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Abstract. Sequential allocation is a simple and attractive mecha-
nism for the allocation of indivisible goods used in a number of real
world settings. In sequential allocation, agents pick items according
to a policy, the order in which agents take turns. Sequential alloca-
tion will return an allocation which is Pareto efficient – no agent can
do better without others doing worse. However, sequential alloca-
tion may not return the outcome that optimizes the social welfare.
We consider therefore the relationship between the welfare and the
efficiency of the allocations returned by sequential allocation mech-
anisms. We then study some simple computational questions about
what welfare is possible or necessary depending on the choice of
policy. Over half the problems we study turn out to be tractable, and
we give polynomial time algorithms to compute them. We also con-
sider a novel control problem in which the Chair chooses a policy
to improve social welfare. Again, many of the control problems we
study turn out to be tractable, and our results give polynomial time
algorithms. In this case, tractability is a good thing so that the Chair
can improve the social welfare of the allocation.

INTRODUCTION

The fair division of resources is a central problem in social choice.
One challenging case in fair division is when the goods being allo-
cated are indivisible. For instance, we might want be interested in
allocating courses to students at an university, time windows on an
expensive scientific instrument to different groups of scientists, or
landing slots on a runway to different airlines.

A simple mechanism to allocate indivisible goods like this is se-
quential allocation [9]: agents simply take turns to pick items. This
leaves open the particular order (the “policy”) used to pick items.
For example, in a balanced alternating policy, agents pick items in
rounds, every agent picks one item in each round, and the order of
agents is reversed between rounds. On the other hand, in a balanced
policy, the agents simply have the same number of turns, and there is
no restriction that picking happens in rounds with each agent getting
one item in each round. Throughout this paper to make life simple
and ensure balance is indeed possible, we will assume that the num-
ber of items is an integer multiple of the number of agents.

The actual policy used may not be fixed in advance. For example,
sequential allocation is used to allocate courses to students at the Har-
vard Business School [10], and the policy used is chosen uniformly
from the space of all balanced alternating policies by randomly or-
dering the students in the initial round. Whilst this may be perceived
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to be procedurally fair, it does not necessarily maximize the welfare
of the agents.

This suggests a number of questions about the social welfare that
can or must be achieved by sequential allocation mechanisms. Do we
necessarily achieve a minimum acceptable welfare whatever policy
is chosen? Is is possible that the welfare is above some given amount?
What is the maximum or minimum welfare that can be achieved?
These questions are closely related to an interesting control prob-
lem. Can a (benevolent) chair choose a policy not at random but to
improve or maximize welfare? They are also related to the expected
welfare when the policy is chosen at random, as at the Harvard Busi-
ness School. The expected welfare is between the minimum welfare
that is necessary and the maximum welfare that is possible. Indeed, if
the minimum and maximum welfare are different, then the expected
welfare is strictly between them.

We study these problems about the welfare possible or necessary
from a computational perspective. We consider classes of policies
considered in previous work (e.g. [8, 5, 1]), and used in real life set-
ting like the previously mentioned course allocation mechanism from
Harvard Business School. As our results show (summarized in Table
1 at the end of the paper), over half of these problems are polynomial
time solvable. This is a good thing. We want to be able to compute
the welfare possible or necessary. We want the Chair potentially to
be able to improve the welfare by choosing a good policy. We want
to be able to compute the expected welfare of the agents. Our results
provide efficient algorithms to compute answers to these questions.

Sequential allocation is an ordinal mechanism. That is, it merely
requires agents to declare an ordering over items. It does not require
the agents to delclare their actual utilities. However, to compute the
welfare of an outcome, we need to know the utilities of the agents.
This does not necessarily mean we need to elicit the utilities explic-
itly. A significant body of work in the fair division literature sup-
poses agents have utilities that are simply derived from their ordinal
preferences (e.g. an agent’s utility is simply the sum of the Borda
scores for the items). For example, Brams et al. [7] study fairness
criteria using, amongst others, Borda utilities derived from the ordi-
nal preferences. As a second example, Bouveret and Lang [5] con-
sider sequential allocation mechanisms with Borda, lexicographical
or quasi-indifferent utilities. As a third example, Kalinowski et al.
[13] compute the optimal policies for sequential allocation suppos-
ing agents have Borda utilities. As a fourth example, Baumeister et
al. [3] study ordinal mechanisms based on Borda, lexicographical,
quasi-indifferent or k-approval utilities. As a fifth example, Darmann
and Schauer [11] consider mechanisms that maximize the Nash prod-
uct social welfare supposing Borda, lexicographical or 0/1 utilities.
As a sixth example, Fujita et al. [12] study mechanisms for house al-
location supposing lexicographical utilities. Many of our results hold
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in the special case of Borda or lexicographical utilities, and thus only
require agents to declare ordinal preferences.

