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Abstract

To date there have been no reports of practical rotational grazing systems for the control of ovine

gastrointestinal nematodosis in cool temperate climates, despite their success in the humid

tropics. However there is anecdotal evidence that the intensive rotational grazing systems (such

as "cell grazing") that are gaining in popularity in these regions, offer significant control.

Intensive rotational grazing involves the use of large groups of animals at high stock densities

moving through a series of 20 to 40 paddocks at a rate dependant on the amount of feed on offer

and pasture growth rate (not based on rigid time periods). The grazing period generally ranges

from 2-3 days with rest periods of 40-90 days, resulting in paddocks being rested for 90-95% of

the year. The work contained in this thesis was conducted to investigate the merits of these

claims. The unifying hypothesis was that intensive rotational grazing reduces faecal worm egg

counts in sheep by interrupting the nematode Iifecycle in its free-living stages and that the

greatest effect will be on the blood-sucking parasite Haemonchus contortus. The work was

conducted on the Cicerone Project, a producer-led project comparing three different sheep

management systems in the New England Region of Northern NSW. The three management

systems were typical (TYP - moderate input, limited rotational grazing, graze periods average

53±0.1 days and rest periods average 78±10 days), high input (HI, high input, limited rotational

grazing, graze periods average 40±0.1 days, rest periods average 65±8 days) and intensive

rotational grazing (IRG, moderate input, short graze periods average 3±0.1 days, long rest

periods average 108±4 days).

Experiment I comprised a 2-year longitudinal study of faecal worm egg count (WEC) and

performance in lambs, hoggets and ewes of the three management groups. It revealed lower

Haemonchus contortus WEC and a markedly reduced number of anthelmintic treatments in

sheep on the IRG treatment (Chapter 3). The subsequent experiments were designed to tease out

the mechanisms behind this phenomenon. A fixed larval challenge study (Experiment 2, Chapter

4) showed that IRG sheep exhibited resistance to infection that was no better, and in two seasons

much worse, than sheep on the HI and CON treatments ruling out improved host resistance as

the factor mediating the effects of IRG. In contrast a tracer experiment investigating levels of

pasture contamination with infective larvae (Experiment 3, Chapter 5) and a study into the free

living ecology of Haemonchus contortlls on the Cicerone project (Experiment 4, Chapter 6)

demonstrated reduced pasture infectivity for all classes of stock on the IRG treatment for the 3

seasons of the year (winter, spring and summer) when the short graze periods and long rest

periods were maintained. The tracer studies and fixed larval challenge both show that the

dynamics of GIN epidemiology can change rapidly with changes in the rotations on the IRG
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system (longer graze periods of up to 30 days in April 2005) which reinforces the hypothesis that

GIN is reduced on IRG through interruption of the free-living stages of the parasitic lifecycle.

The ideal graze and rest periods for worm control fluctuate with weather conditions, during

warm, wet, summer months graze periods need to be around 3 days and rest periods around 60

80 days. In winter, graze periods can be lengthened to 7 days and rest periods lengthened to 100

days or more. The lower proportions of H. conforfus contributing to WEC on the IRG treatment

in Experiment I (Chapter 3) were also observed in the tracer experiment (Chapter 5) confirming

a differential effect of IRG on H. conforfus relative to Tric!zosfrongvlus spp. and Teladorsagia

circumcincfa. Experiment 4 (Chapter 6) demonstrated that the half-life of H. cOl1forfus infective

larvae on pasture was 19 days in summer meaning that rest periods on IRG in that season were

sufficient for most of the deposited larvae to have died off between grazings. There was also

very limited development of eggs to L3 for Haemonchus in spring and autumn but there were

recoveries of Trichostrongylus spp. and Teladorsagia circumcincfa infective larvae from faecal

culture in all seasons on IRG. Experiment 5 (Chapter 7) investigated the production and

economic impacts of worm infection on the different management systems and further confirmed

the high level of control of GIN achieved on the IRG system, with no production losses

attributable to nematodes on IRG whilst bodyweights, fat scores and fleece weights were higher

in 'worm-free' sheep on the HI and TYP management systems. Levels of GIN were very similar

on the TYP and HI treatments with no consistent differences between them across the different

experiments.

