
J. Intell. Syst. 2020; 29(1): 1043–1062

Bilal H. Abed-alguni* and David J. Paul*

Hybridizing the Cuckoo Search Algorithm
with Different Mutation Operators for
Numerical Optimization Problems
https://doi.org/10.1515/jisys-2018-0331
Received August 8, 2018; previously published online November 13, 2018.

Abstract: The Cuckoo search (CS) algorithm is an efficient evolutionary algorithm inspired by the nesting and
parasitic reproduction behaviors of some cuckoo species. Mutation is an operator used in evolutionary algo-
rithms to maintain the diversity of the population from one generation to the next. The original CS algorithm
uses the Lévy flightmethod,which is a specialmutation operator, for efficient exploration of the search space.
The major goal of the current paper is to experimentally evaluate the performance of the CS algorithm after
replacing the Lévy flight method in the original CS algorithm with seven different mutation methods. The
proposed variations of CS were evaluated using 14 standard benchmark functions in terms of the accuracy
and reliability of the obtained results over multiple simulations. The experimental results suggest that the CS
with polynomial mutation provides more accurate results and is more reliable than the other CS variations.

Keywords: Cuckoo search, evolutionary algorithms, mutation operators, optimization, metaheuristic.

2010 Mathematics Subject Classification: 68T01.

1 Introduction
Nature-inspired optimization (NIO) algorithms are a class of optimization algorithms that simulate different
natural phenomena to solve NP-hard problems or problemswith high complexity. NIO algorithms such as the
genetic algorithm (GA) [14, 19], Cuckoo search (CS) [6], harmony search (HS) [25], Bat algorithm (BA) [3], whale
optimization algorithm (WOA) [8, 33], ant colony optimization (ACO), particle swarm optimization (PSO) [12],
and Krill herd algorithm (KHA) [24] have shown high performance in solving both discrete and continuous
optimization problems.

The CS algorithm [42] is anNIO algorithm that simulates the nesting andparasitic reproduction behaviors
of some cuckoo species. It starts its evolution process with n candidate solutions (eggs). At each generation
of the CS algorithm, a cuckoo’s egg (i.e. a random candidate solution) is selected using a uniformly random
function in an attempt to improve it using a mutation-like function based on the Lévy flight operator. The
algorithm then replaces an egg of a host bird (i.e. another candidate solution selected randomly) from the
population of solutions with the cuckoo’s egg, only if the objective value of the cuckoo’s egg is better than the
objective value of the egg of the host bird. Finally, the CS algorithm replaces a portion of the worst eggs with
randomly generated eggs.

Many research studies in the literature have shown the efficiency of Lévy flight as a mutation and explo-
ration method for real-world optimization problems [2, 5, 13, 34, 42–44]. The goal of the current research
study is to evaluate the performance of CS after replacing the Lévy flight based update functionwith different
mutation methods adopted from different evolutionary algorithms.

Mutation operators are mainly used to avoid getting trapped in local optima when solving a given opti-
mization problem [26]. Although the mutation concept was first introduced in the GA algorithm, several

*Corresponding authors: Bilal H. Abed-alguni, Department of Computer Sciences, Yarmouk University, University Street, Irbid
21163, Jordan, e-mail: Bilal.h@yu.edu.jo; and David J. Paul, School of Science and Technology, The University of New England,
Armidale NSW 2351, Australia, e-mail: David.Paul@une.edu.au

Open Access. © 2020 Walter de Gruyter GmbH, Berlin/Boston. This work is licensed under the Creative Commons Attribution
4.0 Public License.

https://doi.org/10.1515/jisys-2018-0331
mailto:Bilal.h@yu.edu.jo
mailto:David.Paul@une.edu.au

1044 | B.H. Abed-alguni and D.J. Paul: Cuckoo Search with Different Mutation Operators

evolutionary algorithms, such as HS and CS, apply special mutation operators to produce new solutions or
alter some features of a candidate solution.

The main purpose of this paper is to investigate the suitability and efficiency of seven mutation methods
as replacements for the Lévy flight based update function in CS, namely, random, boundary, non-uniform,
MPT (Makinen, Periaux and Toivanen), power, polynomial, and pitch adjustment mutation methods [26, 31].
Thesemutationmethods weremodified to be applicable to CS, as described in Section 4. The proposed seven
variations of CS were evaluated using a set of 14 popular benchmark functions in terms of the accuracy and
reliability of the obtained results overmultiple simulations. Theobtained results indicate that CSwithpolyno-
mialmutation providesmore accurate and stable results than the other algorithms for a considerable number
of the benchmark functions.

The rest of the paper is organized as follows: the CS algorithm is explained in Section 2, the related work
to CS is overviewed in Section 3, Section 4 presents the different mutation methods, Section 5 presents the
experimental results, and finally, Section 6 presents the conclusion of this paper.

2 CS Algorithm
Inspired by the parasitic breeding behavior of some cuckoo species and the Lévy flight behavior of birds,
Yang andDeb [42] formulated and introduced the CS optimization algorithm. The inhabitants of some cuckoo
species commonly rely on other birds (host birds) to raise their baby birds. This phenomenon is known as a
parasitic reproduction strategy inwhich a cuckoo bird lays its eggs on a nest of a host bird, taking the risk that
the host bird may discover the cuckoo’s eggs. If the host bird discovers the cuckoo’s eggs, it rejects the eggs
(discards the eggs or abandons its nest); otherwise, the host bird tends to the cuckoo’s egg as if it were its own.
The CS algorithm attempts to solve a wide range of optimization problems based on two simulation models:
a model that simulates the parasitic reproduction strategy of some cuckoo species and another model that
simulates the Lévy flight behavior of some bird species [16, 35, 42].

According to the terminologies of CS, a candidate solution is called an egg and a new solution is called
a cuckoo’s egg. The CS algorithm attempts to generate new solutions (cuckoos’ eggs) using the Lévy flight
operator for potential replacement with lower quality solutions in the population (eggs in the nests). The CS
algorithm depends mainly on two parameters, the population size n (i.e. the number of candidate solutions)
and the fragment of the candidate solutions that are going to be discarded at each iteration of CS (pa ∈ [0, 1]).
The following notations and assumptions formulate the mathematical model of the original CS algorithm:
– A candidate solution X = ⟨x1, ..., xm⟩ is a vector of m decision variables, where each variable xi is in the

range [LBi , UBi]. LBi is the lower bound and UBi is the upper bound of the ith solution.
– The value of a decision variable xi is randomly generatedusing the function xi = LBi+(UBi−LBi)×U(0, 1)

where U(0, 1) is a uniform random number in the range (0, 1).
– The fitness value of the candidate solution X is f (X).
– Th population size is denoted as n, which is a fixed number that represents the number of candidate

solutions. An augmentedmatrix of size n × m is used to represent the population of n candidate solutions:

population =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x11 x12 . . . x1m

x21 x22 . . . x2m
...

... . . .
...

xn1 xn2 . . . xnm

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(1)

– The CS algorithm replaces a fraction pa ∈ [0, 1] of the population (solutions with the lowest fitness values)
with new randomly generated solutions at the last step of each generation of CS.

– At the end of each generation of CS, the best candidate solutions are moved to the next generation of CS.

B.H. Abed-alguni and D.J. Paul: Cuckoo Search with Different Mutation Operators | 1045

TheCS algorithm starts by generating a population of nnominated solutionsXi (i = 1, 2, . . ., n) from the range
of potential solutions of the objective function f (Xi). In addition, the termination condition or the maximum
number of iterations (MaxItr) of the algorithm is specified based on the optimal value/s of f (Xi).

The CS algorithm attempts to improve a candidate solution (Xt
i) at generation t + 1 using a Lévy flight

mutation method to produce a new solution (Xt+1
i) as follows:

Xt+1
i = Xt

i + β ⊕ Lévy(λ), (2)

where β > 0 is the distance parameter that determines the distance ofmutation and the symbol⊕ represents
the entry-wise product operator. The Lévy flight is a special randomwalk inwhich the step length is a random
number generated from a heavy tailed Lévy distribution with a power law:

Lévy ∼ u = D−α , (3)

where D is the step size and α ∈ (1, 3] is a parameter related to fractal dimension (i.e. a ratio that provides
a statistical index of complexity and that compares details in a fractal pattern). An interesting property of
the Lévy distribution function is that it has infinite variance [42]. This property indicates that some of the
generated random solutions will be close to the local optima, while a large percentage of the generated solu-
tions will be random solutions far from the local optima. This means that the Lévy flight is more efficient
in exploring the search space than the random walk method because the distance value in the Lévy flight
method increases over the course of generations.