Even if we elicit general utilities as opposed to ordinal prefer-
ences, there are some advantages to an ordinal mechanism like se-
quential allocation. First, it is easier for agents to verify that the se-
quential allocation mechanism has been applied correctly compared
to, say, a black-box cardinal mechanism that maximizes welfare. The
chair can nevertheless still choose a policy that maximizes welfare.
Second, the sequential allocation mechanism can easily ensure addi-
tional constraints like, for instance, that all agents receive the same
number of items, or that an agent is not allocated two items that are
incompatible with each other. Such constraints can significantly in-
crease the complexity of applying a cardinal mechanism. Third, se-
quential allocation mechanisms, especially when restricted to a class
like balanced alternation policies, may be perceived to be procedu-
rally fair. Fourth, there is typically less opportunity for agents to act
strategically with an ordinal mechanism like sequential allocation.

To demonstrate that ordinal mechanisms may offer less opportu-
nity for strategic behaviour than cardinal mechanisms, consider 2
agents and 4 items, a to d. Suppose agent 1 sincerely declares Borda
utilities: 4 for a, 3 for b, 2 for c and 1 for d. If we use the sequential
allocation procedure with a balanced alternation policy then agent 1
always gets one of its top two choices or both, irrespective of how
agent 2 acts, strategically or sincerely. Consider now the cardinal
mechanism that maximizes the utilitarian welfare. Suppose agent 2
has the same Borda utilities as agent 1 but strategically declares an
utility of 5 for a, 4 for b, 1 for c and 0 for d. Note that the total util-
ity declared by agent 2 is the same as the sum of the Borda scores of
agent 1. With these delcared utilities and the cardinal mechanism that
maximizes the utilitarian welfare, agent 2 now gets both of agent 1’s
top two choices. Thus, we see more strategic outcomes are possible
with this cardinal mechanism.

WELFARE AND EFFICIENCY

When agents pick sincerely, sequential allocation is guaranteed to
return a Pareto efficient outcome. No agent can do better without
at least one being worse off. However, sequential allocation is not
guaranteed to maximize the social welfare of the outcome. We con-
sider therefore the precise relationship between social welfare and ef-
ficiency. We suppose that there are n agents being allocated m = nk
items for integer k ≥ 1. Agents have additive utilities over the items.
Agents convert these into a strict ordinal ranking over items, breaking
any ties in utility in some fixed way.

The welfare of an agent is simply the sum of the utilities of the
items allocated to that agent. The utilitarian welfare is the sum of
the welfare of the agents, whilst the egalitarian welfare is that of the
worst off agent (or agents). The sequential allocation mechanism is
parameterized by the policy, the order in which agents pick items.
For example, with the policy 123321, agent 1 picks first, then agent
2, then agent 3 before we repeat in reverse. An allocation is an as-
signment of items to agents. One allocation Pareto improves another
iff each agent has at least the same utility in the first, and there is at
least one agent where the utility is greater. An allocation is Pareto
efficient iff there is no allocation which Pareto improves it. For ev-
ery Pareto efficient allocation, there exists a policy such that sincere
picking with this policy generates this allocation. We can construct
this policy using the greedy algorithm in the proof of Proposition 1 in
[8]. The reverse, however, is not true. Sincere picking may not return
a Pareto efficient allocation.

Remark 1. Sincere picking can generate allocations that are not

Pareto efficient.

Proof: Consider the policy 1221. Suppose the agents’ utilities are as
follows

a b c d

1 5 4 2 0
2 8 2 1 0

Both agents have the same total utility over the items. Sincere picking
gives items a and d to agent 1 and items b and c to agent 2. This gives
an utility of 5 to agent 1 and of 3 to agent 2. If they swap allocations,
then the utility of agent 1 increases to 6, and of agent 2 to 8. Hence,
sincere picking leads to an allocation that is not Pareto efficient, and
does not have the optimal egalitarian or utilitarian social welfare. �

We contrast this observation with Proposition 1 in [8]. This looks
just at the rank of items in an agent’s preference ordering, ignor-
ing their precise utilities. Given two sets of items S and S′ with
|S| = |S′|, an allocation of items S to an agent dominates the al-
location of items S′ iff for every item in S − S′ there is a different
item in S′−S that is strictly less preferred. They then define an order-
ing, ordinal efficiency in terms of such domination. This is a strictly
weaker ordering than Pareto efficiency which is defined in terms of
utilities rather than ordinal rankings.

Proposition 1 in [8] demonstrates that ordinal efficiency corre-
sponds exactly to allocations generated by sequential allocation sup-
posing sincere picking. On the other hand, only a subset of the alloca-
tions returned by sequential allocation are Pareto efficient, and only
a subset again maximize the egalitarian social welfare. However, one
of these allocations is certainly Pareto efficient.

Remark 2. There exists an allocation with the maximum possible
egalitarian social welfare that is also Pareto efficient.

It follows quickly that there always exists a policy for sequential
allocation that gives an allocation with the maximum possible egal-
itarian social welfare supposing sincere picking. Note that this does
not rule out other allocations which maximize egalitarian social wel-
fare which are not ordinal efficient, and which cannot be generated
by sequential allocation with sincere picking.