The main conclusions were that intensive rotational grazing markedly reduces faecal worm egg

counts in sheep and the level of anthelmintic intervention required. It does so by breaking the

nematode lifecycle in two ways: i) short graze periods (2 to 4.5 days) prevent autoinfection from

the current graze period, and ii) long rest periods (80 to 140 days) ensure most of larvae that

developed from the last grazing incident have died before sheep return to graze. The improved

control of GIN on IRG was not associated with improved performance when compared to HI and

TYP managed sheep. The implementation of IRG on the Cicerone Project requires fine-tuning to

obtain the full benefits of better nematode control with improved productivity. Intensive

rotational grazing was most effective against Haemonchus contortus due to its susceptibility to

desiccation and cold in its egg and larval stages. The effect of IRG on Trichostrongylus spp. and

Teladorsagia circumcincta was less pronounced as these worm species have the ability to

survive as eggs in drier and colder conditions than H. contortus. Therefore, the unifying

hypothesis was accepted.
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GENERAL INTRODUCTION

General Introduction

Gastrointestinal nematodosis (GIN) is the principal disease of sheep in Australia and world wide.

In the most recent published estimate of its cost to the Australian sheep industry GIN was

estimated at $222 million dollars per year and it caused the greatest econonlic loss of all sheep

diseases (McLeod 1995). Chemical anthelmintic treatments have been the principal method of

worm control over the last 40 years, however, resistance has developed to all major classes of

anthelnlintic compounds, with the possible exception of Napthalophos, an organophosphate, and

is rapidly worsening. The developnlent of new anthelnlintic compounds is constrained by the

relatively small size of the worldwide market for sheep anthelmintics and the lack of significant

anthelmintic resistance problems in the much bigger cattle market. Hence, alternative control

methods are required to form part of an integrated approach to gastrointestinal nematode control.

Grazing management is an obvious alternative to anthelmintic treatment and has been used with

mixed results to date. Successful grazing management strategies include dilution strategies such

as mixed grazing of susceptible sheep classes with non-susceptible animals (eg: cattle or older

dry sheep) and preventative strategies such as grazing cattle alternately with sheep to "clean' the

pasture of infective larval nematodes. Our understanding of the ecology of the free-living stages

of parasitic nematodes also suggests that rotational grazing systems could as~ist in the control of

GIN in sheep by interrupting the nematode lifecycle (Donald 1967). However, up to the late

1980s, there was little success in developing and implementing practical rotational grazing

systems that reduced GIN. Early studies on rotational grazing in cool temperate environments

involved grazing periods of 7 days and rest periods between grazing events ranging from 3 to 7

weeks (Morgan 1933; Morgan and Oldham 1934; Roe et al. 1959; Gibson and Everett 1968).

These rotations, however, were ideal for the proliferation of parasitic nematodes allowing both

autoinfection from the current grazing period in summer months, and re-grazing at the peak of L3

availability. Haemonchus contortus will develop from egg to L3 in 3-5 days at 25-26°C but will

take 15-30 days at 10-11 °C (Rose 1963). Season therefore determines the length of safe grazing

periods that prevent autoinfection. The tinle of peak L3 on pasture in the Sydney Basin, NSW is

generally around 35 days after deposition with smaller peaks at days 14 and 28 (Donald 1967).

This author concluded that the spelling period for a paddock should be no less than 8 weeks to

enable a significant reduction in pasture infectivity. This may also vary with season as L3 on

pasture survive longer in cooler conditions than warm or hot conditions (Dinaburg 1944a;

Thomas and Boag 1972; Southcott et al. 1976; Besier and Dunsmore 1993a).
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Donald (1967) thought that such long rest periods were inefficient in terms of optimal pasture

utilisation. This is supported to some extent by Robertson and Fraser ( 1933) using much longer

rest periods than those suggested by Donald. Their study in north Scotland achieved control of

GIN through what they termed 'progressional grazing' and was especially effective in reducing

the incidence of H. cOlltortus. The rotation employed for 'progressional grazing' was 10 days of

grazing followed by 100 days of rest. The authors concluded that 10 days was a sufficiently safe

period of time for grazing before eggs reached the infective stage. However, over-mature grass

undermined the success of 'progressional grazing' with sheep failing to maintain body weight

despite lower parasite burdens.