3 Related Work
Most research studies that have attempted to improve the performance of CS have focused on hybridizing the
CS algorithms with other search techniques or evolutionary operators. Kanagaraj et al. [28] incorporated the
evolutionary operators (crossover and mutation) of the GA into CS. The new algorithm, which is called the
hybrid CS and GA (HCSGA) algorithm, is used to provide solutions for constrained engineering design opti-
mization problems. The crossover andmutation operators are used at each iteration of CS to balance the ratio
of exploration and exploitation. According to the simulation results in ref. [28], HCSGA provides good perfor-
mance compared to CS, PSO, and Global convergence PSO (GCPSO). Kanagaraj et al. [27] designed another
hybrid CS and GA algorithm (CS-GA) to solve the reliability-redundancy allocation problem (RAP). RAP is
an optimization problem that involves finding an optimal allocation plan for redundant subsystems subject
to a set of predefined resource constraints. The simulation results in ref. [27] suggest that CS-GA provides a
competitive performance compared to popular optimization algorithms [e.g. CS, artificial bee colony (ABC)
[38], HS]. Saraswathi et al. [36] introduced a hybrid CS andBA algorithm. The hybrid CS andBA algorithmwas
designed to find an optimal path in themobile robot path planning problem.Wang et al. [41] introduced anew
hybrid CS algorithm called CS/HS, which incorporates the pitch adjustment operator of the HS algorithm into
the CS algorithm to speed up the convergence speed of CS. The simulation results in ref. [41] suggested that
CS/HS outperforms many standard optimization algorithms. Wang et al. [40] introduced a hybrid optimiza-
tion algorithm called CSKH, which uses the update rule and abandon method of CS inside the improvement
loop of KHA. In another related work, Wang et al. [39] proposed the Lévy flight Krill herd (LKH) algorithm,
which incorporates the Lévy flight operator into the KHA algorithm to improve its global search ability. LKH
was experimentally proven to be an efficient algorithm, according to ref. [39]. However, CSKH and LKH have
complex structures and require more computations compared with KHA and CS. It is important to note that,
in general, the hybrid CS algorithms have complex structures and require more computational time than
standard optimization algorithms do (e.g. CS, GA, ABC, HS, BA, KHA).

The established efficiency and usability of the mutation methods in the GA algorithm have encouraged
many researchers to adopt the use of several mutation methods with evolutionary algorithms such as the HS
andCS algorithms. These algorithms apply specialmutation operators to produce new solutions or alter some
features of a candidate solution. The random, boundary, non-uniform, MPT, power, polynomial, and pitch

1046 | B.H. Abed-alguni and D.J. Paul: Cuckoo Search with Different Mutation Operators

adjustment mutation methods were used to enhance the performance of the ABC algorithm [22]. The same
mutation methods were also used to improve the efficiency of the HS algorithm [26].

4 Mutation Operators
The original CS algorithm applies the Lévy flight method to explore the search space. This method alters the
values of the decision variables of a candidate solution based on equation (2). This paper introduces seven
variations of the CS algorithmusingdifferentmutationmethods. Eachone of the proposed variations replaces
the Lévy flight method with a unique mutation method.

Several mutation operators can be used with the evolutionary algorithms based on the representation
of the optimization problems. In this section, the mutation operators that are suitable for continuous opti-
mization problemswill be presented. Thesemutation operators have been usedwith the GA [31], HS [26], and
ABC [22] algorithms. The experimental results in refs. [22, 26] indicate that most of the mutated optimization
algorithms perform better than the original algorithms do. The efficiency of a mutation operator is normally
affected by the type of the optimization problemand the strength of the population (i.e. how far is themutated
solution from the initial population) [26].

4.1 RandomMutation

The randommutationmethod is a basic mutationmethod that is usually used in GAs [26, 31]. In this method,
the value of a gene (decision variable) of a chromosome (candidate solution) is replaced with a randomly
generated value from the range of possible solutions of the gene as follows:

xj = LBj + (UBj − LBj) × U(0, 1), (4)

where U(0, 1) is a uniform random number between 0 and 1.
The authors in refs. [5, 42] suggested that the Lévy flight method is more efficient in exploring the search

space than the randommutationmethod. However, the randommutationmethodwas not used in refs. [5, 42]
as a mutation method for the CS. It was actually used as a mutation method for the GA algorithm. Therefore,
it would be interesting to evaluate the performance of CS after replacing the Lévy flight method with the
randommutation method.

4.2 Boundary Mutation

The boundarymutationmethod is amutationmethod that is traditionally used with evolutionary algorithms
for integer or floating point decision variables [26, 31]. A new solution can be generated using this method
by randomly replacing the value of a decision variable of a candidate solution with its lower or upper bound
(xi = LBi or xi = UBi). The purpose of the boundary mutation method is to extend the region of the global
search, as suggested in ref. [30].

4.3 Non-Uniform RandomMutation

The non-uniform randommutation is a well-known mutation method that is commonly used in GAs to over-
come the disadvantages of random mutation [26, 31, 32]. The probability that the amount of mutation will
approach zero by the end of the evolution process increases with the non-uniform randommutationmethod.
It helps the population of solutions evolve in the early stages of the evolution process, which helps to avoid
local optima. It also helps in increasing the accuracy of the solutions by finely tuning the solutions at the
final stages of the evolution process.

B.H. Abed-alguni and D.J. Paul: Cuckoo Search with Different Mutation Operators | 1047

Given a candidate solution Xt = ⟨x1, ..., xm⟩ at generation t, if the decision variable xk was selected from
Xt for non-uniform randommutation, the result is the vector Xt+1 = ⟨x1, x*

k , ..., xm⟩, where

x*
k =

⎧⎨⎩xk + ∆(t, UBi − xk) if a random digit is 0,

xk + ∆(t, xk − LBi) if a random digit is 1
, (5)

where LBi is the lower bound and UBi is the upper bound of xk.
The value returned from ∆(t, y) is in the range [0, y] such that the probability of ∆(t, y) approaches zero

with each increase in the number of generations t. This property means that the search process will be uni-
form when t is small (early generations) but will get closer to local values over the course of iterations. The
following function has been used in the experimental section of the paper to calculate ∆(t, y):

∆(t, y) = y ×
(︁
1 − U(0, 1)(

1−b
maxt)

)︁
, (6)

where U(0, 1) is a random number between 0 and 1, maxt is the maximum number of generations, and b is
a parameter that determines the degree of dependency on the generation number (b was set to 1 and 5 in
the experimental section, as suggested in ref. [32]). The above function aims to increase the probability of
producing new values near the previously produced values instead of generating random values [26, 31, 32].

4.4 MPT Mutation

MPTmutationwas proposed byMakinen et al. [37]. It is amutationmethod that has been used to solve several
types of optimization problems such as the multidisciplinary shape optimization problems and optimization
problems with a constrained nature [22]. A decision variable xi can be mutated using MPT to generate a new
variable x′i as follows:
– uniformly generate a random number ri ∈ [0, 1]
– x′i = (1 − t′i)LBi + t′iUBi, where

t′i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ti − ti
(︂
ti − ri
ti

)︂b
ri < ti

ti ri = ti

ti + (1 − ti)
(︂
ri − ti
1 − ti

)︂b
ri > ti

(7)

and

ti =
xi − LBi
UBi − xi

, (8)

where LBi is the lower bound and UBi is the upper bound of xi. It is worth pointing out that the
efficiency of the MPT mutation method is not affected by the generation number, unlike the non-uniform
randommutation method. In the experimental section, the value of b for the MPT method was set to 1 and 5,
as suggested in ref. [37].

4.5 Power Mutation (PM)

Deep and Thankur [20] introduced the PM method, which is based on power distributions. The function of
the power distribution is represented as follows:

f (x) = p xp−1, 0 ≤ x ≤ 1 (9)

1048 | B.H. Abed-alguni and D.J. Paul: Cuckoo Search with Different Mutation Operators

and the density function is as follows:

f (x) = xp , 0 ≤ x ≤ 1, (10)

where p represents the index of the distribution.
Given a decision variable x, the PM method generates a new solution x′ according to the following

steps:
– Generate a new random number r between 0 and 1.
– Create a random number s based on the final distribution.
– Calculate t as follows:

t =
x − LB
UB − x , (11)

where LB is the lower bound and UB is the upper bound of x.
– Create a new solution x′ as follows:

x′ =

⎧⎨⎩x − s(x − LB) if t < r

x + s(UB − x) otherwise.
(12)

In the experimental section, the value of b for the PM method was set to 0.25 and 0.5, as suggested by
Deep and Thankur in ref. [20].

4.6 Highly Disruptive Polynomial (HDP) Mutation

The polynomial mutationmethod suggested by Deb and Agrawal in ref. [17] may get trapped in a local optima
when the value of a decision variable that is to be mutated is near one of its boundaries. HDPmutation [18] is
an enhanced variation of the polynomial mutation. The value of a decision variable xi can be mutated using
the HDP method, as described in the algorithm in Figure 1. In Figure 1, r is a random number between 0
and 1, Pm is the probability of mutation, LBi is the lower boundary of xi, UBi is the upper boundary of xi, δ1
is the difference between xi and LBi divided by UBi − LBi, δ2 is the difference between UBi and xi divided by
UBi − LBi, and ηm is a non-negative number that represents the distribution index. An advantage of the HDP
method over the polynomial method is that it can sample the whole search space of the decision variable
even if the variable’s value is near to one of its boundaries.

Figure 1: Highly Disruptive Polynomial Mutation.

B.H. Abed-alguni and D.J. Paul: Cuckoo Search with Different Mutation Operators | 1049

4.7 Pitch Adjustment

The pitch adjustment method is a special mutation method used in the HS algorithm [25, 29]. Given a vector
ofm decision variables (a candidate solution) Xt = ⟨x1, ..., xm⟩ at generation t, the pitch adjustmentmethod
mutates the value of each decision variable with probability PAR ∈ (0, 1):

x′i =

⎧⎨⎩xi ± U(−1, 1) × BW r ≤ PAR

xi r > PAR
. (13)

If PAR is greater than or equal to a randomly generated number (r ∈ [0, 1]), the value of x′i will be
mutated to one of its neighboring values as follows: x′i = xi ± U(−1, 1) × BW, where BW (bandwidth) is
a parameter that determines the distance of mutation and U(−1, 1) is a random number in the range (−1, 1).

4.8 Worst Case Analysis of Computational Complexity of Mutation Operators

The purpose of this section is to discuss the computational complexity of each mutation operator discussed
in Section 4 for a single iteration of CS. In the following analysis, it is assumed that a mutation operator is
applied to all decision variables. However, in practice, it is applied to one or only a few decision variables.