Example 1. Suppose we have three agents (1 to 3), three items (a
to c), and Borda utilities. Let agent 1 have a preference order bac,
agent 2 have abc, and agent 3 have acb. Then allocating a to 1, b to 2
and c to 3 maximizes the egalitarian social welfare. However, there is
no policy for sequential allocation that will return such an allocation
supposing agents pick sincerely as no agent gets a first choice item.

Maximizing the utilitarian social welfare also does not conflict
with Pareto efficiency. In this case, we point out the well-known fact
that any allocation that maximizes utilitarian social welfare is Pareto
efficient.

Remark 3. Any allocation with the maximum possible utilitarian
social welfare is also Pareto efficient.

Again it follows quickly that there exists a policy for sequential
allocation that gives an allocation with the maximum possible utili-
tarian social welfare supposing sincere picking.

POSSIBLE AND NECESSARY WELFARE

Since sequential allocation may not return allocations that are opti-
mal from either an egalitarian or utilitarian perspective, we turn to
the (computational) questions of what social welfare is possible or
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Figure 1: Inclusion relationship between different allocations. Se-
quential allocation with sincere picking can generate any ordinally
efficient allocation.

necessary. Note that throughout this paper, we suppose agents pick
sincerely. Whilst strategic behaviour may be beneficial, risk averse
agents will tend to pick sincerely, especially when the policy and/or
utilities are private information. Nevertheless, it is interesting fu-
ture work to consider agents acting strategically [14]. We consider
four decision problems related to the egalitarian or utilitarian welfare
possible or necessary. We also consider different class of sequential
mechanisms that depend on the class of the picking sequences al-
lowed.

POSSIBLE EGALITARIAN WELFARE

Input: a set of n items, m agents each with utilities over the
items, a class of policies, and an integer t.
Question: Is there a policy in the class that results in an
allocation with an egalitarian social welfare of t or greater
supposing agents pick items sincerely?

POSSIBLE UTILITARIAN WELFARE

Input: a set of n items, m agents each with utilities over the
items, a class of policies, and an integer t.
Question: Is there a policy in the class that results in an
allocation with an utilitarian social welfare of t or greater
supposing agents pick items sincerely?

NECESSARY EGALITARIAN WELFARE

Input: a set of n items, m agents each with utilities over the
items, a class of policies, and an integer t.
Question: Does every policy in the class result in an allo-
cation with an egalitarian social welfare of t or greater sup-
posing agents pick items sincerely?

NECESSARY UTILITARIAN WELFARE

Input: a set of n items, m agents each with utilities over the
items, a class of policies, and an integer t.
Question: Does every policy in the class result in an alloca-
tion with an utilitarian social welfare of t or greater suppos-
ing agents pick items sincerely?

The possible and necessary welfare questions answer a policy con-
trol problem: can the chair choose a policy to achieve a given social
welfare? Similar control problems have been considered previously
[1] but with the goal of allocating particular items to agents, rather
than, as here, of achieving a particular welfare. Note that we sup-
pose we know the (private) utilities of the agents. As mentioned be-
fore, we may relax this assumption by supposing that the utilities are
simple functions of the ordinal rank (e.g. Borda, lexicographical or

quasi-indifferent scores). As this is a special case of general utili-
ties, any result that control takes polynomial time in the general case
will map onto a polynomial time result in this more restricted set-
ting. When we prove that a particular possible or necessary welfare
problem takes polynomial time to solve, we will typically do so by
answering a closely related maximization or minimization problem.
Such problems are interesting in their own right. We consider four
such function problems that compute the maximal or minimal social
welfare.

MINIMUM EGALITARIAN WELFARE

Input: a set of n items, m agents each with utilities over the
items, and a class of policies.
Output: The minimum egalitarian social welfare possible
over all policies supposing agents pick items sincerely.

MINIMUM UTILITARIAN WELFARE

Input: a set of n items, m agents each with utilities over the
items, and a class of policies.
Output: The minimum utilitarian social welfare possible
over all policies supposing agents pick items sincerely.

MAXIMUM EGALITARIAN WELFARE

Input: a set of n items, m agents each with utilities over the
items, and a class of policies.
Output: The maximum egalitarian social welfare possible
over all policies supposing agents pick items sincerely.

MAXIMUM UTILITARIAN WELFARE

Input: a set of n items, m agents each with utilities over the
items, and a class of policies.
Output: The maximum utilitarian social welfare possible
over all policies supposing agents pick items sincerely.

Throughout the paper, we assume that agents have strict ordinal
preferences. In some of the proofs, whenever there are ties in the
utilities, we can obtain strict ordinal preferences by perturbing the
utilities by an arbitrarily small margin. The arguments for the reduc-
tions are not affected.

ALL POSSIBLE POLICIES

We first consider the case when any policy, balanced or unbalanced
is possible. In this case it is easy to maximize the utilitarian social
welfare. The chair just need to choose a policy that gives items to the
agents which value them most. Recall that we are assuming through-
out that agents are behaving sincerely.

