 2016/17 season and 244 kg N ha−1 in the 2017/18). This was part of a larger
study plot of 12.44 ha as illustrated in Figure 2. During the first season of study, fertiliser was applied
as urea, broadcasted on 21 November 2016 and side dressed on 28 December 2016. In the 2017/18
cotton-growing season, fertiliser was applied as anhydrous ammonia (NH3-N) (at pre-planting) on 12
July 2017 and as side-dressed urea on 4 January 2018.

The irrigation strategies tested were a short deficit treatment, which was irrigated every seven
days; a long deficit treatment irrigated at ≤ −100 kPa and; the standard irrigation practice in the area,
which consists of watering approximately every two weeks. Irrigation treatments were imposed from
around first flowering in early January to mid-February. The dates when irrigation was applied to
each treatment within each growing season during the period of measurements are shown in Table 1.

An onsite weather station adjacent to the site recorded the meteorological conditions during
the study.
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Figure 2. Distribution of the treatments in the field. The red rectangle indicates the area used for the
study presented here. The black dots indicate the monitoring stations, each with two matric potential
sensors within the main plots 4, 5 and 6. Subplots with the highest nitrogen (N) rates received 277 and
309 kg N ha−1 the first and second growing seasons, respectively. Subplots with the lowest nitrogen
(N) rates received 180 kg N ha−1 in the 2016/17 season and 244 kg N ha−1 in the 2017/18.

Table 1. Dates when irrigation events occurred in each treatment during the period of measurements
within the 2016/17 and 2017/18 seasons.

Irrigation Events

2016/17 1st 2nd 3rd 4th 5th 6th
Short deficit 2-January 10-January 17-January 24-January 29-January 7-February

Standard
practice 2-January 17-January 29-January - - -

Long deficit 2-January 21-January - - - -
2017/18

Short deficit 10-January 17-January 24-January 31-January 8-February -
Standard
practice 10-January 21-January 1-February - - -

Long deficit 10-January 24-January 9-February - - -

2.2. In-Field Measurements

Soil matric potential was monitored continuously by means of watermark sensors (Model 200SS,
Irrometer Company inc., California, USA) installed at the beginning of each growing season in pairs
within the plant row at 0.23 m depth. Sensors were installed at the centre of two subplots (both N
rates tested each year) of one main plot per irrigation treatment, giving a total of six stations (see
Figure 2). Each station had two matric potential sensors attached to allow averaging of their readings
to reduce uncertainty. All the soil moisture sensors (and the on-site weather station) were wired to
WiField loggers (Goanna telemetry, Goondiwindi QLD, Australia), which periodically connected to the
available WiFi network at the site to send data to a cloud-based data storage, processing and internet
interface in real time [45]. Thus, soil matric potential readings for the long deficit treatment were used
to advise the agronomist of the site when the imposed threshold value (−100 kPa) had been reached in
order to trigger an irrigation event.

Leaf stomatal conductance measurements were performed with a leaf porometer (SC-1 Porometer,
Decagon, WA, USA) in all the plots equipped with watermark sensors (six subplots in total), around
noon and on the same dates when images of the site were acquired from the UAS. Measurements were
taken on the fifth leaf below the terminal of six to eight plants per subplot (12–16 plants per irrigation
treatment) distributed along the 60-m row where the watermark sensors were located.
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2.3. Multispectral and Thermal Imagery

Multispectral images were acquired within two hours of solar noon during four dates in 2017
and six dates in 2018 from mid-January to mid-February (approximately from first flower to cut out).
Images were taken with a 5-band multispectral camera (RedEdge, MicaSense Inc., Seattle, WA, USA)
installed on an UAS (Inspire 1, DJI). Meteorological conditions [air temperature (Ta), relative humidity,
solar radiation, wind speed and vapour pressure deficit] at the time when images were acquired are
shown in Table 2. During the 2017/18 growing season, apart from the multispectral images, thermal
images were also taken from the UAS with a thermal camera (Tau 2 640, FLIR Systems, Wilsonville,
OR, USA).

Table 2. Dates when multispectral and thermal images of the site were taken with the average values
for air temperature (Ta, ◦C), relative humidity (RH, %), solar radiation (SR, W m−2), wind speed (WS,
km h−1) and vapor pressure deficit (VPD, kPa) averaged from 11 h to 15 h. The number of days since
the last irrigation event for each treatment and measurement date are also indicated.