Assume a candidate solution with m decision variables X = ⟨x1, ..., xm⟩, where each variable xi is in
the range [LBi, UBi]. Applying the Lévy flight operator to a single variable costs four operations (1 – fetch-
ing the values of the Lévy distribution, 2 – performing the entry wise product with the Lévy distribution,
3 – adding the results of 2 to Xt

i , 4 – adding the results of 3 to Xt+1
i). Thus applying it to a vector of m solu-

tions [equation (2)] costs 4m operations. This means that the computational complexity of the Lévy flight
operator is O(m). Similarly, the computational complexity of random mutation, boundary mutation, non-
uniform random mutation, MPT mutation, power mutation, HDP mutation, and pitch adjustment mutation
is also linear in the number of decision variables. For example, no significant differences in the runtime have
been observed when the mutation operators with CS have been used to solve two test functions from Table 1:
De Jong’s first function and shifted sphere function (iterations = 1000, runs = 50, dimension = 50). The
average run time for each mutation operator with CS for the two test function was approximately 2000 ms.

4.9 CS with Mutation

This section shows how the Lévy flight method in the original CS algorithm can be replaced with one of the
seven different mutation methods discussed in Section 4.

Table 1: Selected Benchmark Functions [4, 7, 26].

Abbreviation Function name Search range D f (−→X*)

f 1 De Jong’s first function [−100, 100] m 0
f 2 Schwefel 2.22 function [−100, 100] m 0
f 3 Step function [−100, 100] m 0
f 4 Rosenbrock’s function [−2.048, 2.048] m 0
f 5 Rotated hyper-ellipsoid function [−100, 100] m 0
f 6 Schwefel 2.26 function [−500, 500] m −12569.5
f 7 Rastrigin’s function [−5.12, 5.12] m −1
f 8 Ackley’s function [−32.77, 32.77] m 0
f 9 Griewank’s function [−600, 600] m 0
f 10 Six-hump camel-back [−5, 5] 2 −1.031628
f 11 Shifted sphere function [−100, 100] m −450
f 12 Shifted Schwefel’s problem 1.2 [−100, 100] m −450
f 13 Shifted Rosenbrock’s function [−100, 100] m 390
f 14 Shifted Rastrigin’s function [−5, 5] m −330

1050 | B.H. Abed-alguni and D.J. Paul: Cuckoo Search with Different Mutation Operators

Figure 2: CS with Mutation.

Simple modifications should be conducted to incorporate one of the seven mutation operators into CS,
as shown in Figure 2 (lines 4 and 6). In line 4, one of the mutation operators discussed in Section 4 should be
selected before the beginning of the improvement loop of CS (lines 5–16). In line 6, the algorithm attempts to
improve a candidate solution (Xt

i) at generation t + 1 using the selected mutation operator to produce a new
solution (Xt+1

i). Note that the original CS algorithm uses the Lévy flight mutationmethod at line 6 to produce
a new solution at each iteration of the improvement loop.

5 Experiments

5.1 Benchmark Functions

In this section, 11 variations of CS (see Table 2) were compared and evaluated using 14 benchmark func-
tions (see Table 1). This set of benchmark functions has been used in the literature to evaluate evolutionary
algorithms with mutation methods [22, 26]. The threshold values in CS4 and CS5, CS6 and CS7, CS8 and CS9
were used in refs. [20, 22, 26] to evaluate mutated variations of the HS and ABC algorithms.

Table 2: Different Variations of CS.

Abbreviation Variation of CS

CS1 CS with Lévy flight with D = 1
CS2 CS with random mutation
CS3 CS with boundary mutation
CS4 CS with non-uniform random mutation with b = 1
CS5 CS with non-uniform random mutation with b = 5
CS6 CS with MPT mutation with b = 1
CS7 CS with MPT mutation with b = 5
CS8 CS with power mutation with b = 0.25
CS9 CS with power mutation with b = 0.5
CS10 CS with HDP mutation
CS11 CS with pitch adjustment mutation with PAR = 0.3

B.H. Abed-alguni and D.J. Paul: Cuckoo Search with Different Mutation Operators | 1051

5.2 Setup

The experimentswere conducted using an Intel Core i5 6th Gen CPU (3.4 GHz)with 8-GBRAM runningmacOS
10.13, High Sierra (Cupertino, CA, USA). All of the algorithms were implemented using the Java programming
language.

All the CS variations used the same parameter settings: n = 10, pa = 0.25, and the mutation rate
r = 0.05. These values are based on those used in refs. [2, 5, 13, 42, 43].

5.3 Comparison Results of Variations of CS

Tables 3 and 4 show the final objective value for each of the 14 benchmark functions used in these experi-
ments. The obtained values are in the following format:mean of the best obtained objective values (first row),
standard deviation (second row), and error value (third row) for 50 independent runs. This format of results
was used by the researchers in refs. [2, 5, 13] to show and analyze the simulation results of optimization algo-
rithms. In this section, an algorithm is said to have outperformed the other algorithms when it achieves the
lowest mean and error values among all of the algorithms over 50 independent runs.

Table 3 shows the simulation results of the 30D (30 decision variables) problems. The results in Table 3
show that CS10 (CSwith polynomialmutation) achieved the best objective values for 7 of the 14 functions. CS1
(CS with Lévy flight) is the second best performing algorithm with 4 functions out of 14, followed by CS11 (CS
with pitch adjustment), which achieved the best objective values for 2 functions out of 14. It is worth noting
that CS3 (CS with boundary mutation) performed better than the other CS variations for the six-hump camel-
back function. However, CS3 did not performwell for many of the other functions, whichmay be because CS3
randomly replaces the value of a decision variable with the lower or upper bound of the decision variable
rather than slightly modifying the best known values.

The cuckoo variation CS10 performed even better (Table 4) when the problem size was increased to
50 decision variables (best results for 8 out of 14 functions). This observation indicates that CS with polyno-
mialmutationhas robust performance evenwhen theproblemcomplexity increases. This is expectedbecause
the polynomial mutation can sample the whole search space of the decision variable even if the variable’s
value is near to one of its boundaries, whereas most of the other algorithms get trapped closer to the middle.

The overall results in Tables 3 and 4 indicate that the performance of C10 improves with the increase of
the problem complexity. In addition, CS10 has the lowest standard deviation for most of the functions, which
means that its performance is more stable over multiple runs compared to the performance of the other CS
variations.

The superior performance of CS10 is possibly due to the fact that it uses the HDP mutation, which can
sample the whole search space of the decision variable even if the variable’s value is near to one of its bound-
aries. The simulation results suggest that CS2 (CS with randommutation) can easily get stuck in local optima
in an early stage of the evolution process. However, CS2 performs much better than CS3 (CS with boundary
mutation), which is possibly because CS3 uses the boundarymutationmethod that moves the search process
of CS3 to the boundaries of the search range without consideration of the current value. The results also indi-
cate that the variations of CS that use the non-uniform random mutation (CS4 and CS5) lose their strength
over the course of iterations. The rest of the variations of CS [CS with MPT mutation (CS6 and CS7), CS with
power mutation (CS8 and CS9), and CS with pitch adjustment (CS11)] all provide better results than CS with
Lévy flight.

Figures 3–7 show the convergence behavior of five functions (f 1, f 2, f 8, f 12, f 14) over 1000 iterations (with
50D size). In all of the figures, CS10 converges to a solutionmore quickly compared to the other CS variations.
In contrast, CS3 has the worst convergence rate compared to the other CS variations.

5.4 Statistical Test Results

As described in ref. [21], nonparametric statistical tests are the recommended methodology for comparing
evolutionary algorithms. The Friedman test [23] has been used to test if the means of the 11 variations of CS

1052 | B.H. Abed-alguni and D.J. Paul: Cuckoo Search with Different Mutation Operators

Ta
bl
e
3:
Si
m
ul
at
io
n
Re
su
lts

of
th
e
CS

Va
ria

tio
ns

fo
r1
4
St
an
da
rd

Te
st
Fu
nc
tio

ns
,N

um
be
ro

fD
ec
is
io
n
Va
ria

bl
es

=
30

,N
um

be
ro

fR
un
s

=
50
,a
nd

M
ax
im
um

Nu
m
be
ro

fI
te
ra
tio

ns
=

10
,0
00

.