Theorem 1. The MAXIMUM and POSSIBLE UTILITARIAN WEL-
FARE problems take polynomial time to solve.

Proof: We order the items by the maximum utility assigned by any
agent. Ties can be broken in any way. We then construct the policy
that allocates items in this order choosing the agent who gives an
item the greater utility. No allocation can do better than this. �

The MINIMUM EGALITARIAN WELFARE problem also takes
polynomial time to solve. It is always zero as there are policies in
which one agents gets no turns to pick items. On the other hand, the
POSSIBLE EGALITARIAN WELFARE problem is intractable in gen-
eral, even in the special case that all the agents have identical utilities
for the items. We note that this problem has previously been shown
to be NP-complete but not in the strong sense (Theorem 5.1 in [16]).
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Theorem 2. The POSSIBLE EGALITARIAN WELFARE problem for
m items and n agents is strongly NP-complete when m � 2n even
when agents have the same ordinal preferences.

Proof: Membership in NP is shown by giving the policy. To show
NP-hardness, we consider m = 2n. For larger m, we add dummy
items to which all agents assign the same zero utility. Recall that we
have some fixed tie breaking mechanism to order items with the same
utility. In this and other proofs that follow, we can replace items with
zero utility by items with some uniform small, non-zero utility. This
merely makes the algebra a little more complex so, to ease exposi-
tion, we present proofs here using items of zero utility. The proof
uses a reduction from numerical 3-dimensional matching. Given an
integer t and 3 multisets X = {x1, . . . , xn}, Y = {y1, . . . , yn}
and Z = {z1, . . . , zn} of integers with

∑n
i=1(xi + yi + zi) =

nt, this problem asks if there are permutations σ and π such that
xi + yσ(i) + zπ(i) = t for all i ∈ [n]. We construct an allo-
cation problem over n agents and m � 2n items as follows. Let
u = 1 +

∑n
i=1 zi. For every j ∈ [n], there is a “big” item with util-

ity u+xi+yj for agent i (i = 1, . . . , n) and a “small” item which all
agents give utility zj . Finally, there are m− 2n items with zero util-
ity for all agents. We ask if we can achieve an egalitarian welfare of
u+ t. To achieve this, each agent must get precisely a utility of u+ t.
This is only possible if each agent gets one big item and one small
item, and xi + yσ(i) + zπ(i) = t where σ(i) and π(i) denote are the
indices of the big and the small item obtained by agent i. Therefore,
we can achieve the egalitarian welfare of u+ t iff there is a solution
of the original numerical 3-dimensional matching problem. �

Computing the maximum egalitarian welfare possible is also in-
tractable in general.

Theorem 3. The MAXIMUM EGALITARIAN WELFARE problem for
m items and n agents is NP-hard to compute when m � 2n even
when the agents have the same ordinal preferences.

Proof: We use the same reduction as in the last proof. �
In the more restricted setting that utilities are Borda scores, com-

puting the possible egalitarian welfare remains intractable. We thank
an anonymous reviewer of an earlier version of this paper for sug-
gesting this result.

Theorem 4. With Borda utilities, the POSSIBLE EGALITARIAN

WELFARE problem for m items and n agents is NP-complete when
m ≥ 12n+4

5
.

Proof: We use the reduction in the proof of Theorem 3 in [4]. This
reduction proves that deciding if there is an allocation with an egali-
tarian social welfare greater than or equal to some constant t is NP-
complete even when utilities are Borda scores. Note that, unlike the
previous two proofs, agents in this reduction do not share the same
ordinal preferences. It is easy to show that there is a policy for se-
quential allocation that finds the precise allocation constructed in this
reduction. Note also that 12n+4

5
> 2n so this reduction uses slightly

more items than the previous two proofs, in addition to requiring
agents to have different ordinal preferences. �

It follows that the MAXIMUM EGALITARIAN WELFARE problems
is NP-hard to compute in this setting. Similarly, with lexicographical
utilities it is intractable to compute the egalitarian welfare possible,

Theorem 5. With lexicographical utilities, the POSSIBLE EGAL-
ITARIAN WELFARE problem for m items and n agents is NP-
complete when m ≥ 3n.

Proof: This follows from Theorem 1 in [4]. Note that we again need
more than the 2n items used in the first two reductions. We have also
again relaxed the assumption that the agents have the same ordinal
preferences. �

It follows immediately that the MAXIMUM EGALITARIAN WEL-
FARE problem is NP-hard to compute with lexicographical utilities.
Finally, the NECESSARY EGALITARIAN WELFARE problem is triv-
ial: if an agent does not get a turn, their welfare is zero.

BALANCED POLICIES

It might be considered unfair to use any policy, for example one in
which one agent gets many more items than another. Whilst look-
ing for allocations that maximize fairness and efficiency, Brams and
King [8] observe that “the symbolic value of giving players equal
numbers of items, such as landing slots at an airport, may be impor-
tant”. We therefore consider the restricted class of balanced policies.
In a balanced policy, each agent gets the same number of items. Re-
call that we suppose the number of items is an integer multiple of the
number of agents. Hence, we can give each agent the same number of
items. Of course, limiting sequential allocation to balanced policies
impacts the social welfare that can be obtained.

