DIMENSIONALITY REDUCTION FOR NON-VECTORIAL DATA

By

Yi Guo

B. Eng., M. Eng.

School of Science and Technology University of New England

> A thesis submitted for the degree of **PhD of Computer Science** of University of New England *January 2008*

DECLARATION

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree.

I certify that to the best of my knowledge, any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

Acknowledgements

I would like to thank my principal supervisor Associate Professor Junbin Gao without whom the work of the thesis would have been impossible. Though he left University of New England in July 2005, his support and supervision stayed with me over the past three years. We had thousands of emails and telephone calls with ideas, discussions, encouragement and so on. I really appreciate his insights into the area of machine learning, especially in statistical machine learning, sharing with me his abundant knowledge of mathematics and computer science. I am grateful for his generosity and his passion for education. Most of our research arose from his brilliant ideas. He brought me into this wonderful field and, with his help, my understanding and perception of dimensionality reduction problems have been gradually formed.

I would also like to thank my co-supervisor Dr Paul Kwan. I have benefited greatly from his instruction in the methodology of research, from his assistance in writing papers and for his generous support of my research and everyday living. He always encouraged me to present our latest results and created great opportunities for me to introduce our algorithms, so that I can now stand before a platform with confidence. Sincere thanks to Dr Xiaodi Huang and the mathematics people in our school, Professor Yihong Du, Dr. Shusen Yan and Dr. Adam Harris. The discussions on mathematical issues with them helped me understand the existing methods more clearly. Many thanks to Professor A. S. M. Sajeev, Mr Norman Gaywood and Mr Saint Ashley. They provided me with extra computational support so that the large numbers of experiments could be performed in parallel. I would like to thank Dr Neil D. Lawrence for sharing his GPLVM code, which was partly used in our algorithms.

The research was funded by the International Postgraduate Research Scholarship (IPRS) and

the University of New England Research Assistance (UNERA). I acknowledge the support from the research office. They made the research possible.

Finally, I want to thank sincerely my clear-sighted and strong-minded wife, Huiling Yang, who never took me away from my work and supported me all along. I am also very grateful to our parents and sisters. Their love always support me in completing my study.

Publications

Journal Papers

Yi Guo, Junbin Gao, and Paul W. Kwan. Visualization of protein structure relationships using constrained twin kernel embedding. *International Journal of Biomedical Science and Engineering*, submitted, 2008.

Yi Guo, Junbin Gao, and Paul W. Kwan. Twin kernel embedding. *IEEE Transaction of Pattern Analysis and Machine Intelligence*, to appear, 2008.

Referenced conference proceedings

Yi Guo, Junbin Gao, and Paul W. Kwan. Twin Kernel Embedding with back constraints. In *HPDM in ICDM*, 2007.

Yi Guo, Junbin Gao, and Paul W. Kwan. Learning optimal kernel from distance metric in twin kernel embedding for dimensionality reduction and visualization of fingerprints. In *International Conference on Advanced Data Mining and Applications*, 2007.

Yi Guo, Junbin Gao, Paul W. Kwan, and Kevin X. Hou. Visualization of protein structure relationships using twin kernel embedding. In *International Conference on Bioinformatics and Biomedical Engineering*, pages 1–4.

Yi Guo, Junbin Gao, and Paul W. Kwan. Learning out-of-sample mapping in non-vectorial data dimensionality reduction using constrained twin kernel embedding. In *International Conference on Machine Learning and Cybernetics*, 2007.

Yi Guo, Junbin Gao, and Paul W. Kwan. Visualization of non-vectorial data using twin kernel embedding. In *First International Workshop on Integrating AI and Data Mining*, volume 0,

pages 11-17, 2006.

Yi Guo, Junbin Gao, and Paul W. Kwan. Kernel Laplacian eigenmaps for visualization of nonvectorial data. In *Lecture Notes on Artificial Intelligence*, volume 4304, pages 1179–1183, 2006. Yi Guo and Junbin Gao. An integration of shape context and semigroup kernel in image classification. In *International Conference on Machine Learning and Cybernetics*, 2007.

Yi Guo and Junbin Gao. Manifolds of bag of pixels: A better representation for image recognition? In 2006 IEEE Conference on Systems, Man, and Cybernetics, pages 3618–3622, Taipei, October 8-11 2006. IEEE, SMC society, IEEE.

Abstract

Dimensionality Reduction (DR) is an important step in many advanced applications such as exploratory data analysis and manifold learning. Its main goal is to discover the mappings of the input data in a much lower dimensional space or the so-called latent space without incurring unnecessary information loss.