Fu
nc
tio

n
CS

1
CS

2
CS

3
CS

4
CS

5
CS

6
CS

7
CS

8
CS

9
CS

10
CS

11

F1
5.
13

E−
06

3.
71

E−
07

2.
62

E+
01

1.
29

E−
06

1.
17

E−
06

1.
01

E−
06

2.
71

E−
06

3.
41

E−
05

2.
36

E−
01

0.
00

E+
00

4.
31

E−
06

5.
84

E−
06

5.
29

E−
07

3.
74

E−
15

2.
66

E−
06

1.
36

E−
06

1.
69

E−
06

3.
37

E−
06

6.
04

E−
05

1.
36

E−
01

0.
00

E+
00

6.
29

E−
06

5.
13

E−
06

3.
71

E−
07

2.
62

E+
01

1.
29

E−
06

1.
17

E−
06

1.
01

E−
06

2.
71

E−
06

3.
41

E−
05

2.
36

E−
01

0.
00

E+
00

4.
31

E−
06

F2
3.
48

E−
03

8.
38

E−
04

1.
00

E+
01

1.
81

E−
03

1.
29

E−
03

1.
49

E−
03

2.
70

E−
03

1.
23

E−
02

2.
61

E+
00

0.
00

E+
00

1.
26

E−
03

4.
03

E−
03

1.
09

E−
03

0.
00

E+
00

2.
09

E−
03

1.
93

E−
03

1.
38

E−
03

2.
55

E−
03

1.
43

E−
02

7.
99

E−
02

0.
00

E+
00

1.
03

E−
03

3.
48

E−
03

8.
38

E−
04

1.
00

E+
01

1.
81

E−
03

1.
29

E−
03

1.
49

E−
03

2.
70

E−
03

1.
23

E−
02

2.
61

E+
00

0.
00

E+
00

1.
26

E−
03

F3
0.
00

E+
00

0.
00

E+
00

1.
01

E+
02

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

1.
04

E+
02

1.
03

E+
02

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

7.
98

E+
00

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

1.
11

E+
01

5.
99

E+
00

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

1.
01

E+
02

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

1.
04

E+
02

1.
03

E+
02

0.
00

E+
00

0.
00

E+
00

F4
2.
58

E+
03

2.
83

E+
03

9.
91

E+
04

2.
83

E+
03

2.
83

E+
03

2.
83

E+
03

2.
83

E+
03

2.
51

E+
04

9.
61

E+
04

2.
83

E+
03

2.
83

E+
03

7.
07

E+
02

4.
77

E−
02

1.
25

E+
04

9.
70

E−
03

3.
33

E−
02

3.
51

E−
02

2.
39

E−
01

1.
64

E+
03

1.
64

E+
04

1.
21

E−
02

2.
71

E−
03

2.
58

E+
03

2.
83

E+
03

9.
91

E+
04

2.
83

E+
03

2.
83

E+
03

2.
83

E+
03

2.
83

E+
03

2.
51

E+
04

9.
61

E+
04

2.
83

E+
03

2.
83

E+
03

F5
1.
76

E+
01

8.
66

E+
00

4.
05

E+
02

1.
16

E+
00

1.
50

E+
00

7.
38

E+
00

6.
04

E+
00

4.
27

E+
02

4.
00

E+
02

0.
00

E+
00

1.
19

E+
01

1.
57

E+
01

1.
10

E+
01

9.
09

E+
01

2.
60

E+
00

2.
99

E+
00

1.
96

E+
01

1.
03

E+
01

8.
13

E+
01

1.
36

E+
02

0.
00

E+
00

2.
63

E+
01

1.
76

E+
01

8.
66

E+
00

4.
05

E+
02

1.
16

E+
00

1.
50

E+
00

7.
38

E+
00

6.
04

E+
00

4.
27

E+
02

4.
00

E+
02

0.
00

E+
00

1.
19

E+
01

F6
1.
97

E+
03

5.
87

E+
03

6.
10

E+
03

5.
87

E+
03

5.
87

E+
03

5.
87

E+
03

5.
87

E+
03

6.
10

E+
03

5.
87

E+
03

5.
87

E+
03

5.
87

E+
03

2.
16

E+
02

8.
49

E−
04

9.
59

E−
13

1.
44

E−
03

8.
44

E−
04

1.
52

E−
03

8.
95

E−
04

9.
59

E−
13

2.
36

E−
03

1.
44

E−
03

8.
44

E−
04

1.
45

E+
04

1.
84

E+
04

1.
87

E+
04

1.
84

E+
04

1.
84

E+
04

1.
84

E+
04

1.
84

E+
04

1.
87

E+
04

1.
84

E+
04

1.
84

E+
04

1.
84

E+
04

F7
3.
46

E−
03

6.
21

E−
05

2.
89

E+
01

4.
19

E−
05

2.
81

E−
04

6.
06

E−
05

9.
07

E−
04

1.
27

E−
02

1.
10

E+
00

0.
00

E+
00

2.
08

E−
04

4.
58

E−
03

8.
65

E−
05

0.
00

E+
00

8.
82

E−
05

4.
47

E−
04

9.
09

E−
05

1.
38

E−
03

2.
05

E−
02

9.
78

E−
02

0.
00

E+
00

2.
94

E−
04

3.
46

E−
03

6.
21

E−
05

2.
89

E+
01

4.
19

E−
05

2.
81

E−
04

6.
06

E−
05

9.
07

E−
04

1.
27

E−
02

1.
10

E+
00

0.
00

E+
00

2.
08

E−
04

B.H. Abed-alguni and D.J. Paul: Cuckoo Search with Different Mutation Operators | 1053

Ta
bl
e
3
(c
on
tin

ue
d)

Fu
nc
tio

n
CS

1
CS

2
CS

3
CS

4
CS

5
CS

6
CS

7
CS

8
CS

9
CS

10
CS

11

F8
1.
19

E−
02

2.
73

E−
03

7.
73

E+
00

2.
32

E−
03

1.
91

E−
03

1.
50

E−
03

5.
88

E−
03

3.
08

E+
00

7.
84

E+
00

4.
44

E−
16

3.
72

E−
03

9.
51

E−
03

2.
51

E−
03

1.
96

E−
01

3.
91

E−
03

5.
16

E−
03

7.
64

E−
04

6.
14

E−
03

1.
01

E−
01

1.
99

E−
01

1.
04

E−
31

7.
36

E−
03

1.
19

E−
02

2.
73

E−
03

7.
73

E+
00

2.
32

E−
03

1.
91

E−
03

1.
50

E−
03

5.
88

E−
03

3.
08

E+
00

7.
84

E+
00

4.
44

E−
16

3.
72

E−
03

F9
1.
84

E−
02

2.
95

E−
03

1.
02

E+
00

3.
42

E−
03

1.
82

E−
03

6.
08

E−
03

1.
10

E−
02

1.
01

E+
00

1.
02

E+
00

0.
00

E+
00

9.
36

E−
03

1.
47

E−
02

2.
88

E−
03

9.
57

E−
03

4.
60

E−
03

3.
31

E−
03

4.
26

E−
03

6.
07

E−
03

1.
36

E−
02

7.
25

E−
03

0.
00

E+
00

8.
35

E−
03

1.
84

E−
02

2.
95

E−
03

1.
02

E+
00

3.
42

E−
03

1.
82

E−
03

6.
08

E−
03

1.
10

E−
02

1.
01

E+
00

1.
02

E+
00

0.
00

E+
00

9.
36

E−
03

F1
0

−
1.
03

E+
00

−
1.
03

E+
00

−
1.
03

E+
00

−
1.
03

E+
00

−
1.
03

E+
00

−
1.
03

E+
00

−
1.
03

E+
00

−
1.
03

E+
00

−
1.
03

E+
00

−
1.
03

E+
00

−
1.
03

E+
00

1.
56

E−
03

2.
26

E−
03

1.
84

E−
03

1.
60

E−
03

2.
01

E−
03

3.
10

E−
03

3.
43

E−
03

1.
76

E−
03

1.
55

E−
03

1.
62

E−
03

1.
97

E−
03

1.
52

E−
03

3.
25

E−
03

2.
26

E−
03

1.
42

E−
03

2.
58

E−
03

2.
46

E−
03

3.
46

E−
03

1.
58

E−
03

1.
86

E−
03

2.
04

E−
03

2.
15

E−
03

F1
1

6.
12

E+
04

−
3.
02

E+
02

−
2.
79

E+
02

−
2.
89

E+
02

−
2.
87

E+
02

−
2.
91

E+
02

−
3.
02

E+
02

−
2.
90

E+
02

−
2.
91

E+
02

−
2.
86

E+
02

6.
12

E+
04

7.
17

E+
03

2.
73

E+
01

1.
80

E+
01

1.
35

E+
01

2.
79

E+
01

2.
29

E+
01

3.
21

E+
01

1.
95

E+
01

1.
76

E+
01

1.
89

E+
01

1.
00

E+
04

6.
17

E+
04

1.
48

E+
02

1.
71

E+
02

1.
61

E+
02

1.
63

E+
02

1.
59

E+
02

1.
48

E+
02

1.
60

E+
02

1.
59

E+
02

1.
64

E+
02

6.
16

E+
04

F1
2

1.
08

E+
07

2.
84

E+
04

2.
67

E+
04

2.
94

E+
04

2.
77

E+
04

3.
08

E+
04

6.
47

E+
04

2.
86

E+
04

3.
11

E+
04

2.
79

E+
04

1.
14

E+
07

1.
36

E+
06

3.
36

E+
03

4.
26

E+
03

4.
06

E+
03

3.
58

E+
03

3.
84

E+
03

1.
14

E+
04

5.
49

E+
03

5.
14

E+
03

4.
59

E+
03

1.
94

E+
06

1.
08

E+
07

2.
88

E+
04

2.
71

E+
04

2.
98

E+
04

2.
81

E+
04

3.
12

E+
04

6.
52

E+
04

2.
91

E+
04

3.
16

E+
04

2.
84

E+
04

1.
14

E+
07

F1
3

3.
02

E+
10

1.
21

E+
11

8.
64

E+
10

2.
02

E+
10

5.
17

E+
10

6.
23

E+
10

7.
34

E+
10

5.
78

E+
10

6.
03

E+
10

7.
01

E+
10

4.
18

E+
10

5.
87

E+
10

1.
01

E+
11

1.
01

E+
11

3.
28

E+
10

5.
45

E+
10

7.
95

E+
10

8.
65

E+
10

7.
67

E+
10

7.
18

E+
10

8.
68

E+
10

4.
38

E+
10

3.
02

E+
10

1.
21

E+
11

8.
64

E+
10

2.
02

E+
10

5.
17

E+
10

6.
23

E+
10

7.
34

E+
10

5.
78

E+
10

6.
03

E+
10

7.
01

E+
10

4.
18

E+
10

F1
4

2.
98

E+
01

2.
40

E+
01

2.
34

E+
01

−
2.
12

E+
01

4.
06

E+
00

5.
87

E+
01

−
1.
00

E−
02

−
8.
03

E+
01

4.
84

E+
01

4.
45

E+
01

9.
55

E+
01

1.
76

E+
02

2.
01

E+
02

7.
76

E+
01

1.
17

E+
02

1.
38

E+
02

1.
72

E+
02

1.
29

E+
02

2.
08

E+
02

1.
40

E+
02

1.
25

E+
02

1.
80

E+
02

3.
60

E+
02

3.
54

E+
02

3.
53

E+
02

3.
09

E+
02

3.
34

E+
02

3.
89

E+
02

3.
30

E+
02

2.
50

E+
02

3.
78

E+
02

3.
75

E+
02

4.
26

E+
02

Th
e
be
st
re
su
lts

in
th
e
ta
bl
e
ar
e
m
ar
ke
d
in
bo
ld
.