To maximize utilitarian welfare, we cannot simply give items to
the agents that value them most. This may violate balance. Despite
this restriction, we can still find the policy that maximizes the utili-
tarian welfare in polynomial time.

Theorem 6. The MAXIMUM and POSSIBLE UTILITARIAN WEL-
FARE problems for balanced policies take polynomial time to solve.

Proof: We suppose that there are kn items to divide between the
n agents. We set up a min cost max flow problem. We connect the
source node to nodes representing the agents, each with a capacity
of k and no cost. We connect the nodes representing agents to nodes
representing the items. Each edge has a capacity of 1, and a cost
equal to minus the utility that the agent assigns to the item. Finally
we connect the nodes representing the items to the target node, each
with an edge of capacity 1 and zero cost. We find a Pareto efficient
allocation from any such flow using the top trading cycle algorithm
[17]. A policy can be constructed that achieves this Pareto efficient
allocation by again exploiting Proposition 1 in [8]. �

By comparison, the NECESSARY UTILITARIAN WELFARE prob-
lem is intractable for balanced policies.

Theorem 7. The NECESSARY UTILITARIAN WELFARE problem
for balanced policies is coNP-complete for m ≥ 2n.

Proof: We reduce from the NECESSARY ITEM problem. This asks if
a given agent necessarily gets an given item irrespective of the policy
used. The NECESSARY ITEM problem for balanced policies is coNP-
complete even when limited to an agent’s most preferred item and
m = 2n [1]. Let one agent have utility of 1 for her most preferred
item, zero utility for all others, and the other agents all have utility 1
for every item. Then the NECESSARY ITEM problem is equivalent to
asking if an utilitarian welfare of m or more is necessary. �

It follows that the MINIMUM UTILITARIAN WELFARE problem
for balanced policies is NP-hard to compute. Restricting to balanced
policies also does not change the intractability of computing the egal-
itarian welfare that is possible.

Theorem 8. The POSSIBLE EGALITARIAN WELFARE problem for
balanced policies is NP-complete for m ≥ 2n even when agents
have the same ordinal preferences.
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Proof: This follows almost immediately from the reduction used
in the proof of Theorem 2. Note that this reduction uses policies in
which not all agents get the same number of items. However, such
unbalanced policies can be ignored as they result in poor egalitarian
welfare. Note also that when a numerical 3-dimensional matching
exists, the corresponding successful policy constructed in the reduc-
tion is balanced. �

It follows immediately that MAXIMUM EGALITARIAN WELFARE

problem is NP-hard to compute for balanced policies. Note that an
easy reduction from the EQUI-PARTITION problem demonstrates
that the POSSIBLE EGALITARIAN WELFARE problem for balanced
policies is NP-complete even for just two agents with identical util-
ities. On the one hand, this is a more restricted setting than Theo-
rem 8 as we now have only 2 agents and they have identical util-
ities. On the other hand, this is a weaker result, as it is not strong
NP-completeness, and dynamic programming will return a result in
polynomial time supposing utilities are specified in unary.

With lexicographical utilities and balanced polices, it remains in-
tractable to compute the egalitarian welfare possible.

Theorem 9. With lexicographical utilities, the POSSIBLE EGALI-
TARIAN WELFARE problem for balanced policies is NP-complete
for m ≥ 3n.

Proof: We can adapt the reduction in the proof of Theorem 1 in [4].
Note that we have again relaxed the assumption from Theorem 8 that
agents have the same ordinal preferences. �

Finally, computing the egalitarian welfare necessary is intractable
for balanced policies.

Theorem 10. The NECESSARY EGALITARIAN WELFARE problem
for balanced policies is coNP-complete for m ≥ 2n.

Proof: The same reduction as in the proof of Theorem 7. �

RECURSIVELY BALANCED POLICIES

Balanced policies might still be considered unfair. For example, a
policy like 11112222 favours the first agent even though it is bal-
anced, guaranteed to return a Pareto efficient allocation, and is strat-
egy proof. We therefore consider an even more restrictive class: re-
cursively balanced policies. In such a policy, items are allocated in
rounds, and each agent appears once in each round. For simplicity,
we again suppose that the number of items is an integer multiple of
the number of agents and add dummy items of no utility otherwise.
When the number of items equals the number of agents, all balanced
policies are recursively balanced. For this reason, we focus on prob-
lems where the number of items exceeds the number of agents.

Formally, a policy is recursively balanced iff it is the empty pol-
icy, or it is non-empty and every agent has exactly one turn in
the first n picks and the remaining policy is also recursively bal-
anced. Recursively balanced policies include the alternating pol-
icy (12121212. . . ), the balanced alternating policy (12211221. . . ),
as well as the Thue-Morse sequence (122121121221. . . ). With two
agents, recursively balanced policies are concatenations of 12 and
21. Other simple properties of recursively balanced policies follow
immediately from their definition. For example, no agent has more
than two successive picks in a recursively balanced policy. Limit-
ing sequential allocation to recursively balanced policies may further
impact the social welfare that can be obtained.

