
Chapter 8

Twin Kernel Embedding with Relaxed

Constraint

In the last chapter, we introduced a mapping function f : Y ~ X explicitly to the TKE and

learned the mapping function through the optimization procedure. For new data, the correspond­

ing low dimensional x can be easily found by x = f (y). Other DR methods such as LPP, NPE,

BCGP, ONPP [69, 70] adopted the same approach. Notice that in actual implementation, the

common way is to embed the mapping function into the algorithm by substituting every x by

f (y) and optimizing f (or the parameters in f) instead of x. Another possible approach is to

introduce a regularizer reflecting the relationship between input and output represented by the

mapping function. By doing so, the constraints between input data and their embeddings can be

relaxed a bit thus leading to a smooth mapping. We apply this idea to the TKE in this chapter

by defining mapping functions which will be incorporated in the TKE objective function as reg­

ularization terms. The mapping functions are derived from kernel feature mapping and the core

part of Least Squares Support Vector Machines (LS-SVM). These mapping functions make use

of kernel function so that non-vectorial data will be applicable. Moreover, the mapping function

will also enable the TKE to handle new data as BCTKE whence its application can be extended

greatly.
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8.1 TKE with relaxed constraints

8.1.1 Approach 1: Sum-or-square Error

We first consider a simple mapping function derived from kernel machine [120] which is the one

used in BCTKE

(8.1)
m

where am/s are the coefficients to be determined. We let Xij = fj(Yi) and Xij is the jth com­

ponent of Xi. The mapping function is parameterized by am/s which should be determined

according to some criteria.

As mentioned before, we can substitute the form of Xij into objective function of TKE as

what have been done in BCTKE to optimize ai/s rather than Xi. Actually, it can be included in

TKE as a regularization term in minimization and therefore relax the constraint a little to smooth

the mapping. Further, the regularization term can reflect the relation between input data and

their embeddings. The simplest way is to minimize the sum-of-square error between outputs

of mapping function and the targets, that is E = ~ Lij(Xij - fj(Yi)?' Therefore, the revised

objective function to be minimized is

L = - L Ky(Yi' Yj)Kx(X" Xj) +),k L Kx(Xi, Xj)2 + ~ L Ilxi - f(Yi) 11 2 + ),2" L C';j (8.2)
i,j ij i ij

[fl(Yi),' .. ,fd(Yi)]T and the coefficient Aa governs the relative importance of

the regularization term on aij's. The interpretation of the last term is similar to the shrinkage in

statistics literature or weight decay in neural networks. Note that in the revised objective function

(8.2), we omitted the regularizer for Xi'S, i.e. Li xJXi, because it is implicitly included in the

sum-of-square error term in (8.2). Let

A= (8.3)
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(8.4)

(8.5)

(8.6)

(8.7)

Rewrite the objective function L in matrix form as

2 1 2 /\~ 2
L = - tr[KxKy] + AkllKxliF + 211X - KyAllF + 211AIIF

1
= - tr[KxKy] + Aktr[Kx2] + 2tr[XXT] - tr[KyAXT]

1 A
+ 2tr[KyAATKy T] + 2atr[AAT]

where II . IIF denotes the Frobenius norm of a matrix. Then compared with the original TKE, we

have extra parameters in A to optimize. To minimize (8.4) using a gradient based algorithm, we

obtain the derivatives as follows,

aL aL aKx aL
ax = aK

x
ax + x, and, aK

x
= 2AkKx - Ky.

The derivative of L with respect to A is

aL 2
aA = -KyX+Ky A+AaA

To start the optimization, the X will be initialized by KPCA or KLE. After X is given, we use

gi = 0 to get A. So A = (Ky2 + AaI)-1 KyX. Different from TKE, the whole kernel Gram

matrix K y is input into the algorithm without n nearest neighbor filtering in this case. The

prediction is made by (8.1) or in matrix form as X = KyA after the optimization.

8.1.2 Approach 2: Incorporate LS-SVM objective function

In approach 1, we included the sum-of-square error term as an regularizer in the original TKE

objective function to implement the mapping function f. This is derived from kernel machine

which implies a certain kernel feature mapping. In essence, we can start with the kernel feature

mapping directly and incorporate it as the core part of the LS-SVM (the dual form of the ob­

jective function of LS-SVM) into TKE instead of sum-of-square error. This idea is inspired by