Date of
Measurements Ta RH SR WS VPD Long

Deficit
Standard
Practice

Short
Deficit

2017 Days since las irrigation
16 January 34.64 22.69 993.21 6.28 4.29 14 14 6
27 January 34.52 27.16 963.71 7.84 4.03 6 10 3
3 February 31.32 26.33 792.40 5.19 3.38 13 5 5
8 February 31.20 45.00 915.57 13.70 2.53 18 10 1

2018
15 January 27.69 34.02 974.48 3.13 2.46 5 5 5
19 January 39.36 21.15 985.07 4.77 5.67 9 9 2
23 January 39.06 27.28 852.99 11.03 5.12 13 2 6
29 January 34.60 41.30 861.98 14.43 3.27 5 8 5
7 February 36.82 27.46 928.35 15.14 4.59 14 6 7

13 February 31.32 28.16 912.46 4.82 3.30 4 12 5

Flight planning and automation was achieved using Drone Deploy on an iPad (http://www.
dronedeploy.com/). This generated a flight path covering the field, ensuring sufficient overlap between
subsequent image captures. The multispectral camera captured images corresponding to the spectral
reflectance in the blue, green, red, red-edge and NIR bands centred at 475, 560, 668, 717 and 840 nm,
respectively. The filter bandwidths were 20, 20, 10, 10 and 40 nm, respectively. The thermal camera has
a resolution of 640 × 512 pixels and was configured to take images every second. The flight altitude for
the multispectral and thermal images was set at 100 m and 60 m AGL (above ground level), respectively,
which provided images with a ground resolution of 6.8 cm and 7.7 cm per pixel. The multispectral
camera was configured to ensure 80% overlap between consecutive images, in order to ensure that an
accurate orthomosaic could be generated. An image of a reflectance calibration panel was taken before
and after each flight to remove effects of sunlight variation and reflectance characteristics. The set of
multispectral images taken during each date was then processed using Pix4D where the individual
image captures were stitched together using an orthomosaic process and where the reflectance was
calibrated. For the thermal images, the TMC files from the thermal camera were first merged together
using the ThermoViewer software and then exported in TIFF format with EXIF data for processing in
Pix4D. The output was a single high-resolution GeoTIFF image of the whole site. The GeoTIFF thermal
and multispectral images of each measurement date were then post-processed in QGIS (version 3.0.3)
where vector grids with meshes of 10.8 m × 60 m and 3.6 m × 60 m were created for the subplots
fertilised with the respective highest and lowest N rates each season leaving a two-row buffer between
subplots. The NDVI, GRVI and RE/R indices were then computed from the multispectral images for
each measurement date (see formulations at Table 3). Soil was filtered according to [37], where GRVI
values below 0 within each measurement date were used to create a soil mask and filter most of the soil
background. The zonal statistics tool available in QGIS was used to obtain the average and standard
deviation data for each VI at each subplot.

http://www.dronedeploy.com/
http://www.dronedeploy.com/
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The CWSI formulation is also shown in Table 3. CWSI was obtained according to [13]. Tc was
obtained by first, separating canopy-related (Tcr) pixels from those of soil by using the thresholds
(Ta − 10) < Tcr < (Ta + 7) and then taking the average temperature of the coldest 40% canopy-related
pixels (thresholds recommended are between 25–50% according to [46]). The wet reference (Twet) was
set as the average temperature of the 5% coldest pixels in the image. The dry reference (Tdry) was
obtained by adding 5◦C to the mean Ta for the period of measurements of each specific date.

Table 3. Indices calculated in the study for cotton water status monitoring obtained from UAS imagery.
The band centres used in this study for computing the multispectral indices were 475, 560, 668, 717 and
840 nm for the blue, (B), green (G), red (R), red-edge (RE) and near infrared (NIR) bands, respectively.

Vegetation Index Formulation Reference

Normalized Difference Vegetation Index (NDVI) (NIR − R)/(NIR + R) [47]
Green Red Vegetation Index (GRVI) (G − R)/(G + R) [35]

Red-edge ratio (RE/R) RE/R [48]
Crop Water Stress Index (CWSI) *(Tc − Twet)/(Tdry − Twet) [16]

* According to [13]; Tc = canopy temperature; Twet = 5% coldest canopy-related pixels; Tdry = air temperature + 5◦C

2.4. Yield and Lint Quality

Lint yield was determined by weighing commercially picked field modules on a customized
weigh trailer and multiplying using a 43% turn out factor. The seed lint was sub-sampled and quality
determination, including micronaire, was conducted using a Uster High Volume Instrumentation 1000
at a commercial classing facility (ProClass Pty Ltd., Griffith NSW).

2.5. Statistical Analysis

Mean values of stomatal conductance, NDVI, GRVI, RE/R and CWSI for each treatment were
compared using the SPSS v. 24.0 software (IBM Corp., Armonk, NY, USA) by means of a multiple
comparison analysis using the Tukey’s Honest Significant Difference test at a significance level of 0.05.
The relationship between the spectral indices and CWSI with stomatal conductance, soil matric
potential, lint yield and fibre quality was explored by linear regression analyses with the statistical
software Statgraphics Centurion XVI.