There are several situations where focusing on recursively bal-
anced policies does not hurt welfare. For example, with Borda utili-
ties, the expected utilitarian social welfare for two agents is not im-
pacted by limiting allocation to recursively balanced policies. The

simple alternating policy which is recursively balanced is optimal in
expectation [13]. Similarly for Borda utilities and small n, the ex-
pected egalitarian social welfare for two agents is not impacted. The
authors [13] computed the policies that maximize expected egalitar-
ian social welfare for up to 12 items and for each n, at least one
optimal policy is recursively balanced.

In general, restricting to recursively balanced policies results in it
being intractable to decide if a given egalitarian or utilitarian welfare
can or must be achieved.

Theorem 11. The POSSIBLE EGALITARIAN and POSSIBLE UTIL-
ITARIAN WELFARE problems for recursively balanced policies are
NP-complete for m ≥ 2n, whilst the NECESSARY EGALITARIAN

and NECESSARY UTILITARIAN WELFARE are coNP-complete for
m ≥ 3n.

Proof: We reduce from the corresponding problem of deciding
whether the top k most preferred items of an agent are possible or
necessary [1]. TOP-k POSSIBLE SET for recursively balanced poli-
cies is NP-complete for m ≥ 3n. We reduce this to POSSIBLE

EGALITARIAN WELFARE as follows. Let one agent have utility of
k2 for their ith most preferred items (i ≤ k), zero utility for all oth-
ers, and the other agents all have utility k3 or greater for any item.
Then TOP-k POSSIBLE SET is equivalent to asking if an egalitarian
welfare of k3 or more is possible. We also reduce TOP-k POSSI-
BLE SET to POSSIBLE UTILITARIAN WELFARE as follows. Let one
agent have utility of mk2 for their ith most preferred items (i ≤ k),
zero utility for all others, and all other agents have utility of k or less
for any item. Then TOP-k POSSIBLE SET is equivalent to asking if
an utilitarian welfare of mk3 or more is possible.

TOP-k NECESSARY SET is coNP-complete for recursively bal-
anced policies when m ≥ 2n. We reduce this to NECESSARY EGAL-
ITARIAN WELFARE as follows. Let one agent have total utility of k2

for their k most preferred items zero utility for all others, and the
other agents all have utility k3 or greater for any item. Then TOP-k
NECESSARY SET is equivalent to asking if an egalitarian welfare of
k2 is necessary. We also reduce TOP-k NECESSARY SET to NECES-
SARY UTILITARIAN WELFARE as follows. Let one agent have utility
of mk2 for their ith most preferred items (i ≤ k), zero utility for all
others, and all other agents have utility of k or less for any item. Then
TOP-k NECESSARY SET is equivalent to asking if an utilitarian wel-
fare of mk3 or more is necessary. �

Even when agents have identical utilities, these problems can re-
main intractable.

Theorem 12. When allocating 2n items between two agents, the
POSSIBLE EGALITARIAN WELFARE problem for recursively bal-
anced policies is NP-complete even when agents have identical util-
ities given in binary.

Proof: Membership in NP is clear. For the hardness we use reduction
from PARTITION: for positive integers a1, . . . , an with a1 + · · · +
an = 2B, the problem is to decide if there is a nonempty set I ⊆ [n]
with

∑
i∈I ai = B. We reduce this to the POSSIBLE EGALITARIAN

WELFARE problem for two agents and 2n items with utilities c1 =
2B, c2n = 0, and

c2j = c2j+1 = c2j−1 − aj for j = 1, 2, . . . , n− 1.

Let C =
∑2n

i=1 ci be the sum of the utilities, and ui be the utility
received by agent i in a given allocation. Note that an egalitarian
welfare of C/2 is equivalent to u1 = u2. In round j, the items with
utilities c2j−1 and c2j are allocated. From c2j−1−c2j = aj it follows
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that the difference u1 − u2 between the agents’ utilities increases by
aj if agent 1 starts and decreases if agent 2 starts. Let I ⊆ [n] be the
set of rounds in which agent 1 starts. An egalitarian social welfare of
C/2 is achieved if and only if

0 = u1 − u2 =
∑

j∈I

aj −
∑

j∈[n]\I
aj ,

That is, if and only if there is a perfect partition. �

BALANCED ALTERNATING POLICIES

The final and most restricted class of policies we consider is that
of balanced alternating. This is the subclass of recursively balanced
policies in which each round is the reverse of the previous. When
allocating students to courses at the Harvard Business School, such
a policy is chosen uniformly at random from the space of all pos-
sible balanced alternating policies. This gives a form of procedural
fairness.

Theorem 13. The POSSIBLE EGALITARIAN and POSSIBLE UTILI-
TARIAN WELFARE problems for balanced alternating policies are
NP-complete for m ≥ 2n, whilst the NECESSARY EGALITAR-
IAN and NECESSARY UTILITARIAN WELFARE are coNP-complete
again for m ≥ 2n.