1054 | B.H. Abed-alguni and D.J. Paul: Cuckoo Search with Different Mutation Operators

Ta
bl
e
4:
Si
m
ul
at
io
n
Re
su
lts

of
th
e
CS

Va
ria

tio
ns

fo
r1
4
St
an
da
rd

Te
st
Fu
nc
tio

ns
,N

um
be
ro

fD
ec
is
io
n
Va
ria

bl
es

=
50
,N

um
be
ro

fR
un
s

=
50
,a
nd

M
ax
im
um

Nu
m
be
ro

fI
te
ra
tio

ns
=

10
,0
00

.

Fu
nc
tio

n
CS

1
CS

2
CS

3
CS

4
CS

5
CS

6
CS

7
CS

8
CS

9
CS

10
CS

11

F1
7.
44

E−
06

5.
32

E−
07

2.
62

E+
01

6.
24

E−
07

7.
53

E−
07

6.
96

E−
07

2.
48

E−
06

3.
20

E−
05

1.
59

E−
01

0.
00

E+
00

2.
99

E−
06

9.
12

E−
06

7.
69

E−
07

3.
74

E−
15

1.
46

E−
06

1.
47

E−
06

1.
07

E−
06

2.
83

E−
06

5.
67

E−
05

1.
13

E−
01

0.
00

E+
00

4.
18

E−
06

7.
44

E−
06

5.
32

E−
07

2.
62

E+
01

6.
24

E−
07

7.
53

E−
07

6.
96

E−
07

2.
48

E−
06

3.
20

E−
05

1.
59

E−
01

0.
00

E+
00

2.
99

E−
06

F2
5.
16

E−
03

1.
47

E−
03

1.
00

E+
01

4.
96

E−
04

1.
58

E−
04

1.
27

E−
03

3.
38

E−
03

7.
37

E−
03

2.
62

E+
00

0.
00

E+
00

1.
03

E−
03

4.
76

E−
03

1.
24

E−
03

0.
00

E+
00

7.
73

E−
04

2.
08

E−
04

8.
99

E−
04

2.
22

E−
03

6.
81

E−
03

9.
08

E−
02

0.
00

E+
00

8.
16

E−
04

5.
16

E−
03

1.
47

E−
03

1.
00

E+
01

4.
96

E−
04

1.
58

E−
04

1.
27

E−
03

3.
38

E−
03

7.
37

E−
03

2.
62

E+
00

0.
00

E+
00

1.
03

E−
03

F3
0.
00

E+
00

0.
00

E+
00

2.
30

E+
02

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

2.
16

E+
02

2.
25

E+
02

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

1.
15

E+
01

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

1.
50

E+
01

1.
56

E+
01

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

2.
30

E+
02

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

2.
16

E+
02

2.
25

E+
02

0.
00

E+
00

0.
00

E+
00

F4
4.
83

E+
03

4.
83

E+
03

2.
63

E+
05

4.
83

E+
03

4.
83

E+
03

4.
83

E+
03

4.
83

E+
03

2.
87

E+
04

2.
61

E+
05

4.
83

E+
03

4.
83

E+
03

2.
14

E−
01

2.
97

E−
02

1.
94

E+
04

2.
63

E−
02

3.
04

E−
02

2.
53

E−
02

1.
05

E−
01

3.
16

E+
03

1.
90

E+
04

7.
20

E−
03

3.
48

E−
02

4.
83

E+
03

4.
83

E+
03

2.
63

E+
05

4.
83

E+
03

4.
83

E+
03

4.
83

E+
03

4.
83

E+
03

2.
87

E+
04

2.
61

E+
05

4.
83

E+
03

4.
83

E+
03

F5
1.
12

E+
02

2.
39

E+
01

2.
54

E+
03

1.
02

E+
00

3.
08

E+
00

2.
44

E+
01

1.
67

E+
02

2.
72

E+
03

2.
47

E+
03

0.
00

E+
00

2.
86

E+
00

1.
76

E+
02

2.
93

E+
01

8.
64

E+
02

1.
51

E+
00

7.
92

E+
00

6.
38

E+
01

1.
23

E+
02

7.
26

E+
02

4.
50

E+
02

0.
00

E+
00

7.
18

E+
00

1.
12

E+
02

2.
39

E+
01

2.
54

E+
03

1.
02

E+
00

3.
08

E+
00

2.
44

E+
01

1.
67

E+
02

2.
72

E+
03

2.
47

E+
03

0.
00

E+
00

2.
86

E+
00

F6
6.
43

E+
02

5.
87

E+
03

6.
10

E+
03

5.
87

E+
03

5.
87

E+
03

5.
87

E+
03

5.
87

E+
03

6.
10

E+
03

5.
87

E+
03

5.
87

E+
03

5.
87

E+
03

3.
73

E+
02

1.
41

E−
03

9.
59

E−
13

2.
16

E−
03

5.
78

E−
04

9.
74

E−
04

1.
49

E−
03

9.
59

E−
13

7.
31

E−
04

2.
16

E−
03

5.
78

E−
04

1.
32

E+
04

1.
84

E+
04

1.
87

E+
04

1.
84

E+
04

1.
84

E+
04

1.
84

E+
04

1.
84

E+
04

1.
87

E+
04

1.
84

E+
04

1.
84

E+
04

1.
84

E+
04

F7
1.
58

E−
03

2.
35

E−
04

2.
89

E+
01

0.
00

E+
00

2.
35

E−
04

7.
99

E−
05

1.
38

E−
03

1.
52

E−
02

1.
47

E+
00

0.
00

E+
00

4.
64

E−
04

1.
87

E−
03

4.
90

E−
04

0.
00

E+
00

0.
00

E+
00

4.
51

E−
04

9.
98

E−
05

2.
46

E−
03

2.
37

E−
02

9.
64

E−
01

0.
00

E+
00

5.
36

E−
04

1.
58

E−
03

2.
35

E−
04

2.
89

E+
01

0.
00

E+
00

2.
35

E−
04

7.
99

E−
05

1.
38

E−
03

1.
52

E−
02

1.
47

E+
00

0.
00

E+
00

4.
64

E−
04

B.H. Abed-alguni and D.J. Paul: Cuckoo Search with Different Mutation Operators | 1055

Ta
bl
e
4
(c
on
tin

ue
d)