3. Results

3.1. Time Series of In-Field and Remote Sensing Measurements During the 2016/17 Growing Season

Mean values of soil matric potential, stomatal conductance, GRVI, NDVI and RE/R for each
irrigation treatment during the period of measurements in 2016/17 are illustrated in Figure 3.
No differences in stomatal conductance, NDVI, GRVI and RE/R were observed between N rate
treatments (data not shown).

3.1.1. Soil and Plant Water Status

Watermark readings during the period of measurements showed that soil matric potential
decreased in all the treatments between irrigation events (Figure 3A). Lower soil matric potential
values were reached in the less frequently irrigated treatments (standard and long deficit) than in the
short deficit treatment. Minimum readings of −42.1 kPa were reached in the short deficit treatment
while minimum readings of −78.0 kPa and −95.0 kPa were reached in the standard practice and long
deficit treatment, respectively. In all treatments, matric potential returned to values above −10 kPa after
an irrigation event indicating that enough water was applied to replenish the soil profile. Mean soil
matric potential at the time of the stomatal conductance and remote sensing measurements is also
indicated in Figure 3A. The short deficit treatment had the highest soil matric potential (wettest soil)
on all measurement dates. The long deficit treatment, on the other hand, had the lowest readings on
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all measurement dates with the exception of 27 January 2017, when the standard practice had not
been irrigated for 10 days (four more than the long deficit) and thus, it had the lowest soil matric
potential values.

The stomatal conductance measurements were in agreement with the soil matric potential readings
(Figure 3B). The short deficit treatment had the highest stomatal conductance on all measurement
dates. Values in this treatment ranged from 861 to 1174 mmol m−2 s−1. Less frequency of irrigation
in the long deficit treatment led to a reduction (p < 0.05) in stomatal conductance in this treatment
relative to the short deficit on all dates with the exception of 27 January 2017. In the standard practice,
lower (p < 0.05) stomatal conductance values than in the short deficit were also observed the first two
measurement dates on 16 and 27 January 2017.
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Figure 3. Mean values of (A) soil matric potential, (B) stomatal conductance and the multispectral
vegetation indices, (C) GRVI, (D) NDVI and (E) RE/R for each irrigation treatment and measurement
date during the 2016/17 growing season. Graph A also shows the evolution of the soil matric potential
for the period when all the measurements were taken (from 15 January to 8 February 2017). Dates when
soil matric potential returns to values < −10 kPa are indicative of an irrigation event. Different letters
within a measurement date indicate statistical significant differences between treatments at p < 0.05.
The letter on the top refers to the highest value whereas the letter on the bottom refers to the lowest.
Vertical bars indicate the standard deviation for each treatment and date.

3.1.2. Multispectral Indices

Mean values of NDVI, GRVI and RE/R followed a similar trend during the 2016/17 growing season
(Figure 3C–E). The most frequently irrigated treatment (short deficit) had the highest values of NDVI,
GRVI and RE/R during the whole season. During the period of measurements, mean values of these
indices in the short deficit treatment ranged from 0.83 to 0.93 for the NDVI (Figure 3C), from 0.30 to 0.40
for the GRVI and from 5.0 to 12.0 for the RE/R. A statistically significant reduction (p < 0.05) in NDVI,
GRVI and RE/R was observed in the long deficit treatment with respect to the short deficit on all dates.
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Compared to the short and long deficit treatments, the standard practice showed intermediate values
of NDVI, GRVI and RE/R. The GRVI and RE/R values in the standard practice were lower (p < 0.05)
than in the short deficit treatment on all dates. Differences in NDVI between the standard practice and
the short deficit treatment were not statistically significant.

3.2. Time Series of In-Field and Remote Sensing Measurements During the 2017/2018 Growing Season

Figure 4 illustrates the mean values of soil matric potential, stomatal conductance, GRVI, NDVI,
RE/R and CWSI for each irrigation treatment and measurement date during the second season of study.
As obtained during the previous season, no statistically significant differences were observed between
N rates in terms of stomatal conductance, NDVI, GRVI, RE/R and CWSI (data not shown).Remote Sens. 2019, 11 FOR PEER REVIEW    10 
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Figure 4. Mean values of (A) soil matric potential, (B) stomatal conductance and the multispectral
vegetation indices (C) NDVI, (D) GRVI, (E) RE/R and (F) the CWSI for each irrigation treatment and
measurement date during the 2017/18 growing season. Graph A also shows the evolution of the soil
matric potential for the period when all the measurements were taken (from 15 January to 13 February
2018). Dates when soil matric potential returns to values < −10 kPa are indicative of an irrigation
event. Different letters within a measurement date, indicate statistical significant differences between
treatments at p < 0.05. The letter on the top refers to the highest value whereas the letter on the bottom
refers to the lowest. No statistically significant differences are indicated by “ns”. Vertical bars indicate
the standard deviation for each treatment and date.

