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Abstract

Dimensionality Reduction (DR) is an important step in many advanced applications such as
exploratory data analysis and manifold learning. Its main goal is to discover the mappings of
the input data in a much lower dimensional space or the so-called latent space without incurring

unnecessary information loss.

In most existing DR algorithms, the main objective is to preserve relational structure among
objects of the input space in the latent space by minimizing the inconsistency between two sim-
ilarity/dissimilarity measures, one for the input data and the other for the embedded data, via a
separate matching objective function. Based on this observation, a new dimensionality reduc-
tion method called Twin Kernel Embedding (TKE) is proposed. TKE addresses the problem of
embedding non-vectorial data that is difficult for conventional methods in practice due to the
lack of efficient vectorial representation. TKE solves this problem by minimizing the inconsis-
tency between the similarity measures captured respectively by their kernel Gram matrices in the
two spaces. This algorithm is proven to be effective on some real world data sets and has been
successfully applied to protein visualization, kernel learning, fingerprint classification etc. TKE
is further extended to novel samples by introducing the backward mapping which is incorpo-
rated into the objective function as either substitution of all embeddings or regularization terms
which generate BCTKE and RCTKE algorithms respectively. Intuitively, the mapping function
can be integrated into any other host DR algorithms as a solution to the so-called out-of-sample

problem.

This thesis starts with the analysis of the existing DR methods. Based on the understanding

of their common features, we will show the development of the TKE algorithms and the details

vii



on their behaviors at length. We present not only a series of new algorithms, but also the aspects
of the design including the origin of the ideas, observations and implementation. This research

provides a stepping stone for new algorithmic design in Dimensionality Reduction.
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