Fu
nc
tio

n
CS

1
CS

2
CS

3
CS

4
CS

5
CS

6
CS

7
CS

8
CS

9
CS

10
CS

11

F8
6.
91

E−
03

3.
20

E−
03

8.
60

E+
00

1.
27

E−
03

9.
88

E−
04

3.
29

E−
03

1.
11

E−
02

2.
39

E+
00

6.
48

E+
00

4.
44

E−
16

1.
87

E−
03

5.
94

E−
03

3.
41

E−
03

8.
31

E−
02

1.
86

E−
03

1.
57

E−
03

3.
31

E−
03

1.
04

E−
02

9.
77

E−
02

1.
61

E−
02

1.
04

E−
31

8.
60

E−
04

6.
91

E−
03

3.
20

E−
03

8.
60

E+
00

1.
27

E−
03

9.
88

E−
04

3.
29

E−
03

1.
11

E−
02

2.
39

E+
00

6.
48

E+
00

4.
44

E−
16

1.
87

E−
03

F9
1.
40

E−
02

3.
08

E−
03

1.
05

E+
00

1.
65

E−
03

3.
34

E−
03

4.
41

E−
03

8.
18

E−
03

1.
06

E+
00

1.
06

E+
00

0.
00

E+
00

1.
33

E−
02

8.
48

E−
03

4.
08

E−
03

3.
99

E−
03

2.
68

E−
03

4.
64

E−
03

4.
62

E−
03

4.
74

E−
03

2.
95

E−
03

4.
27

E−
03

0.
00

E+
00

1.
64

E−
02

1.
40

E−
02

3.
08

E−
03

1.
05

E+
00

1.
65

E−
03

3.
34

E−
03

4.
41

E−
03

8.
18

E−
03

1.
06

E+
00

1.
06

E+
00

0.
00

E+
00

1.
33

E−
02

F1
0

−
1.
03

E+
00

−
1.
03

E+
00

−
1.
03

E+
00

−
1.
03

E+
00

−
1.
03

E+
00

−
1.
03

E+
00

−
1.
03

E+
00

−
1.
03

E+
00

−
1.
03

E+
00

−
1.
03

E+
00

−
1.
03

E+
00

1.
56

E−
03

2.
26

E−
03

1.
84

E−
03

1.
60

E−
03

2.
01

E−
03

3.
10

E−
03

3.
43

E−
03

1.
76

E−
03

1.
55

E−
03

1.
62

E−
03

1.
97

E−
03

1.
52

E−
03

3.
25

E−
03

2.
26

E−
03

1.
42

E−
03

2.
58

E−
03

2.
46

E−
03

3.
46

E−
03

1.
58

E−
03

1.
86

E−
03

2.
04

E−
03

2.
15

E−
03

F1
1

1.
42

E+
05

−
7.
81

E+
01

−
8.
54

E+
01

−
6.
79

E+
01

−
7.
93

E+
01

−
6.
70

E+
01

−
7.
99

E+
01

−
6.
03

E+
01

−
6.
95

E+
01

−
6.
40

E+
01

1.
39

E+
05

1.
31

E+
04

3.
31

E+
01

3.
95

E+
01

3.
18

E+
01

4.
09

E+
01

2.
49

E+
01

3.
48

E+
01

3.
23

E+
01

3.
97

E+
01

2.
96

E+
01

1.
64

E+
04

1.
43

E+
05

3.
72

E+
02

3.
65

E+
02

3.
82

E+
02

3.
71

E+
02

3.
83

E+
02

3.
70

E+
02

3.
90

E+
02

3.
81

E+
02

3.
86

E+
02

1.
40

E+
05

F1
2

8.
08

E+
07

2.
13

E+
05

2.
24

E+
05

2.
21

E+
05

2.
09

E+
05

2.
11

E+
05

3.
47

E+
05

2.
14

E+
05

2.
17

E+
05

2.
20

E+
05

8.
44

E+
07

1.
04

E+
07

3.
39

E+
04

3.
72

E+
04

2.
83

E+
04

2.
45

E+
04

2.
14

E+
04

6.
20

E+
04

2.
34

E+
04

1.
66

E+
04

2.
98

E+
04

1.
07

E+
07

8.
08

E+
07

2.
14

E+
05

2.
24

E+
05

2.
22

E+
05

2.
10

E+
05

2.
12

E+
05

3.
47

E+
05

2.
14

E+
05

2.
17

E+
05

2.
21

E+
05

8.
44

E+
07

F1
3

1.
11

E+
11

6.
74

E+
10

1.
21

E+
11

1.
54

E+
11

5.
92

E+
10

1.
01

E+
11

6.
94

E+
10

8.
62

E+
10

9.
06

E+
10

1.
87

E+
11

7.
14

E+
10

1.
59

E+
11

1.
18

E+
11

1.
21

E+
11

1.
59

E+
11

1.
17

E+
11

1.
38

E+
11

1.
34

E+
11

1.
29

E+
11

1.
47

E+
11

1.
66

E+
11

1.
39

E+
11

1.
11

E+
11

6.
74

E+
10

1.
21

E+
11

1.
54

E+
11

5.
92

E+
10

1.
01

E+
11

6.
94

E+
10

8.
62

E+
10

9.
06

E+
10

1.
87

E+
11

7.
14

E+
10

F1
4

3.
90

E+
02

3.
14

E+
02

4.
36

E+
02

3.
86

E+
02

2.
96

E+
02

1.
88

E+
02

3.
47

E+
02

3.
53

E+
02

2.
81

E+
02

3.
84

E+
02

2.
97

E+
02

3.
14

E+
02

3.
32

E+
02

3.
20

E+
02

3.
69

E+
02

4.
09

E+
02

3.
10

E+
02

3.
44

E+
02

2.
98

E+
02

3.
65

E+
02

3.
38

E+
02

3.
43

E+
02

7.
20

E+
02

6.
44

E+
02

7.
66

E+
02

7.
16

E+
02

6.
26

E+
02

5.
18

E+
02

6.
77

E+
02

6.
83

E+
02

6.
11

E+
02

7.
14

E+
02

6.
27

E+
02

Th
e
be
st
re
su
lts

in
th
e
ta
bl
e
ar
e
m
ar
ke
d
in
bo
ld
.

1056 | B.H. Abed-alguni and D.J. Paul: Cuckoo Search with Different Mutation Operators

CS11

CS10

CS9

CS8

CS7

CS6

CS5

CS4

CS3

CS2

CS1
1.00E+23

1.00E+20

1.00E+17

1.00E+14

B
es

t
fi

tn
es

s
(l

o
g
)

1.00E+11

1.00E+08

1.00E+05

1.00E+02

1.00E–01

1.00E–04
Iterations

Figure 3: Convergence Trend of f 1.

CS11

CS10

CS8

CS7

CS6

CS5

CS4

CS3

CS2

CS1

B
es

t
fi

tn
es

s
(l

o
g
)

1E–08

0.000000

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

Iterations

Figure 4: Convergence Trend of f 2.

CS11

CS10

CS8

CS9

CS7

CS6

CS5

CS4

CS3

CS2

CS1

B
es

t
fi

tn
es

s
(l

o
g
)

0

5

10

15

20

25

Iterations

0 200 400 600 800 1000

Figure 5: Convergence Trend of f 8.

CS11

CS10

CS8

CS9

CS7

CS6

CS5

CS4

CS3

CS2

CS1

B
e
s
t

fi
tn

e
s
s

0.00E+00

5.00E+07

1.00E+08

1.50E+08

2.00E+08

2.50E+08

Iterations

0 200 400 600 800 1000

Figure 6: Convergence Trend of f 12.

B.H. Abed-alguni and D.J. Paul: Cuckoo Search with Different Mutation Operators | 1057

Iterations

0

0

100

200

300

400

500

600

700

800

900

1000

200 400 600 800 1000

CS11

CS10

CS8

CS9

CS7

CS6

CS5

CS4

CS3

CS2

CS1

B
e
s
t

fi
tn

e
s
s

Figure 7: Convergence Trend of f 14.

are equal to determine if there exist at least two means that are significantly different from each other. The
tested hypotheses are as follows:

H0: µ1 = µ2 = . . . = µ11, where µi is the mean of CSi.

H1: at least one mean is different from the others.

The results of the Friedman test for both 30 and 50 dimensions indicate that H1 should be accepted
(p < 0.05) with results of 35.90 and 41.78, respectively. Furthermore, Tables 5 and 6 show results for the
Conover post hoc test [15] for the different dimensions (Table 5: D = 30 and Table 6: D = 50). As can be
seen from Table 5, for 30 dimensions, the results from CS3, CS4, CS9, and CS10 are significantly (p < 0.05)
better than those for CS1. Similarly, from Table 6, the results from all variations except for CS7, CS8, and CS9
are significantly (p < 0.05) better than those for CS1. Combined with the analysis from the previous section,
this suggests that CS10 is significantly better than CS1 while also converging more quickly. This suggests that
the polynomial mutation could be a better mutation method than the Lévy flight method.

5.5 Comparison Results of CS with Other Algorithms

In this section, the CS algorithm was compared with the HS algorithm [26] and the ABC algorithm [22]. The
algorithms were compared using eight different functions, F1, F3, F6, F10, F11, F12, F13, F14 for the follow-
ing mutation methods: random mutation (M1 (random mutation), M2 (non-uniform random mutation with
b = 1), M3 (non-uniform randommutation with b = 5), M4 (MPT mutation with b = 1), M5 (power mutation
with b = 0.25), and M6 (polynomial mutation with b = 0.5)). The results for the ABC algorithm and the HS
algorithm were taken from refs. [22, 26], respectively.

Table 7 shows the mean values of the objective values of CS, ABC, and HS over 50 independent runs for
100D problems. The results are in the following format: CS results in the first row, HS results in the second
row, and ABC results in the third row for each function. The table illustrates that the variations of CS show
competitive performance compared to the variations of ABC and HS. However, the variations of the ABC algo-
rithm outperform the other algorithms for five functions out of eight. Nevertheless, the obtained results for
the three algorithms confirm that the performance of the optimization algorithms is affected by the type of
the chosen mutation method.

1058 | B.H. Abed-alguni and D.J. Paul: Cuckoo Search with Different Mutation Operators

Ta
bl
e
5:
Co

no
ve
rP

os
th

oc
p-
Va
lu
e
M
at
rix

w
ith

50
Ru
ns

an
d
D

=
30

fo
rT
es
te
d
Al
go
rit
hm

s.