3.2.1. Soil and Plant Water Status

During this growing season, the first images of the site were acquired on January 15 2018, prior
to when separate irrigation treatments had been imposed and all the plots had similar soil matric
potential readings (Figure 4A). As observed in the previous season, soil matric potential decreased
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between irrigation events and reached lower values in the standard and long deficit treatments than in
the most frequently irrigated treatment (short deficit). However, lower soil matric potential values
were obtained in all the irrigation treatments, including the short deficit, during the 2017/18 growing
season than during the 2016/17. Soil matric potential during this second season reached a minimum
value of −62 kPa in the short deficit treatment, −128.0 kPa in the standard practice (last measurement
date) and −122.0 kPa in the long deficit treatment. Mean soil matric potential for each treatment at the
time when the stomatal conductance and remote sensing measurements were taken is also indicated in
Figure 4A. During this season, measurements were conducted on dates when the standard and long
deficit treatments had been irrigated a few days before and thus, the short deficit was not always the
treatment with the highest (less negative) soil matric potential values (see for instance matric potential
values on 23, 29 January and 13 February 2018).

Mean stomatal conductance in the most frequently irrigated treatment (short deficit) ranged during
the period of measurements from 641 to 1221 mmol m−2 s−1 (Figure 4B). Similar values were obtained
in the standard practice treatment with the exception of the last measurement date (13 February 2018).
On this date, the standard practice treatment had not been irrigated for 12 days and had lower (p < 0.05)
stomatal conductance values than the other two treatments, which had been irrigated 4–5 days before
(Tables 1 and 2). In the less frequently irrigated treatment (long deficit), reductions (p < 0.05) in stomatal
conductance compared to any of the other treatments were observed on three dates (23 January, 7 and
13 February 2018). On 23 January and 7 February 2018, the long deficit treatment had not been irrigated
for 13–14 days and stomatal conductance was reduced, by 47% and 33%, respectively, with respect to
the short deficit treatment. On 13 February 2018, when senescence was already evident in leaves from
the long deficit treatment, stomatal conductance was lower in this treatment than in the short deficit in
spite of having similar soil matric potential values (both treatments had been irrigated 4–5 days before)
(Figure 4A,B).

3.2.2. Multispectral Indices and CWSI

Similar to that observed during the previous season, the indices NDVI, GRVI and RE/R followed
a similar trend, although in this case the multispectral indices performed differently on the second
measurement date (Figure 4C–E). On this date (19 January 2018), NDVI slightly increased in the short
deficit treatment while the GRVI decreased and the RE/R notably increased with respect to the previous
measurement. Mean NDVI in the short deficit treatment ranged from 0.83 to 0.90 during the period of
measurements. In this treatment and for the same period, mean GRVI and RE/R ranged, respectively,
from 0.20 to 0.42 and from 4.70 to 8.75. The short deficit and standard practice treatments had similar
values of NDVI during the study. The long deficit treatment had lower NDVI than the standard and
short treatments although differences became statistically significant only on the last measurement
dates on 7 and 13 February 2018 (Figure 4C). Differences in GRVI and RE/R among irrigation treatments
were greater than those compared with NDVI. With the exception of the first measurement date when
irrigation treatments had not been imposed yet and all the plots had a similar soil and plant water
status, the less frequently irrigated treatment (long deficit) had the lowest values of GRVI and RE/R
during the period of measurements (Figure 4D,E). Differences in GRVI and RE/R between the long and
short deficit treatments were statistically significant on all dates. The GRVI and RE/R measurements in
the standard practice treatment fluctuated according to the soil water status during this season. At the
end of the period of measurements, the standard practice treatment had intermediate values of the
GRVI and RE/R compared to the short and long deficit treatments.

Regarding the CWSI, mean values obtained for the most frequently irrigated treatment (short
deficit) were ≤ 0.23 during the whole period of measurements (Figure 4F). CWSI in the standard
practice was similar to that of the short deficit (≤ 0.27) although statistically significant differences
were observed between these two treatments on 23 January and 13 February 2018. On 23 January 2018,
the standard practice, which had been irrigated two days before and had the highest soil matric
potential, was the treatment with the lowest CWSI. On 13 February 2018, the standard practice had
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the lowest values of soil matric potential recorded during this season and CWSI in this treatment was
higher than in the short deficit treatment. The CWSI in the long deficit treatment increased on the first
three measurement dates as soil matric potential decreased and then returned to similar values as the
short deficit treatment after an irrigation event (Figure 4F). The highest CWSI value reached in this
treatment, 0.65, was obtained on 7 February 2018 when the short deficit treatment had a mean CWSI
of 0.13.

3.3. Relationships Between Multispectral Indices and CWSI with Soil Matric Potential and Stomatal
Conductance

During the first season of study, NDVI was well correlated (p < 0.05) with soil matric potential
and stomatal conductance on the last two measurement dates (3 and 8 February 2017). The GRVI
and RE/R were well correlated (p < 0.05) with soil and plant water status on 16 January, 3 and 8
February 2017, when the long deficit treatment had the lowest values for both soil matric potential
and stomatal conductance (Table 4). Within these dates, NDVI had generally the lowest coefficient of
determination (r2). The GRVI and RE/R performed similarly in predicting soil matric potential and
stomatal conductance.