Proof: As in proof of Theorem 11, by reduction from corresponding
TOP-k POSSIBLE or NECESSARY SET problem for balanced alter-
nating policies. Given an allocation problem, preference profiles for
all the agents, a class of policies, and a designated agent, the TOP-
k POSSIBLE problem asks if there is a policy such that the agent
gets their top k most preferred items. Given an allocation problem,
preference profiles for all the agents, a class of policies, and a desig-
nated agent, the TOP-k NECESSARY SET problem asks if the agent
necessarily gets their top k most preferred items irrespective of the
policy used. TOP-k POSSIBLE for balanced alternating policies is
NP-complete for m ≥ 2n, whilst TOP-k NECESSARY SET is coNP-
complete [1]. �

It follows that it is NP-hard to compute the probability that the
Harvard Business School course allocation mechanism returns an al-
location with egalitarian or utilitarian welfare greater than or equal
to some given value t.

TWO AGENTS

We now consider some special and more tractable cases. With two
agents, we can find a balanced policy that maximizes the egalitarian
or utilitarian welfare in polynomial time.

Theorem 14. The MAXIMUM EGALITARIAN and MAXIMUM

UTILITARIAN WELFARE problems with balanced policies can be
solved in O(w2n3) and O(wn2) time respectively when allocating
2n items between two agents with utilities that are (possibly differ-
ent) integers taken from [0, w].

Proof: We put the items into some (arbitrary) order and consider
how each item is allocated in turn. We construct a 2n step dynamic
program in which the ith step corresponds to the decision of where
to allocate the ith item in this order. The states of this dynamic pro-
gram are triples containing the number of items allocated to the first
agent, the sum of the utilities of the items so far allocated to the first
agent, and the sum of the utilities of the items so far allocated to the
second agent. We can compute the number of items allocated to the

second agent from this. As both sums are bounded in size by 2wn,
this dynamic program has O(w2n3) states. For the maximum utili-
tarian welfare, the states of the dynamic program can be simpler and
just need to be pairs containing the number of items allocated to the
first agent, and the sum of the utilities of the items so far allocated to
both agents. �

This result generalizes to a bounded number of agents. On the
other hand, when utilities are specified in binary, an easy reduc-
tion from the PARTITION problem demonstrates that the POSSIBLE

EGALITARIAN WELFARE problem is NP-complete even when the
two agents have identical utilities. This is almost identical to Propo-
sition 2 in [5] which shows that deciding if there is a policy that
ensures a given expected egalitarian welfare is NP-complete when
the utilities of the two agents are identical.

With recursively balanced policies, we consider the case where
agents have the same ordinal ranking over items.

Theorem 15. The MAXIMUM and POSSIBLE EGALITARIAN WEL-
FARE problems for recursively balanced policies can be solved
in O(w2n2), whilst the MAXIMUM and POSSIBLE UTILITARIAN

WELFARE problems can be solved in just O(wn) time when allocat-
ing 2n items between two agents when agents have the same order-
ing over items but possibly different utilities, and utilities are integers
drawn from [0, w].

Proof: We construct a n step dynamic program in which each step
corresponds to allocating one item to each of the agents. The states
of this program are pairs containing the sums of the utilities of items
so far allocated to the two agents. As both sums are bounded by wn,
there are O(w2n2) states. By scanning the final step of the dynamic
program that computes all possible partitions, we can compute the
optimal egalitarian social welfare. To compute the optimal utilitarian
social welfare, we can use a simpler dynamic program where the
states are just the sum of the utilities allocated to the agents. �

This result again generalizes to a bounded number of agents easily.

HOUSE ALLOCATION

Another more tractable case is house allocation, when we have only
as many items as agents and each agent gets one item. Results for
this setting imply results for recursively balanced and balanced al-
ternating policies for m = n. For example, sequential allocation is
used in many universities and residential colleges to assign rooms
to students. In this case, we can solve the MAXIMUM and POSSI-
BLE EGALITARIAN WELFARE problems over all possible policies
in polynomial time. We construct a graph between agents and items
with edges for all items that have a utility greater than or equal to
the desired egalitarian social welfare. The POSSIBLE EGALITARIAN

WELFARE problem is solvable if we can find a perfect matching in
this graph. To construct a satisfying policy, we find a Pareto efficient
allocation from this matching using the top trading cycle algorithm
[17]. A policy can be constructed that achieves this Pareto efficient
allocation using Proposition 1 in [8].

We also show that NECESSARY EGALITARIAN WELFARE is
polynomial-time solvable for house allocation.

Theorem 16. NECESSARY EGALITARIAN WELFARE is
polynomial-time solvable for house allocation.