CS
1

CS
2

CS
3

CS
4

CS
5

CS
6

CS
7

CS
8

CS
9

CS
10

CS
11

CS
1

−
1.
00

E+
00

1.
70

E−
01

7.
39

E−
03

2.
18

E−
02

9.
75

E−
02

3.
47

E−
01

8.
28

E−
01

2.
33

E−
01

4.
80

E−
02

2.
61

E−
02

7.
17

E−
01

CS
2

1.
70

E−
01

−
1.
00

E+
00

7.
22

E−
05

3.
47

E−
01

7.
72

E−
01

6.
64

E−
01

1.
13

E−
01

1.
11

E−
02

9.
75

E−
04

3.
85

E−
01

3.
12

E−
01

CS
3

7.
39

E−
03

7.
22

E−
05

−
1.
00

E+
00

1.
50

E−
06

2.
32

E−
05

3.
59

E−
04

1.
35

E−
02

1.
30

E−
01

4.
69

E−
01

2.
06

E−
06

2.
49

E−
03

CS
4

2.
18

E−
02

3.
47

E−
01

1.
50

E−
06

−
1.
00

E+
00

5.
15

E−
01

1.
70

E−
01

1.
23

E−
02

5.
96

E−
04

3.
10

E−
05

9.
42

E−
01

5.
22

E−
02

CS
5

9.
75

E−
02

7.
72

E−
01

2.
32

E−
05

5.
15

E−
01

−
1.
00

E+
00

4.
69

E−
01

6.
14

E−
02

4.
84

E−
03

3.
59

E−
04

5.
63

E−
01

1.
94

E−
01

CS
6

3.
47

E−
01

6.
64

E−
01

3.
59

E−
04

1.
70

E−
01

4.
69

E−
01

−
1.
00

E+
00

2.
48

E−
01

3.
41

E−
02

3.
89

E−
03

1.
94

E−
01

5.
63

E−
01

CS
7

8.
28

E−
01

1.
13

E−
01

1.
35

E−
02

1.
23

E−
02

6.
14

E−
02

2.
48

E−
01

−
1.
00

E+
00

3.
29

E−
01

7.
77

E−
02

1.
49

E−
02

5.
63

E−
01

CS
8

2.
33

E−
01

1.
11

E−
02

1.
30

E−
01

5.
96

E−
04

4.
84

E−
03

3.
41

E−
02

3.
29

E−
01

−
1.
00

E+
00

4.
26

E−
01

7.
63

E−
04

1.
21

E−
01

CS
9

4.
80

E−
02

9.
75

E−
04

4.
69

E−
01

3.
10

E−
05

3.
59

E−
04

3.
89

E−
03

7.
77

E−
02

4.
26

E−
01

−
1.
00

E+
00

4.
12

E−
05

1.
98

E−
02

CS
10

2.
61

E−
02

3.
85

E−
01

2.
06

E−
06

9.
42

E−
01

5.
63

E−
01

1.
94

E−
01

1.
49

E−
02

7.
63

E−
04

4.
12

E−
05

−
1.
00

E+
00

6.
14

E−
02

CS
11

7.
17

E−
01

3.
12

E−
01

2.
49

E−
03

5.
22

E−
02

1.
94

E−
01

5.
63

E−
01

5.
63

E−
01

1.
21

E−
01

1.
98

E−
02

6.
14

E−
02

−
1.
00

E+
00

No
n-
di
ag
on
al
va
lu
es

le
ss

th
an

0.
05

ar
e
m
ar
ke
d
in
bo
ld
.

B.H. Abed-alguni and D.J. Paul: Cuckoo Search with Different Mutation Operators | 1059

Ta
bl
e
6:

Co
no
ve
rP

os
th

oc
p-
Va
lu
e
M
at
rix

w
ith

50
Ru
ns

an
d
D

=
50

fo
rT
es
te
d
Al
go
rit
hm

s.

CS
1

CS
2

CS
3

CS
4

CS
5

CS
6

CS
7

CS
8

CS
9

CS
10

CS
11

CS
1

−
1.
00

E+
00

8.
13

E−
03

2.
94

E−
02

2.
38

E−
03

1.
02

E−
03

1.
50

E−
02

3.
72

E−
01

3.
92

E−
01

9.
11

E−
01

3.
78

E−
03

3.
85

E−
02

CS
2

8.
13

E−
03

−
1.
00

E+
00

2.
92

E−
06

6.
82

E−
01

5.
03

E−
01

8.
23

E−
01

7.
55

E−
02

5.
43

E−
04

5.
89

E−
03

7.
94

E−
01

5.
51

E−
01

CS
3

2.
94

E−
02

2.
92

E−
06

−
1.
00

E+
00

4.
79

E−
07

1.
45

E−
07

7.
52

E−
06

2.
38

E−
03

1.
81

E−
01

3.
85

E−
02

9.
33

E−
07

3.
42

E−
05

CS
4

2.
38

E−
03

6.
82

E−
01

4.
79

E−
07

−
1.
00

E+
00

7.
94

E−
01

5.
27

E−
01

2.
94

E−
02

1.
24

E−
04

1.
67

E−
03

8.
82

E−
01

3.
15

E−
01

CS
5

1.
02

E−
03

5.
03

E−
01

1.
45

E−
07

7.
94

E−
01

−
1.
00

E+
00

3.
72

E−
01

1.
50

E−
02

4.
58

E−
05

7.
02

E−
04

6.
82

E−
01

2.
07

E−
01

CS
6

1.
50

E−
02

8.
23

E−
01

7.
52

E−
06

5.
27

E−
01

3.
72

E−
01

−
1.
00

E+
00

1.
19

E−
01

1.
16

E−
03

1.
11

E−
02

6.
28

E−
01

7.
10

E−
01

CS
7

3.
72

E−
01

7.
55

E−
02

2.
38

E−
03

2.
94

E−
02

1.
50

E−
02

1.
19

E−
01

−
1.
00

E+
00

8.
17

E−
02

3.
15

E−
01

4.
21

E−
02

2.
34

E−
01

CS
8

3.
92

E−
01

5.
43

E−
04

1.
81

E−
01

1.
24

E−
04

4.
58

E−
05

1.
16

E−
03

8.
17

E−
02

−
1.
00

E+
00

4.
57

E−
01

2.
15

E−
04

3.
78

E−
03

CS
9

9.
11

E−
01

5.
89

E−
03

3.
85

E−
02

1.
67

E−
03

7.
02

E−
04

1.
11

E−
02

3.
15

E−
01

4.
57

E−
01

−
1.
00

E+
00

2.
68

E−
03

2.
94

E−
02

CS
10

3.
78

E−
03

7.
94

E−
01

9.
33

E−
07

8.
82

E−
01

6.
82

E−
01

6.
28

E−
01

4.
21

E−
02

2.
15

E−
04

2.
68

E−
03

−
1.
00

E+
00

3.
92

E−
01

CS
11

3.
85

E−
02

5.
51

E−
01

3.
42

E−
05

3.
15

E−
01

2.
07

E−
01

7.
10

E−
01

2.
34

E−
01

3.
78

E−
03

2.
94

E−
02

3.
92

E−
01

−
1.
00

E+
00

No
n-
di
ag
on
al
va
lu
es

le
ss

th
an

0.
05

ar
e
m
ar
ke
d
in
bo
ld
.

1060 | B.H. Abed-alguni and D.J. Paul: Cuckoo Search with Different Mutation Operators

Table 7: Simulation Results of CS, HS, and ABC Using Different Functions and Mutations.

f(X) M1 M2 M3 M4 M5 M6

F1 5.25E−07 1.15E−07 3.11E−08 2.81E−07 2.95E−05 0.00E+00
I.739E+04 2.23E+04 2.4 90E+04 I.636E+04 2.19E+04 5.82E−03
I.86E−15 1.86E−1 5 1.84E−15 1.86E−15 1.5BE−1 5 1.41E− 6

F3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.58E+02 0.00E+00
I.652E+04 2.03E+04 2.05E+04 1.58E+04 J.922E+04 9.50E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F6 5.87E+03 5.87E+03 5.87E+03 5.87E+03 6.10E+03 5.87E+03
−3.58E+04 −3.62E+04 −3.62E+04 −3.56E+04 −2.93E+04 −3.07E+04
−4.20E+04 −4.20E+04 −4.20E+04 −4.20E+04 −4.20E+04 −4.20E+04

F10 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00
−1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00
−1.03E+00 −1.03E+00 − I.03E+00 −I.03E+00 −1.03E+00 − I.03E+00

F11 3.72E+02 3.97E+02 3.84E+02 4.07E+02 5.63E+02 4.30E+02
2.301E+04 4.307E+04 1.30E+04 2.28E+04 3.35E+04 −4.50E+02
−4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02

F12 9.22E+10 2.29E+11 1.18E+11 6.75E+10 3.52E+11 1.48E+11
3.79E+07 2.27E+07 2.25E+07 3.66E+07 1.11E+07 8.67E+07
−4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02

F13 1.90E+11 2.12E+11 1.30E+11 1.28E+11 2.51E+11 1.24E+11
3.03E+09 1.01E+09 9.97E+08 3.17E+09 7.06E+09 7.62E+04
3.90E+02 3.90E+02 3.90E+02 3.90E+02 3.92E+02 3.90E+02

F14 1.17E+03 1.20E+03 1.39E+03 1.27E+03 1.14E+03 1.15E+03
4.58E+00 6.32E+01 5.18E+01 6.55E+00 4.979E+O1 1.02E+02
−3.30E+02 −3.30E+02 −3.30E+02 −3.30E+02 −3.30E+02 −3.00E+02

The mean of 50 runs is shown. CS results are in the first row for each function.
The best results are marked with bold.

6 Conclusion
The current paper presented new variations of CS using different mutation methods. Extensive simulations
were conducted using a set of 14 well-known benchmark functions to evaluate the performance of the pro-
posed variations of CS. CSwith polynomialmutationwas found to bemore accurate and stable than the other
algorithms for a notable number of the benchmark functions.

Future work will be directed towards implementing different selection schemes to CS with polynomial
mutation instead of the currently used random selection method. Future work also includes hybridizing CS
with polynomial mutation and the simulated annealing algorithm [13]. Furthermore, it would be interesting
to see how CS with polynomial mutation performs in practice when it is applied to cooperative Q-learning
[1, 9–11], as described in refs. [2, 3].

Bibliography
[1] B. H. K. Abed-alguni, Cooperative reinforcement learning for independent learners, PhD thesis, Faculty of Engineering and

Built Environment, School of Electrical Engineering and Computer Science, The University of Newcastle, Australia, 2014.
[2] B. H. Abed-alguni, Action-selection method for reinforcement learning based on cuckoo search algorithm, Arabian J. Sci.