Some 60 years after Robertson and Fraser (1933) an effective rapid rotational grazing system

was devised by Barger et al. (1994) for small ruminants in the humid tropics based on the

findings of Banks et al.(l990) in Fiji on the rates of larval survival and mortality in hot, humid

environments. The system comprised a grazing period of 3.5 days and a rest period of 31.5 days

and has been used with success throughout the tropics in both sheep and goats (Barger et al.

1994; Chandrawathani et al. 1995; Sani et al. 1996; Gray et al. 2000). However, Banks et al.

(1990) and Barger et al. (1994) suggest that rapid rotational grazing would not be economically

viable in cooler climates, presumably because the rigid application of timing of graze and rest

periods would be unsuitable given the seasonal variability of temperature and rainfall which are

the major drivers of development and survival of the free-living stages of parasitic nematodes in

these environments.

In the early 1990s in the temperate regions of Australia, intensive rotational grazing systems

such as "cell grazing' and "holistic grazing' were introduced on the basis of improved pasture

and animal performance. These systems claimed to increase pasture biodiversity, ground cover,

and the ratio of palatable to non-palatable plant species, and improve soil structure (Earl and

Jones 1996; McCosker 2000; Sparke 2000). They involve the use of large groups of animals at

high stock densities moving through a series of 20 to 40 paddocks at a rate dependant on the

amount of feed on offer and pasture growth rate (not based on rigid time periods). The grazing

period generally ranges from 1-3 days with rest periods of 40-90 days, resulting in paddocks

being rested for 90-950/0 of the year (Earl and Jones 1996). This type of grazing management has

become increasingly used throughout Australia with its highest prevalence being in the New

England region on the Northern Tablelands of NSW (Reeve and Thompson 2005). The

consequences of such intensive grazing systems on GIN in sheep in cool temperate climates have
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not been documented despite considerable anecdotal evidence of marked reductions in faecal

worm egg counts (WEC) and the number of anthelmintic treatments required.

The Cicerone project is a farmer-led project comparing three sheep management systems in the

New England region of Northern NSW. The 3 management systems are Typical (TYP), High

Input (HI), and Intensive Rotational Grazing (lRG) and are detailed later in the thesis. There was

evidence that sheep on the IRG management system, had lower faecal worm egg counts than

those run with slower rotational grazing management on the TYP and HI systems. A

retrospective analysis of the routine faecal worm egg counts under the three management

systems strongly supported the proposition that intensive rotational grazing reduced GIN (Healey

et al. 2004). This doctoral study was designed to confirm this finding in a controlled, balanced

study and to:

determine on which classes of stock it was operative

determine which times of the year it is operative

determine which parasite species are affected by it

uncover the underlying mechanisms by which its was working

The study also aimed to investigate what differences, if any there were in GIN between the TYP

and HI management systems on the Cicerone project.

This thesis details the epidemiology of GIN on the Cicerone Project farmlets dissecting the host.

environment and pathogen effects on the disease under the 3 different management systems. A

two-year longitudinal study (Experiment I) aims to confirm the effect of the three management

systems on GIN and animal production and provide insight into possible mechanisms. A fixed

larval challenge study (Experiment 2) investigates host effects on GIN while the pasture larval

contamination is investigated in a tracer sheep experiment (Experiment 3). The development and

survival of free-living stages of Haemonchus contortus on the Cicerone project is investigated in

a plot study (Experiment 4). Finally, the cost of GIN on animal performance is investigated by

comparison of ·worm-free ' sheep with those managed for worm control within each

management system in Experiment 5. Grazing systems in general are not designed for worm

control, so an holistic approach has been adopted with animal performance measured in this

doctoral study whilst a fellow doctoral student, Libuseng Shakhane, has investigated the pasture

aspects.

The general hypothesis under test in this thesis is that intensive rotational grazing reduces faecal

worm egg count in sheep through interruption of the nematode lifecycle in its free-living stages.
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Subsidiary hypotheses are that the reductions in WEC associated with IRG will be greatest for

Haemonchus contortus due to the greater susceptibility of its free-living stages to desiccation and

cold. and that WEC will be higher in the high input grazing system than the typical grazIng

system.
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