In 2018, the multispectral indices correlated (p < 0.05) well with soil matric potential on 19, 23
January and 7 February 2018 (Table 4). No correlation was found on the first and fourth measurement
dates (15 and 29 January), when all the treatments had similar soil water status, and the last measurement
date (13 February), when the long deficit treatment had the highest soil matric potential but the lowest
values of NDVI, GRVI and RE/R (Figure 4). Results obtained for the relationships between soil matric
potential and the CWSI showed that good correlations (r2 > 0.76; p < 0.05) were obtained on 23 January
and 7 February 2018 but not on the second measurement date (19 January) as it was observed for the
GRVI and RE/R (Table 4).

Good correlations for the relationship between the VIs and CWSI with the stomatal conductance
were expected on dates when soil matric potential was well correlated with the indices. Nevertheless,
the VIs and CWSI correlated well (r2 > 0.82; p < 0.001) with stomatal conductance on 23 January
and 7 February but not on 19 January (Table 4), when no differences in stomatal conductance were
observed among treatments in spite of the notable differences in soil matric potential (Figure 4A,B).
Additionally, a good correlation was also found between the stomatal conductance and the CWSI
(not the multispectral indices) on the last measurement date (13 February 2018) when symptoms
of senescence were starting to be evident in plants from the standard and particularly the long
deficit treatment.
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Table 4. Coefficient of determination (r2) obtained for the relationship between the stomatal conductance and soil matric potential with the thermal (CWSI) and
spectral indices (NDVI, GRVI and RE/R) for each measurement date.

2016/2017 Growing Season 2017/2018 Growing Season
16/01/2017 27/01/2017 3/02/2017 8/02/2017 15/01/2018 19/01/2018 23/01/2018 29/01/2018 7/02/2018 13/02/2018

Soil matric
potential vs.

NDVI 0.03 0.16 0.79 * 0.72 * 0.08 0.38 0.65 * 0.02 0.73 * 0.28
GRVI 0.66 * 0.52 0.92 ** 0.97 *** 0.03 0.85 ** 0.70 * 0.01 0.80 * 0.02
RE/R 0.74 * 0.41 0.85 ** 0.89 ** 0.00 0.87 ** 0.58 0.00 0.82 * 0.04
CWSI - - - - 0.01 0.54 0.83 * 0.52 0.76 * 0.43
NDVI 0.19 0.04 0.80 * 0.85 * 0.14 0.13 0.89 ** 0.46 0.87 ** 0.01
GRVI 0.84 * 0.37 0.83 * 0.97 ** 0.45 0.12 0.85 ** 0.19 0.89 ** 0.10
RE/R 0.77 * 0.39 0.72 * 0.98 ** 0.14 0.07 0.91 ** 0.14 0.91 ** 0.07

Stomatal
conductance vs.

CWSI - - - - 0.24 0.00 0.82 * 0.14 0.91 ** 0.89 **
*, ** and *** mean, respectively, statistical significance at p < 0.05, p < 0.01 and p < 0.001.
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3.4. Lint Yield, Fibre Quality and Their Relationships with the Multispectral Indices and CWSI

During the first season of study, irrigation frequency had a statistically significant effect (p < 0.001)
on lint yield. Average lint yield in the most frequently irrigated treatment (short deficit) was
2193 kg ha−1 (Figure 5). In the long deficit treatment, lint yield was 14% lower than in the short deficit
treatment. The standard practice treatment produced 6% less lint than the short deficit treatment
although differences between these treatments and between the standard practice and the long deficit
treatment were not statistically significant. During the 2017/18 season, lint yield in all the treatments
was slightly higher than in the previous year. Frequency of irrigation did not have a statistically
significant effect on lint yield. Average lint yield obtained in the short deficit treatment was 2267 kg ha−1

(Figure 5). Similar lint yield was obtained in the less frequently irrigated treatments, standard practice
and long deficit.
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There was a statistically significant effect of irrigation frequency on fibre micronaire in both
seasons. Less frequent irrigation in the standard practice and long deficit treatments than in the short
deficit had an increasing effect on micronaire (Figure 5). Micronaire in the short deficit treatment was
on average 4.04 and 3.34 in 2017 and 2018, respectively. In the long deficit treatment, average values
of micronaire obtained during the first and second seasons of study were 4.73 and 3.96, respectively.
Intermediate values were obtained in the standard practice treatment.