In most existing DR algorithms, the main objective is to preserve relational structure among objects of the input space in the latent space by minimizing the inconsistency between two similarity/dissimilarity measures, one for the input data and the other for the embedded data, via a separate matching objective function. Based on this observation, a new dimensionality reduction method called Twin Kernel Embedding (TKE) is proposed. TKE addresses the problem of embedding non-vectorial data that is difficult for conventional methods in practice due to the lack of efficient vectorial representation. TKE solves this problem by minimizing the inconsistency between the similarity measures captured respectively by their kernel Gram matrices in the two spaces. This algorithm is proven to be effective on some real world data sets and has been successfully applied to protein visualization, kernel learning, fingerprint classification etc. TKE is further extended to novel samples by introducing the backward mapping which is incorporated into the objective function as either substitution of all embeddings or regularization terms which generate BCTKE and RCTKE algorithms as a solution to the so-called out-of-sample problem.

This thesis starts with the analysis of the existing DR methods. Based on the understanding of their common features, we will show the development of the TKE algorithms and the details

on their behaviors at length. We present not only a series of new algorithms, but also the aspects of the design including the origin of the ideas, observations and implementation. This research provides a stepping stone for new algorithmic design in Dimensionality Reduction.

Contents

Ac	iii								
Pu	Publications								
Abstract									
1	Intro	oduction	1						
2	Liter	ature Review	6						
	2.1	Overview	6						
	2.2	Taxonomy of DR	7						
	2.3	Principal Component Analysis	9						
	2.4	Multi-Dimensional Scaling	12						
	2.5	Laplacian Eigenmaps	15						
	2.6	Isomap	17						
	2.7	Locally Linear Embedding	18						
	2.8	Hessian Locally Linear Embedding	20						
	2.9	Local Tangent Space Alignment	21						
	2.10	Gaussian Processes Latent Variable Model	22						
	2.11	Kernel Principal Component Analysis	23						
	2.12	Summary	25						

3	Shap	e Context based IGV Kernel	27
	3.1	Introduction	27
	3.2	A brief review of shape context and semigroup kernel	29
		3.2.1 Shape distance based on shape context	29
		3.2.2 Semigroup kernels	30
	3.3	Integration	31
	3.4	Experimental Evaluation	35
	3.5	Summary	38
4	Keri	el Laplacian Eigenmaps	41
	4.1	Introduction	41
	4.2	Kernel Laplacian Eigenmaps	43
	4.3	Experimental Evaluation	46
	4.4	Summary	47
5	Twin	Kernel Embedding	51
	5.1	Introduction	51
	5.2	Measurement Matching Framework	52
		5.2.1 A Unified Framework	52
		5.2.2 The Matching Objective Functional	54
	5.3	Reinterpreting Several DR Methods	55
		5.3.1 MDS	56
		5.3.2 PCA and KPCA	56
		5.3.3 Laplacian Eigenmaps and KLE	56
		5.3.4 Isomap	57
		5.3.5 Locally Linear Embedding	57
		5.3.6 Gaussian Processes Latent Variable Model	58
		5.3.7 Brief Summary	58
	5.4	Twin Kernel Embedding	59

		5.4.1	Kernel on Embedded Data and Similarity Matching	9
		5.4.2	Optimization	1
		5.4.3	Implementation	4
		5.4.4	Some Remarks on TKE	5
	5.5	Experim	mental Results	7
		5.5.1	Parameters Setting	7
		5.5.2	Manifold learning with TKE	7
		5.5.3	Handwritten Digits Visualization	8
		5.5.4	Visualizing Texts	0
		5.5.5	Visualizing Proteins	7
	5.6	An Em	pirical Analysis on TKE Algorithm	3
		5.6.1	Model Selection	3
		5.6.2	Computational Cost	6
		5.6.3	The Influence of the Initialization	9
		5.6.4	Extensions of TKE	0
	5.7	Summa	ary	3
6	Lear	ning O	ptimal Kernel with TKE 9	5
	6.1	Biome	tric data and High Dimensionality Challenge	5
	6.2	Related	d Work	7
	6.3	From I	Distance to Kernel	9
	6.4	Experi	mental Results	1
	6.5	Summa	ary	5
7	Twi	Korno	l Embedding with Back Constraints 10	7
/	7.1		-sample Extension, Constraints and Locality Preserving	
	7.2		Review of Constraints in DR Algorithms	
	1.2	7.2.1	Locality Preserving Projections	
		7.2.1	Neighborhood Preserving Embedding	
		1.2.2	Reighborhoud i reserving Enfocuting	U

