
Chapter 10

Conclusion

Dimensionality reduction is an important preprocessing step in machine learning applications. It

involves searching for a more compact representation for the data than their original forms. Most

current methods focus on vectorial data with the assumption that the data are residing in a normed

vector space. However, there are significant amount of real world data that are non-vectorial,

with no convenient vector representations. This kind of data are often more complicated and

pose great challenges to the subsequent data processing algorithms. Often, one embeds these

data into a low dimensional vector space (usually Euclidean) to facilitate subsequent processing

that include classification, visualization, etc. This procedure resembles the task of DR for normal

vectorial data. As such, we refer to this as the DR for non-vectorial data in this thesis.

This thesis addresses the DR problem for non-vectorial data by resorting to measurements

matching which is a powerful approach adopted by many DR algorithms. To avoid the excessive

loss of information due to the vectorization procedure, we take advantage of the fact that a kernel

can be a suitable similarity estimator for non-vectorial data. In fact, there are a considerable

number of kernels for data from different fields such as bioinformatics, image processing, text

categorization, data mining, etc. Apparently, kernels can be utilized to describe the similarities

among the input data. The questions remained as to how to represent the relationships among

the embeddings in the latent space, and how to implement match the similarity measures, one for

the input and another for the embeddings.
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After proposed the SCIGV kernel, a specially designed kernel for shapes and images, we

presented the Kernel Laplacian Eigenmaps where in latent space the Euclidean distance is used

as the measurement. KLE shares similar structure to that of Laplacian Eigenmaps in that the

matching is done by minimizing the trace of the product of two matrices and the solution is

obtained by referring to graph Laplacian and spectral decomposition. The kernel Gram matrix

in KLE in the input space replaces the proximity matrix in LE whence non-vectorial data can be

handled by this algorithm.

However, KLE has its limitation. This comes from the choice of the measure for the em­

beddings. Kernels is highly nonlinear, but it has been simply matched to the Euclidean distance

which is not ideal in capturing the nonlinearity. This idea inspired the Twin Kernel Embedding

(TKE) whose relational descriptor for embeddings is captured by another kernel. This kernel is

a homogeneous kernel in order to bridge the relation between distance and kernel. Typically,

it is an RBF kernel. The virtue of the homogeneous kernel is that it is constructed on distance

(normally Euclidean) however expressed as a nonlinear kernel. It is this dual property that en­

sures both the geometrical interpretation and the desired nonlinearity. Matching the kernel on

the input data with the kernel on the embeddings preserves the symmetry on the structural level

from which nonlinearity in the input can be more faithfully maintained. This choice increases the

complexity of the algorithm. The matching was still accomplished by trace of the product of two

matrices in this case they are kernel Gram matrices, and the regularization terms on the RBF ker­

nel and the embeddings were involved to make the objective function well defined. Due to high

nonlinearity and non-convexity in the results, the gradient descent based searching technique is

applied in the optimization procedure.

Behind the design of these two algorithms lies the general design method for DR algorithms

that is based upon the measurement matching framework. The measures for both data and their

corresponding embeddings and the matching functional are the three major parts of the DR which

can be devised separately to obtain different algorithms. The versatility of this framework can

be witnessed from quite a few of existing DR algorithms that can be interpreted by it. These

algorithms include both deterministic and probabilistic models. They can handle either vectorial

or non-vectorial data or both. Some of them originate from manifold estimation, but others from
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graph theory. Although they look different, most end up with the common structure that falls

into the measurement matching framework.

We can further enrich the content of the framework by introducing other elements that are

common across DR methods including the backward/forward mapping functions between data

and embeddings, (semi)supervised setting, etc. BCTKE and RCTKE are practical examples of

applying backward mapping to enhance the host DR algorithms. In order not to compromise

the non-vectorial applicability, we presented the mapping function derived from kernel machine

and LS-SVM core part and incorporated them into the original TKE by substitution (BCTKE)

or via the regularization terms (RCTKE). The backward mapping function constructs a relation

between input data and their embeddings, thus solving the out-of-sample problem of TKE, en­

abling this algorithm to be applied to a much wider range of applications such as classification,