The relationship between lint yield and fibre micronaire with the VIs and CWSI was studied at
the subplot level (n = 18). During the first year of study, when lint yield was significantly affected
by the irrigation frequency treatments, a linear and good correlation (p < 0.001) was found between
lint yield and mean NDVI, GRVI and RE/R (CWSI was not obtained this season) for all measurement
dates (Figure 6). Among the VIs, NDVI had the best correlation (r2 = 0.85) while the GRVI and RE/R
performed similarly in predicting yield. Different results were obtained during the second year of
study. In 2018, NDVI and CWSI were poorly correlated with lint yield (Figure 6) while the GRVI and
RE/R were not correlated with yield. Contrary to that observed for the lint yield, a negative correlation
was observed between micronaire and mean NDVI, GRVI and RE/R for the measurement dates in
both growing seasons (Figure 6). However, better correlations were obtained for all the VIs during
the first year of study (r2 from 0.68 to 0.80; p < 0.001) than during the second (r2 from 0.17 to 0.49).
In this case, the GRVI and RE/R performed better than the NDVI in predicting the effects of water
stress on micronaire. A positive correlation (r2 = 0.45; p < 0.01) was also found in 2018 between the
CWSI and micronaire.
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4. Discussion

Longer intervals between irrigations in the standard (approximately every two weeks) and
especially in the long deficit treatment (up to 18 days in the 2016/17 growing season) than in the
treatment irrigated weekly led the plants from the former treatments to deplete the soil water profile
to a higher extent than in the short deficit treatment (Figures 3A and 4A). The soil water deficit
experienced in the less frequently irrigated treatments led these plants to suffer a temporal reduction
of the stomatal conductance as has been reported in other studies on cotton [3,41], which generally
returned to similar values as those obtained in the most frequently irrigated treatment after an
irrigation event. Two exceptions were found in 2018 when the stomatal conductance measurements
were not in accordance with the soil matric potential readings. The first exception was observed on
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19 January 2018, when the stomatal conductance measurements did not reflect the large differences
in soil matric potential observed among treatments (see Figure 4A,B). Although there is not a clear
explanation for this, it could be related to the fact that as a non-automated and time-consuming method,
the stomatal conductance measurements are usually conducted on a few plants (6–8 plants per plot in
this study), which in the case of large areas may not be representative of the current water status of
the crop. This has been also reported in studies comparing water stress detection methods in cotton
and vineyards [49,50] and is the reason why methods such as the aerial remote sensing of crops that
enable larger areas to be monitored are presented as more appropriate. Indeed, as discussed later in
this section, all the indices used here with the exception of the NDVI detected differences between
treatments on this date. The second case was the last measurement date in 2018 (13 February) when the
long and short deficit treatments had similar soil matric potential values (had been irrigated 4–5 days
before the measurements took place) but a lower (p < 0.05) stomatal conductance was observed in the
long deficit treatment. By this time of the season, symptoms of senescence, which is accompanied by a
drop in daily water use, were already evident in the long deficit treatment and started to show up in
the standard practice. Results obtained for the stomatal conductance on this date, 13 February 2018,
indicate that the difference between the short and the long deficit treatments was not caused by a
lower soil water content in the long deficit treatment but by a reduction in the plant water needs in
this treatment.

4.1. Response of the UAS-Based Indices to the Irrigation Frequency

Lower frequency of irrigation in the standard and long deficit treatments had a decreasing effect
on the NDVI, GRVI and RE/R and an increasing effect on the CWSI compared with the treatment
irrigated weekly (short deficit). This effect was consistent in both seasons for the multispectral indices
(CWSI was not measured in 2017) and was more evident for the GRVI and RE/R than for the NDVI
(Figures 3 and 4). The better performance of the GRVI and RE/R than the NDVI in detecting differences
between irrigation treatments was probably related to the higher sensitivity of both the GRVI and RE/R
to changes in the green colour of leaves and changes in vegetative canopy at full canopy cover than
the NDVI. Results obtained for the GRVI are in agreement with those reported by [36] and [37]. [36]
observed a decrease in the GRVI when leaves from a deciduous forest changed from bright to dark green
colour as the season progressed caused by the cessation of new leaf formation first and the breakdown
of chlorophylls and leaf senescence later. In [37], the GRVI was better than the NDVI in capturing
changes in the colour of peanut leaves from green to yellow as the crop reached senescence. In our
study, the difference in foliage colour observed across the season was most likely due to differences in
leaf water content between treatments rather than to differences in the chlorophyll content. Reflectance
of dehydrating leaves has been reported to increase in the visible region [51]. Moreover, leaf water
content has been shown to affect the relationships between chlorophyll/spectral indices and chlorophyll
content in thin and moderately thick leaves [31], such as those of cotton. The authors of [31] showed
that the chlorophyll indices they used in a study aimed to assess the relationships between spectral
indices and leaf pigment content estimated higher chlorophyll levels in low water content leaves than
in moderately high water content leaves. In our study, as previously mentioned, less frequent irrigation
had a significant decreasing effect on the chlorophyll-sensitive index RE/R. Since this index is inversely
related with the chlorophyll content (see [28]), these results would suggest that the standard practice
and long deficit treatments had a higher chlorophyll content than the short deficit treatment. Although
the chlorophyll content was not determined in this study, analysis of plant samples taken from all
the subplots in February showed that at this stage there were no statistically significant differences in
total plant nitrogen content among treatments, thus differences in the chlorophyll content were not
expected (data not shown). These results as well as other agronomic aspects (plant biomass, number
of bolls, plant nitrogen uptake and maturity among others) assessed at this site during the 2016/17
and 2017/18 growing seasons will be included in a future publication. The RE/R measurements would
suggest then that differences between treatments were related to differences in leaf water content
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instead of differences in chlorophyll content. This result has important implications, for instance,
when attempting to remotely monitor the crop nitrogen status in cotton from the first square to first
flowering stages for nitrogen fertiliser recommendations by means of chlorophyll-sensitive VIs such
as the RE/R. Images taken at dates with the crop at different plant water statuses would produce
misleading results, because the effect of water status on the indices obscures the effect of nitrogen
status. Apart from the leaf water content, differences in GRVI and RE/R among treatments could also be
related to an increase in the anthocyanin levels in the less frequently irrigated treatments This has been
reported for cotton under severe water restrictions as a photoprotective response to water stress [4].
In this study, we did not determine anthocyanin levels to corroborate this and future investigation on
this matter would be recommended.