Proof. We first show that it can be checked in polynomial time
whether n − 1 agents get allocated a target n − 1 set of items in
the first n− 1 turns. The problem reduces to checking whether there
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all policies balanced recursively balanced balanced alternating
POSSIBLE EGALITARIAN WELFARE NPC NPC NPC NPC

P P (for m = n) P (for m = n) P (for m = n)
POSSIBLE UTILITARIAN WELFARE P P NPC NPC

P P (for m = n) P (for m = n) P (for m = n)
NECESSARY EGALITARIAN WELFARE P coNPC coNPC coNPC

P P (for m = n) P (for m = n) P (for m = n)
NECESSARY UTILITARIAN WELFARE ? coNPC coNPC coNPC

Table 1. Summary of results when allocating m items between n agents: NPC=NP-complete, coNPC=coNP-complete, P=polynomial-time. Note that over
half the entries in this table identify problems which can be solved in polynomial time.

exists a matching in which each of the n− 1 agents gets a more pre-
ferred item than the one not in the target set. If the allocation of the n
agents is not ordinally efficient, it can be made ordinally efficient via
trading cycles none of which will involve the n-th agent’s item. This
means that we can check whether there exists a sequence such that
the n-th agent can gets a particular item in the last turn. In order to
get minimum egalitarian welfare, some agent i has to get a low pre-
ferred item o. If there exists a policy in which i gets o in some turn
that is not the last turn, then i gets o or an even worse item if i’s turn
is moved to the end of same policy. Thus we can check in polynomial
time for each i and o whether i gets o in the last turn and identify the
i’s and o’s for which this is possible and ui(o) is minimum.

The same statement also applies to recursively balanced and bal-
anced alternative policies provided that m = n.

OTHER RELATED WORK

As mentioned earlier, Bouveret and Lang [5] consider the case in
which the utilities of items are simply functions of the ordinal rank-
ings. They prove that any recursively balanced policy tends to an al-
location giving the optimal expected egalitarian or utilitarian welfare
as the number of items grows, supposing sincere picking, utilities
that are Borda scores and all ordinal rankings being equiprobable.
In addition, they compute the optimal policies for maximizing the
expected egalitarian or utilitarian welfare under the same assump-
tions for up to 12 items. The optimal policies for two agents and
an even number of items are recursively balanced. Kalinowski et al.
[13] prove that the alternating policy maximizes the expected utili-
tarian welfare under these same assumptions. Note that such results
are about maximizing the expected welfare supposing limited knowl-
edge about the utilities, whilst the results here about maximizing the
exact welfare supposing the chair knows the actual utilities.

There has been some study of strategic behaviour of agents (as
opposed to the chair) in the sequential allocation mechanism. It can,
for example, be viewed as a repeated game. When all agents have
complete information, we can compute the subgame perfect Nash
equilibrium. This is unique and takes polynomial time to compute
for two agents [15, 14], but for an arbitrary number of agents, there
can be an exponential number of equilibria and computing even one
is PSPACE-hard [14]. More recently, Bouveret and Lang [6] consider
how an agent or coalition of agents can strategically mis-report their
preferences in a sequential allocation mechanism supposing the other
agents act sincerely. They show that the loss of social welfare caused
by such manipulation is not great. For example, with Borda scoring,
two agents, and the alternating policy, there was at most a 33% loss
in the utilitarian welfare.

More recently, a family of rules for dividing indivisible goods
among agents has been proposed that take as input the agents’ ordinal
rankings over the items, a scoring vector, and a social welfare aggre-
gation function [4, 2]. They return the allocation that maximizes the
social welfare according to this scoring rule and aggregation func-
tion. Whilst such rules have a number of desirable properties like
monotonicity, it is computationally challenging to compute the actual
allocation (unless we have a bounded number of agents in which case
we can typically use dynamic programming). This contrasts with se-
quential allocation where computing the allocation take just linear
time. Baumeister et al. [2] also compute the multiplicative/additive
“price of elicitation-freeness”, the worst-case ratio/difference in so-
cial welfare between such allocations and the allocation returned by
sequential allocation. Whilst their results are limited to simple alter-
nating policies, the prices are typically not great. For example, the
optimal utilitarian welfare with Borda scores is at most twice that
returned by sequential allocation using simple alternation.

CONCLUSIONS

We have considered the implications on social welfare of choosing
different policies when using a sequential mechanism to allocate in-
divisible goods. In particular, we consider the (computational) ques-
tions of what welfare is possible or necessary. The former is related to
the control problem in which a (benevolent) chair chooses a policy
for the sequential allocation mechanism to improve the social wel-
fare. These questions are also related to the expected welfare when
we choose a policy uniformly at random. Our results are summarized
in Table 1. We note again that over half the entries in this table are
polynomial time algorithms. Many of these questions are computa-
tionally tractable, and our results provide efficient algorithms to an-
swer them. There are many interesting open questions. For example,
how difficult is it to find a recursively balanced policy that returns
a Pareto efficient allocation supposing sincere agents? As a second
example, how can the chair adaptively compute a policy as agents
pick items to maximize social welfare? And what is the “price of
adaptability”, the ratio between the welfare achieved when the chair
is adaptive and when the chair has to declare and fix the policy in
advance?
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