information retrieval, patter recognition, etc. Intuitively, the mapping functions can be embedded

in other host algorithms to enable them to deal with novel samples. The only requirement is that

the optimization problem is still solvable after the reconstruction. As far as (semi)supervised

learning is concerned, we also present solution on TKE. The revised TKE objective function

reflected the consideration that samples from the same class or cluster should be close and far

away otherwise. This can be further adopted in BCTKE and RCTKE accordingly and the learnt

mapping function would consequently be more meaningful in favor of better separability. Inter­

estingly, the method used in supervised TKE generated new method like [114] for vectorial data

which is is confirmed by experiments to be more robust and powerful than LOA.

Besides presenting the design of DR algorithms and the TKE family (including BCTKE,

RCTKE, we simply call them TKE algorithms), we also studied several important aspects of

algorithms such as computational complexity, convergence, model selection, initialization (re­

quired by gradient based optimization) mainly empirically by experimental results.

TKE algorithms cost more than other algorithms solved by eigen-decompositions from the

nature of the non-convexity and iterative searching. However, as shown in the experiments, the

convergence is very fast at the beginning and level off gradually afterwards. As a result, we could

stop the optimization in several hundreds of iterations or less. In each iteration, the cost of the

TKE algorithms is comparable to those of spectral methods. Similar to these other algorithms,
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the complexity of TKE algorithms grows with the number of the data obtained as a result of

the pairwise similarity matching. It becomes extremely high when N approaching the order

of thousands. In some applications such as web mining, millions of pages will prohibit these

algorithms. It is necessary to tackle this problem in future research.

It has been shown in this thesis that the TKE algorithms are quite insensitive to the selection

of the regularization parameters. However, the size of the neighborhood, i.e. n in nearest neigh­

bor filtering will influence the result greatly. In practice, n is better to be less than the number

of samples in each class. Non-parametric version of the TKE algorithms would be beneficial by

freeing them from the need for choosing n. This will be investigated in near future.

Currently TKE algorithms are initialized by KPCA, KLE if the targets are non-vectorial

objects. We have studied the cases which started from random initialization. It indicated that the

uniformly distributed initial embeddings can be possibly adjusted to the state that is similar to the

results initialized by KPCA or KLE. This behavior is worth further study since it may suggest

the power of TKE algorithms in preserving the relational structure of the data and be helpful in

understanding the distribution of the optimal solutions.

For constraints in DR, we have seen some typical mapping functions: linear transformation,

RBF neural network, MLP and kernel machine. The first one is widely used in linear methods

because it is simple and fast. The last one corresponds to kernel subspace projection designed for

non-vectorial data. A natural question is which is better, or which one truly reveals the relation

between original data and their embeddings. Even the existence of such relation is doubtful.

It is reasonable to assume that the data are parameterized by a few degree of freedoms in a

much lower dimensional space, or in other words, there is a function mapping low dimensional

coordinates to high dimensional space. This is the basic assumption of the DR methods. But

it is not clear whether the corresponding inverse function exists or even if it is there, whether

the listed mapping functions before are good approximations. We want to know the form of the

inverse functions and obtain all the coefficients that is to recover the function explicitly. The

understanding of this problem touches the core of the DR itself. This can only be fulfilled based

on the accumulating previous research and exploring new knowledge.

With regard to the research of the DR algorithms, we cannot deny there are still many other
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design methods and tools can be borrowed such as neural networks, regression, etc. We can look

at DR problem from different points of view. For example, we can focus on the classification

performance and consider the combination of DR with classifiers which leads to hybrids. We

can consider the hierarchical structure by stacking basic DR algorithms to reduce the complexity

or to realize different treatment to different division of the data. We are also be able to take

the mixture model since the data may lie on several separate manifold instead of one. Other

than these, the evaluation of the performance of different DR algorithms is of significance in DR

research. The existing evaluation methods can only provide limited assessment in several aspects,

such as the quality of the clusters, classification performance, etc. A universal overall evaluation

standard is required. Finally, we also hope to extend the application of TKE algorithms to real

world applications and develop new algorithms which is closer to the ground truth of the intrinsic

dimensionality and that can be computed efficiently.
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