Results obtained for the time series of the multispectral indices in 2018 indicate that the GRVI and
RE/R were able to reflect actual differences in soil water status when the water stress experienced by
plants was mild (according to the stomatal conductance measurements) and did not have a permanent
effect on the canopy reflectance. This was observed in the second year of the experiment for the
standard practice treatment (Figure 4A,D,E). Different results were obtained for the standard practice
in 2017 and for the long deficit treatment in both seasons, when lower (p < 0.05) GRVI and RE/R
values than in the short treatment were constantly obtained in the less frequently irrigated treatments
after the imposition of the irrigation treatments regardless of the soil water status (Figures 3 and 4).
In this case, the multispectral indices were most likely displaying the effects of cumulative water
stress on plants. Similar results have been reported for the NDVI and the chlorophyll-sensitive
index TCARI/OSAVI (the ratio of the Transformed Chlorophyll Absorption Index and the Optimized
Soil-Adjusted Vegetation Index) from a single flight campaign conducted in a study on a rain-fed
vineyard [52]. Authors of [52] suggested that these indices were probably reflecting a long-term
response of plants to water deficit. Both green and red reflectance are affected by the total green
biomass present in the crop [35], and therefore, a reduction in plant growth as a consequence of water
stress will be reflected by VIs using information from these bands (such as the NDVI, GRVI and RE/R
in this study) if not compensated somehow.

As expected and in agreement with [52], the CWSI was in accordance with the actual soil and plant
water status of the treatments and an irrigation event always returned the less frequently irrigated
treatments to similar CWSI values of those of the short deficit treatment (Figure 4F). Recommended
CWSI thresholds have been reported for the flowering, boll filling and defoliation stages in cotton [49].
In our study, Tc measurements were conducted during the flowering and early boll filling stages. During
this period, the CWSI for the standard and short deficit treatments ranged within the recommended
CWSI thresholds reported in [49] (0.25–0.43 and 0.30–0.65 for the flowering and boll filling stages,
respectively). In the long deficit treatment, CWSI measurements surpassed the recommended thresholds
on 7 February 2018 (0.67 ± 0.18), when this treatment had not been irrigated for 14 days.

4.2. Performance of the UAS-Based Indices to Predict Soil Matric Potential and Cotton Water Status

The relationships between the VIs and CWSI with the soil matric potential and stomatal
conductance also support the suggestion that the multispectral indices displayed long-term effects
of water stress on plants. Significant and high correlations were observed between all the indices
studied and the soil and plant water status on specific dates during the study. Exceptions for this in
the case of the multispectral indices were found on one measurement date in 2017 and 2–3 dates in
2018 (measurements on 15 January, 2018 when irrigation treatments had not been imposed yet is not
taken into account). In 2017, the exception was found on January 27, when the long deficit treatment
had intermediate values of soil matric potential and stomatal conductance but it was the treatment
with the lowest values of NDVI, GRVI and RE/R along with the standard practice treatment. Similar
results were observed in 2018 on 29 January and 13 February, when in spite of having the highest soil
matric potential (wettest soil) the long deficit treatment had the lowest values of NDVI, GRVI and
RE/R. This was most likely because the multispectral indices were reflecting effects of the water stress
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suffered on previous dates on this treatment, thus hampering their use for determinations of the actual
soil and plant water status. No correlations were observed either between the multispectral indices
and the stomatal conductance on 19 January 2018. This was also the case for the CWSI measurements.
The stomatal conductance measurements on this date did not capture the existing differences in plant
water status among treatments while the GRVI, RE/R and CWSI did (Figure 4D–F).