[126] where LS-SVM was integrated in another NLDR algorithm. We minimizes the following

objective function similar to that of LS-SVM with different constraints

d
v~ T TJ~ 2

J ="2 ~Wj Wj + 2" ~eij
j=1 ij

(8.8)
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corresponding to the maximum margin (the first term) and least square errors (the second term)

in (8.7) where v and TJ are adjustable coefficients. CPj'S are the feature mappings which map the

input Yi into Hilbert space where the inner product is defined. Wj is a column vector having the

same dimension as the Hilbert space. We can regard the Xi in (8.8) as the projection of CP(Yi) onto

a subspace spanned by w/s. Because the difference of the constraints, it does not have the same

geometrical interpretation of LS-SVM because the original constraints are inequalities reflecting

the correct classification hyperplanes while here they are just feature mapping which build the

relation between input data Yi and its embedding Xi in low dimensional space. Equation (8.7) can

be interpreted as minimizing the error eij in the reconstruction of Xi essentially, however it should

be done with Wij properly constrained. This happens to have the form of the LS-SVM objective

function. To solve (8.7) with the equality constraints (8.8), we can use Lagrange multipliers as

d

L = ~ ~w!w· + '!l~ e~. +~ a··(x .. - W!1I1'(Y') - e··)2 L..t J J 2 L..t 1,J L..t 1,J 1,J J r J 1, 1,J

j=l ij ij

From the saddle points, :~ = 0, :e~j = 0 we have

(8.9)

Substitute them back into (8.9) and eliminate Wj and eij we have the dual problem to be maxi­

mized according to the min-max duality

= - ~~ o"TK·o· - ~~ a~. +~ a .. x ..
2v~ J J J 2TJ ~ 1,J ~ 1,J 1,J

J ~ ~

(8.10)

where OJ = (alj, ... , a2j)T, CP(Ym)T CP(Yi) = ~j(Ym, Yi) to which the "kernel trick" applies.

We then maximize the above dual problem with respect to a.ij instead of Wj and eij. From the

discussion above we see that the Xij'S are free variables. To limit the choice of them, we combine
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(8.10) with the objective function of TKE to incorporate the similarity preserving as

L = - L ky(Yil Yj)kx(Xil Xj) + Ak L kx(Xil Xj)2 + Ax L XJ Xi

i,j ij i
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(8.11)

(8.12)

where we turn the maximization of (8.10) to minimization aligned with the TKE objective func­

tion and let ""j (. 1 .) = ""y (. 1 .) for simplicity. Here we see that the terms related to Yi are expressed

by kernel ""y (. 1 .). Therefore, this revised objective function is still non-vectorial data applicable.

Again we express (8.11) into matrix form to facilitate the differentiation

L = - tr[KxKy] + Aktr[Kx2] + Axtr[XXT]

1 1
+ -tr[ATKyA] + -tr[ATA] - tr[ATX]

2v 2ry

where A is the same as that in (8.3). Hence we minimize the above L in (8.11) with respect to A,

X and kernel hyperparameters of ""x (. 1 .). If we substitute the saddle point solution back into the

equality constraints (8.8), the following mapping function can be conveniently applied to predict

embeddings of new input samples

(8.13)

(8.14)

(8.15)

To apply the gradient based algorithm, the derivatives of L with respect to X and A are given

by

8L 8L 8Kx 8L
8X = 8K

x
8X - A , and, 8K

x
= 2AkKx - K Yl

8L 1 1
-=-K A+-A-X.
8A v y ry

X is still initialized by KPCA or KLE. A is initially obtained from the solution of gi = 0

after X is given. We have A = (~Ky + ~I)-lX. It suggests that we could update X and

A alternately in optimization, however we still update them at the same time. In practice, we

use conjugate gradient algorithm for optimization. Both approach 1 and approach 2 involve the

relaxed constraints in different forms integrated in TKE, we call the algorithms thus derived the

Relaxed Constraint TKE (RCTKE).
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8.2 Experimental Results

To demonstrate the effectiveness of the proposed RCTKE algorithms, the experiments of vi­

sualizing non-vectorial data (the target latent space is a normal plane and hence d = 2) were

conducted on Reuters-21578 Text Categorization Test Collection and SCOP (Structural Classifi­

cation Of Protein) database which are recognized as highly structured data. They are also used

in Chapter 5.

8.2.1 Parameters Setting

Both RCTKE and TKE have parameters to be determined beforehand. Through empirical anal­

ysis (performed a batch of experiments on the same data set varying only the parameters), we

found these algorithms are not sensitive to the choice of the parameters, so long as the conju­

gate gradient optimization can be carried out without premature termination. So for RCTKE

and TKE, we use the following parameters throughout the experiments which are determined by

experiments. For TKE, Ak = 0.05, Ax = 0.01 and n = 10 in n nearest neighboring; for RCTKE

approach 1, Ak = 0.01 and An = 1000; for approach 2, Ak = 0.05, Ax = 0.01, v = TJ = 0.5. The

minimization will stop after 1,000 iterations or when the difference between consecutive updates

of the objective function is less than 10-7 . K,x (., .) is the RBF kernel and initialization is given

by KPCA for both RCTKE and TKE.