		7.2.3	GPLVM with Back Constraints
	7.3	Twin K	Xernel Embedding with Back Constraints
	7.4	Experi	mental Results
		7.4.1	MNIST Handwritten Digits
		7.4.2	Text Classification Comparison
		7.4.3	Image Manifold Learning
		7.4.4	Refinement Strategy for BCTKE
	7.5	Summa	ary
8	Twi	n Kerne	l Embedding with Relaxed Constraint 131
	8.1	TKE w	vith relaxed constraints
		8.1.1	Approach 1: Sum-of-square Error
		8.1.2	Approach 2: Incorporate LS-SVM objective function
	8.2	Experi	mental Results
		8.2.1	Parameters Setting
		8.2.2	Reuters Texts
		8.2.3	Proteins
	8.3	Summ	ary
9	Exa	miner-C	Centric Learning Framework 140
	9.1	Introdu	action
	9.2	Overvi	ew Of Learning Framework
	9.3	Extrac	tion Of Spectral Features
		9.3.1	Locate Reference Point
		9.3.2	Extract and Tessellate Region of Interest
		9.3.3	Spectral Decomposition using Gabor Filters
		9.3.4	Compute the FingerCode
	9.4	Learni	ng Examiner-Centric Semantic Space
		9.4.1	Relevance Feedback

		9.4.2	Dimen	siona	lity	Re	du	ctio	on					•	 •		•	•				•		•		•	. 1	49
	9.5	Experin	nental I	Evalu	atio	n								•	 •		•	•	•				•	•			. 1	52
	9.6	Summa	ary							·	•			•			•	•		•	•			•			. 1	54
10	Conc	clusion																									1	.55
Bil	oliogra	aphy																									1	76
A	Deriv	vatives																									1	77
	A.1	Derivat	ives in	TKE		•					•			•												•	. 1	77
	A.2	Derivat	ives in	BCTH	KE											·		• •		•							. 1	79
B	Matl	ab Cod	e for T	KE a	nd l	BC	TK	E																			1	82
	B.1	Notes f	for the c	ode.																						•	. 1	82
	B.2	tke.m																								•	. 1	82
	B.3	Filterin	gKern.1	m		×									 •											•	. 1	85
	B.4	adjgrap	oh.m .					•			•	•••	•					• •				• •			• •	•	. 1	85
	B.5	TKEO	ptions.n	a				•																			. 1	87
	B.6	TKEC	reate.m										•		 •	•				•				•	• •		. 1	88
	B.7	TKEO	ptimise.	.m											 •		•								• •		. 1	90
	B.8	TKEE	ktractPa	ram.r	n.									•									•		• •		. 1	91
	B.9	TKEE	kpandPa	aram.1	m.	•		•			•														• •		. 1	91
	B.10	GenLa	bels.m			•											•		•			• •		•	•		. 1	92
	B.11	knnrela	abel.m												 												. 1	93

List of Tables

2.1	Notation conventions used in this thesis 7
3.1	Comparison of error rate of different methods. SCIGV-K is the SCIGV kernel
	and IGV-K the IGV kernel
5.1	Methods re-interpreted by the measurement matching framework. $\mathbf{D}_{\mathbf{y}} = \{ \ \mathbf{y}_i - \mathbf{y}_i \ \mathbf{y}_i - \mathbf{y}_i \}$
	$\mathbf{y}_{j}\ ^{2}$, $\mathbf{D}_{\mathbf{x}} = \{\ \mathbf{x}_{i} - \mathbf{x}_{j}\ ^{2}\}$. We use more general forms of PCA and LE where
	the kernel Gram matrix replaces the inner product matrix and weight matrix in
	PCA and LE respectively
5.2	Comparison of 1NN classification errors of different algorithms. TKE with linear
	kernel outperforms others from this point of view
7.1	Comparison of 1NN classification errors of different algorithms. BCTKE out-
	performs others from this point of view
7.2	Comparison of 1NN classification errors of different algorithms in prediction of
	the embeddings for new data. BCTKE is the best and BCGP has comparable
	performance
9.1	Pseudo code of relevance feedback procedure
9.2	Comparison of He et al. (2004) [55]'s dimensionality reduction procedure and
	the one adopted in this research
9.3	Comparing classification quality between baseline, semantic space in 2-dim be-
	fore and after relevance feedback