Thus, although GRVI and RE/R measurements have been shown in this study to be capable of
tracking the effects of water stress on cotton, for determinations of the actual soil and plant water
status (particularly late in the season), the use of the CWSI was a more robust indicator of water stress.
Plotting the CWSI measurements taken in 2018 with the soil matric potential readings, it is shown
that the CWSI did not change until the soil dried to a value of −50 kPa (Figure 7). It was around that
value of soil matric potential (−50 to −60 kPa) when the stomatal conductance of the fifth leaf below
the terminal, where these measurements were conducted, started to decline in this study (Figure 7).
This result would be in agreement with results obtained in [41], in which the authors observed a
non-linear relationship between the CWSI and the fraction of transpirable soil water (FTSW) with no
changes in CWSI until the soil dried to FTSW values of 0.4–0.5.
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4.3. Lint Yield and Lint Quality Prediction

In agreement with most of the literature existing on the use of VIs for lint yield prediction [25,53,54],
the NDVI was a better predictor of the effects of water stress on lint yield than the pigment-related
indices GRVI and RE/R. This is attributed to the direct relationship in cotton between plant biomass
and lint yield [55].

The GRVI and RE/R were better predictors of the effects of water stress on micronaire than the
NDVI. This was most likely because water stress during boll filling has detrimental effects on fibre
quality and both the GRVI and RE/R were more sensitive to soil and plant water status than the NDVI.
Variability in plant water status in a cotton field can then lead to a large variability in fibre quality,
reducing the chances of cotton producers to meet the quality standards to achieve micronaire premium
prices or even worst, incurring discounts for low micronaire. Results obtained from this study suggest
that UAS-based and potentially satellite-based GRVI and RE/R measurements could be useful to
estimate fibre quality during the boll filling stage. This would be of great value for cotton producers,
who, in the case of large variability, could then decide whether to harvest the entire field at once or
segregate the harvest by zones in order to manage that variability, which in some studies has been
shown as economically justifiable [39].

Different results between seasons in yield and micronaire prediction could be related to the fact
that cotton was sown earlier (14 days) and the frequency irrigation treatments started later (8 days)
during the second season of study (2017/18) than during the 2016/17 season. Thus, the crop was more
advanced in 2018 than in 2017 when plants experienced soil water deficit in the standard and long
deficit treatments. Cotton lint yield and fiber quality are more affected by water stress early in the
season (flowering) than later and thus, the better yield and micronaire prediction observed for the
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2016/17 growing season than for the 2017/18 could be related to differences between seasons in the
crop stage at the moment when plants experienced water stress. The lower soil matric potential values
reached in the short deficit treatment during the second season of study (values around −60 kPa) than
in the first season (values < −40 kPa) could have also contributed to the different results obtained
between seasons.

5. Conclusions

Multispectral and thermal UAS-based imagery was used in this study to monitor the variability
in soil and plant water status of a commercial cotton farm by means of the NDVI, GRVI, RE/R and
CWSI. The NDVI, GRVI and RE/R decreased in response to soil water deficit and water stress, and this
reduction was more marked in the GRVI and RE/R than in the NDVI. This decrease in GRVI and RE/R
was most likely due to differences in leaf water content among irrigation treatments, which led to
differences in foliage colour. Both the GRVI and RE/R were able to track the effects of water stress
on cotton plants and were good indicators of the actual soil and plant water status when the water
stress experienced by the plants did not lead to permanent changes in canopy reflectance. This was the
case of the long deficit treatment in both years of study and the standard practice in the first growing
season. Thus, these results suggest that for determinations of the actual soil and plant water status it is
more recommendable the use of the CWSI than the multispectral indices here assessed. In this study,
reductions in stomatal conductance and an increase in the CWSI were not observed until the soil dried
to −50–−60 kPa, which corresponded with a CWSI value of 0.20.

The NDVI was shown as a better predictor of lint yield than the GRVI and RE/R but the opposite
was found for the micronaire prediction. Both the GRVI and RE/R correlated with micronaire in both
years of study. These results present the GRVI and RE/R as possible indices to be used from UASs or
potentially from satellite platforms for fibre quality estimations in cotton fields. Fibre quality maps at
boll filling stage would provide the cotton producers with a valuable tool to decide whether strategies
such as harvest separation by zones is justify or not to manage fibre quality variability. Further research
on this topic would provide more insights on the capability of these spectral indices for fibre quality
monitoring in the field. Although the GRVI and RE/R performed similarly in tracking the effects
of water stress and predicting lint quality, the suitability of the GRVI for filtering most of the soil
background from the images (GRVI < 0) probably makes this a more useful index for crop monitoring
than the RE/R. Further research is needed to evaluate the capability of these indices obtained from
satellite platforms and to study whether these results obtained for cotton can be extrapolated to
other crops.
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