Eng. (2017), 1–15. https://doi.org/10.1007/s13369-017-2873-8.
[3] B. H. Abed-alguni, Bat Q-learning algorithm, Jordanian J. Comput. Inf. Technol. (JJCIT) 3 (2017), 56–77.
[4] B. H. Abed-alguni, Island-based cuckoo search with highly disruptive polynomial mutatio, Int. J. Artif. Intelligence 8

(2019), 1–30.
[5] B. H. Abed-alguni and F. Alkhateeb, Novel selection schemes for cuckoo search, Arabian J. Sci. Eng. 42 (2017), 3635–3654.
[6] B. H. Abed-alguni and F. Alkhateeb, Intelligent hybrid cuckoo search and β-hill climbing algorithm, J. King Saud

University – Comput. Inf. Sci. 0 (2018), 1–43.

B.H. Abed-alguni and D.J. Paul: Cuckoo Search with Different Mutation Operators | 1061

[7] B. H. Abed-alguni and M. Barhoush, Distributed grey wolf optimizer for numerical optimization problems, Jordanian J.
Comput. Inf. Technol. (JJCIT) 4 (2018), 130–149.

[8] B. H. Abed-alguni and A. F. Klaib, Hybrid whale optimization and β-hill climbing algorithm, Int. J. Comput. Sci.
Mathematics 0 (2018), 1–13.

[9] B. H. Abed-alguni and M. A. Ottom, Double delayed Q-learning, Int. J. Artif. Intelligence 16 (2018), 41–59.
[10] B. H. Abed-alguni, S. K. Chalup, F. A. Henskens and D. J. Paul, A multi-agent cooperative reinforcement learning model

using a hierarchy of consultants, tutors and workers, Vietnam J. Comput. Sci. 2 (2015), 213–226.
[11] B. H. Abed-alguni, S. K. Chalup, F. A. Henskens and D. J. Paul, Erratum to: a multi-agent cooperative reinforcement

learning model using a hierarchy of consultants, tutors and workers, Vietnam J. Comput. Sci. 2 (2015), 227–227.
[12] B. H. Abed-alguni, D. J. Paul, S. K. Chalup and F. A. Henskens, A comparison study of cooperative Q-learning algorithms for

independent learners, Int. J. Artif. Intelligence 14 (2016), 71–93.
[13] F. Alkhateeb and B. H. Abed-alguni, A hybrid cuckoo search and simulated annealing algorithm, J. Intelligent Syst. 28

(2017), 683–698.
[14] L. T. Bui and H. Thi Thanh Binh, A survivable design of last mile communication networks using multi-objective genetic

algorithms,Memetic Computing 8 (2016), 97–108.
[15] W. Conover and R. L. Iman, On multiple-comparisons procedures, Los Alamos Sci. Lab. Tech. Rep. LA-7677-MS (1979), 1–14.
[16] Z. Cui, B. Sun, G. Wang, Y. Xue and J. Chen, A novel oriented cuckoo search algorithm to improve dv-hop performance for

cyber–physical systems, J. Parallel Distrib. Comput. 103 (2017), 42–52.
[17] K. Deb and R. B. Agrawal, Simulated binary crossover for continuous search space, Complex Syst. 9 (1994), 1–15.
[18] K. Deb and S. Tiwari, Omni-optimizer: a generic evolutionary algorithm for single and multi-objective optimization, Eur. J.

Operational Res. 185 (2008), 1062–1087.
[19] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: Nsga-ii, IEEE Trans.

Evolutionary Comput. 6 (2002), 182–197.
[20] K. Deep and M. Thakur, A new mutation operator for real coded genetic algorithms, Appl. Mathematics Comput. 193

(2007), 211–230.
[21] J. Derrac, S. Garca, D. Molina and F. Herrera, A practical tutorial on the use of nonparametric statistical tests as a

methodology for comparing evolutionary and swarm intelligence algorithms, Swarm Evolutionary Comput. 1 (2011), 3–18.
[22] I. A. Doush, B. H. F. Hasan, M. A. Al-Betar, E. Al Maghayreh, F. Alkhateeb and M. Hamdan, Artificial bee colony with

different mutation schemes: a comparative study, Comput. Sci. J. Moldova 22 (2014), 77–98.
[23] M. Friedman, A comparison of alternative tests of significance for the problem of m rankings, Ann. Math. Statistics 11

(1940), 86–92.
[24] A. H. Gandomi and A. H. Alavi, Krill herd: a new bio-inspired optimization algorithm, Commun. Nonlinear Sci. Numer.

Simul. 17 (2012), 4831–4845.
[25] Z. W. Geem, J. H. Kim and G. Loganathan, A new heuristic optimization algorithm: harmony search, Simulation 76 (2001),

60–68.
[26] B. H. F. Hasan, I. A. Doush, E. Al Maghayreh, F. Alkhateeb and M. Hamdan, Hybridizing harmony search algorithm with

different mutation operators for continuous problems, Appl. Mathematics Comput. 232 (2014), 1166–1182.
[27] G. Kanagaraj, S. Ponnambalam and N. Jawahar, A hybrid cuckoo search and genetic algorithm for reliability – redundancy

allocation problems, Comput. Ind. Eng. 66 (2013), 1115–1124.
[28] G. Kanagaraj, S. Ponnambalam, N. Jawahar and J. M. Nilakantan, An effective hybrid cuckoo search and genetic algorithm

for constrained engineering design optimization, Eng. Optimization 46 (2014), 1331–1351.
[29] S. Kundu and D. R. Parhi, Navigation of underwater robot based on dynamically adaptive harmony search algorithm,

Memetic Comput. 8 (2016), 125–146.
[30] H.-w. Lin, Y. Wang and C. Dai, A swarm intelligence algorithm based on boundary mutation, in: Computational Intelligence

and Security (CIS), 2010 International Conference, Nanning, Guangxi Zhuang Autonomous Region, China, pp. 195–199,
IEEE, 2010.

[31] Z. Michalewicz, Genetic algorithms + data structures = evolution programs, 2nd extended ed., Springer-Verlag New York,
Inc., New York, NY, USA, 1994.

[32] Z. Michalewicz, T. Logan and S. Swaminathan, Evolutionary operators for continuous convex parameter spaces, in: Pro-
ceedings of the 3rd Annual conference on Evolutionary Programming, University of California, San Diego, USA, pp. 84–97,
World Scientific, 1994.

[33] S. Mirjalili and A. Lewis, The whale optimization algorithm, Adv. Eng. Software 95 (2016), 51–67.
[34] P. K. Mohanty and D. R. Parhi, A new hybrid optimization algorithm for multiple mobile robots navigation based on the

CS-ANFIS approach,Memetic Comput. 7 (2015), 255–273.
[35] H. Rakhshani and A. Rahati, Intelligent multiple search strategy cuckoo algorithm for numerical and engineering

optimization problems, Arabian J. Sci. Eng. 42 (2016), 1–27.
[36] M. Saraswathi, G. B. Murali and B. Deepak, Optimal path planning of mobile robot using hybrid cuckoo search-bat

algorithm, Procedia Comput. Sci. 133 (2018), 510–517.
[37] J. Toivanen, R. Makinen, J. Périaux and F. Cloud Cedex, Multidisciplinary shape optimization in aerodynamics and

electromagnetics using genetic algorithms, Intl J. Numer. Meth. Fluids 30 (1999), 149–159.

1062 | B.H. Abed-alguni and D.J. Paul: Cuckoo Search with Different Mutation Operators

[38] H. Wang and J.-H. Yi, An improved optimization method based on krill herd and artificial bee colony with information
exchange,Memetic Comput. 10 (2018), 177–198.

[39] G. Wang, L. Guo, A. H. Gandomi, L. Cao, A. H. Alavi, H. Duan and J. Li, Lévy-flight krill herd algorithm,Math. Problems Eng.
2013 (2013), 1–14.

[40] G.-G. Wang, A. H. Gandomi, X.-S. Yang and A. H. Alavi, A new hybrid method based on krill herd and cuckoo search for
global optimisation tasks, Int. J. Bio-Inspired Comput. 8 (2016), 286–299.

[41] G.-G. Wang, A. H. Gandomi, X. Zhao and H. C. E. Chu, Hybridizing harmony search algorithm with cuckoo search for global
numerical optimization, Soft Comput. 20 (2016), 273–285.

[42] X.-S. Yang and S. Deb, Cuckoo search via lévy flights, in:World Congress on Nature & Biologically Inspired Computing,
2009. NaBIC 2009, pp. 210–214, IEEE, 2009.

[43] X.-S. Yang and S. Deb, Engineering optimisation by cuckoo search, Int. J. Math. Modell. Numer. Optimisation 1 (2010),
330–343.

[44] M. Zhang, H. Wang, Z. Cui and J. Chen, Hybrid multi-objective cuckoo search with dynamical local search,Memetic
Comput. 10 (2017), 199–208.

	Hybridizing the Cuckoo Search Algorithm with Different Mutation Operators for Numerical Optimization Problems
	1 Introduction
	2 CS Algorithm
	3 Related Work
	4 Mutation Operators
	4.1 Random Mutation
	4.2 Boundary Mutation
	4.3 Non-Uniform Random Mutation
	4.4 MPT Mutation
	4.5 Power Mutation (PM)
	4.6 Highly Disruptive Polynomial (HDP) Mutation
	4.7 Pitch Adjustment
	4.8 Worst Case Analysis of Computational Complexity of Mutation Operators
	4.9 CS with Mutation

	5 Experiments
	5.1 Benchmark Functions
	5.2 Setup
	5.3 Comparison Results of Variations of CS
	5.4 Statistical Test Results
	5.5 Comparison Results of CS with Other Algorithms

	6 Conclusion