List of Figures

1.1	An illustration of dimensionality reduction. 100 1's and 0's are plotted here (50	
	each) to show the relational structure of these digits	2
3.1	The weighted list of components.	32
3.2	The performance of the IGV kernel on translation of images	33
3.3	Part of training data	36
3.4	The error rate of different α_1 and α_2 in $[0, 2] \times [0, 2]$.	37
3.5	The Gram matrices.	39
4.1	The comparison of the performance of the KLE using SCIGV kernel and original	
	LE	48
4.2	The effects of the value of n in KLE	49
5.1	The mechanism behind measurement matching. $\mathbf{M_y}$ and $\mathbf{M_x}$ are similarity/dissi	arity
	measures for the input and the embeddings respectively. They are matched by	
	the matching objective functional C_o to ensure that the similarity/dissimilarity	
	structure in \mathcal{Y} is optimally preserved in \mathcal{X}	53
5.2	Comparing TKE with other algorithms on synthetic data (swiss roll)	69
5.3	The result of different algorithms on MNIST handwritten digits database (part 1).	71
5.4	The result of different algorithms on MNIST handwritten digits database (part 2).	72
5.5	The comparison of the purity of different algorithms on different data sets. Hor-	
	izontal axis is the size of the neighborhood and vertical axis is purity.	73
5.6	The results on text data.	76
5.7	Visualization results of protein structures	79

5.8	The results of other methods using the decomposition of the MAMMOTH kernel	81
5.9	The result of TKE with different kernels	82
5.10	The 1NN error rate against different regularization parameters	85
5.11	The effect of different n to TKE and KLE	86
5.12	The convergence of the objective function	88
5.13	The convergence of the 1NN error rate.	88
5.14	The effect of different initialization (part 1)	91
5.15	The effect of different initialization (part 2)	92
6.1	Fingerprint with minutiae marked.	97
6.2	Fingerprints of 10 different subjects	101
6.3	Visualization of fingerprints using TKE and KLE.	103
6.4	Kernel Gram matrices	104
6.5	SVM and Kmeans on the embedded data	106
7.1	The best results of different DR algorithms (in the sense of minimum 1NN clas-	
	sification errors) on handwritten digits database. All the figures use the same	
	symbols as shown in the legend of figure (b). Visually, the BCTKE, TKE and	
	BCGP have the best cluster structure.	118
7.2	BCTKE in prediction and comparison with other methods. The results of dif-	
	ferent algorithms are organized in rows. From top to bottom, they are BCTKE,	
	BCGP, LPP (with $n = 4$) and NPE (with $n = 5$). The columns are the results of	
	different algorithms on different sets. They are training set, test set and the union	
	of training and test set from left to right. All the figures share the same legend	
	as shown in the figure at the top left corner. The results presented here are also	
	optimized with respect to the 1NN classification errors on the union of training	
	set and test set as discussed in the last sub-section. The 1NN classification errors	
	are compared in Table 7.2.	120
7.3	The performance comparison of BCTKE and LPP on Reuters-21578 text classi-	
	fication. The mean of different kNN classification error rates is plotted as lines	
	and standard deviation as little bars.	122

7.4	The embeddings of faces in 2D latent space
7.5	The results of the refined BCTKE on the first data set. All the figures use the
	same symbols as shown in the legend of figure (a)
7.6	The results of the refined BCTKE on the second data set with circles for coffee,
	pluses for <i>interest</i> and arrows for <i>corn</i>
7.7	The results of other algorithms. (a), (b) are the TKE and KPCA on the first data
	set (treating training set and test set altogether, see (a) in figure 7.5 for symbols);
	(c), (d) are the TKE and KLE on the entire second data set using same symbols
	as figure 7.6
8.1	The results on Reuters texts
8.2	The result of TKE and KPCA with MAMOTH kernel
8.3	The result of RCTKE with MAMOTH kernel
9.1	The Learning Framework showing the major components, Features Extraction
	and Semantic Space Learning. Semantic Space Learning is in turn comprised by
	Relevance feedback and Dimensionality reduction modules
9.2	Extraction of Spectral Features by multispectral decomposition using a bank of
	Gabor filters aligned in eight different directions including 0°, 22.5°, 45°, 67.5°,
	90°, 112.5°, 135°, 157.5°. All images are shown in half their original sizes 146
9.3	Semantic space embedded in two dimensions by TKE before and after 50, 100,
	150 and 200 relevance feedback iterations
A.1	The organization of the partial derivatives in K wrt. X