8.2.2 Reuters Texts

We present the result in 2D plane as shown Figure 8.1 with the topics displayed in the legend

of (a). The results of RCTKE and TKE reveal clear cluster structure while that of KPCA is

indistinguishable. An interesting observation is that the results of both TKE and RCTKE of the

texts from topics cocoa and corn are totally overlapped since the kernel values for the documents

in these two categories are very close to 1. This also indicates the similarity preserving ability

of RCTKE and TKE, namely, if two objects are similar in the sense of a given kernel, they will

stay close together in the latent space. Compare the result of RCTKE with TKE, we observe
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Figure 8.1: The results on Reuters texts.

that they are quite similar with clear clusters structure while the mapping function obtained in

RCTKE which is ready for use to predict embeddings for novel samples, which is absent from

the original TKE.

8.2.3 Proteins

For SCOP proteins, we still use the MAMOTH kernel and the results are plotted in Figure 8.2

and 8.3. The result of KPCA is also presented for comparison. Each point (denoted as a shape

in the figure) represents a protein. The same shapes with the same colors are the proteins from
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Figure 8.2: The result of TKE and KPCA with MAMOTH kernel

same families while the same shapes with different colors represent the proteins from different

families but from the same superfamilies. The legends are shown in Figure 8.2 (b) which are the

names of the protein families.

Both RCTKE and TKE revealed the fact that proteins from the same families congregate

together as clusters. The proteins locate in groups in two levels: family level and superfamily

level. Superfamilies define common features shared by all the proteins in it and these features are

further refined in families. Therefore it is natural that the families in the same superfamily cluster

together. In Figure 8.3, we can observe that there is little difference between the two approaches

of RCTKE in this case. The similar objective function in these two approaches may account for

the similar behavior. This experiment also demonstrates that RCTKE has comparable quality

as the original TKE. The advantage of RCTKE over TKE is the mapping function learned from

training provides an out-of-sample extension for new input samples.

8.3 Summary

In this chapter, we have formulated the mapping functions defined by kernel feature mapping

and dual form of LS-SVM objective function in the objective function of TKE as regularization

terms and hence generated a new algorithm called RCTKE. Interestingly, although there are more
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Figure 8.3: The result of RCTKE with MAMOTH kernel

parameters to be optimized in RCTKE than in TKE, this does not incur much additional com­

putation complexity. However, the mapping function obtained as a result enables TKE to handle

out-of-sample extension for novel samples. Hence, similar to BCTKE explained in Chapter 7,

RCTKE can equally be applied to classification, manifold learning etc.



Chapter 9

A Learning Framework for

Examiner-Centric Fingerprint

Classification

9.1 Introduction

In this chapter,we introduce an examiner-centric learning framework for fingerprint classification

based on the BCTKE algorithm (cf. Chapter 7) by virtue of exploiting its mapping function for

new data. We begin with the basic introduction to fingerprint classification, feature extraction

and then present the learning framework constructed on BCTKE.

In recent years, the tasks of fingerprint examiners in law enforcement have been greatly aided

by the development of automatic fingerprint classification systems [141]. There are largely two

operating scenarios, one for identifying which fingerprint class a particular fingerprint belongs

to, and another for deciding which fingerprints in the database that a novel fingerprint might be

similar. These two scenarios are respectively called discrete and continuous classification in the

relevant literature [95].
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As an automatic fingerprint classification system is a pattern recognition application, its oper­

ation relies on comparing salient features extracted from the fingerprint images, normally form­

ing vectors, for its final decision. With these feature vectors, the fingerprints can be projected as

points in a very high dimensional space. In the case of discrete classification, due to the existence

of only a handful of distinct classes of fingerprints, that include left loop, right loop, whorl, arch

and tented arch, in reality the high-dimensional features space could be very sparse. Often the

fingerprints are located in clusters in the features space that together form a manifold of a much

lower dimension. For the continuous case, ideally fingerprints of the same finger should form

compact clusters. However, in reality, the cluster boundaries are not very distinct with much

overlapping. This can be caused by a number of reasons like occlusion, scars, etc, leading to

high intra-class variations among impressions of the same finger and low inter-class variations

among impressions from different fingers. Here, we have focused mainly on the continuous

classification case.

No matter we are dealing with either discrete or continuous classification, there are two ma­

jor shortcomings with current automatic fingerprint classification systems. First, the result of

classification depends solely on the features selected and the algorithm that matches these fea­

tures. Second, there is no way of having the systems adapt the result to individual fingerprint

examiners, who often have different level of experiences, over time. Taking these two problems

together, we can say for the same fingerprint, the result of classification (whether discrete or

continuous) will be identical for the same user regardless of who uses the system and how many

times he or she has interacted with it.

To address these problems, in this chapter we introduce a personalized learning framework

that can adapt and improve the classification result for individual fingerprint examiners through

repeated interactions with the system. This is achieved by exploiting relevance feedback from a

fingerprint examiner by means of choosing both positive and negative examples in an iterative

fashion. The outcome is a personalized and persistent semantic space for each fingerprint exam­

iner in which the quality of classification is improved. This idea resembles long-term learning in

Content-based Image Retrieval research proposed in [55, 54], but differs in both the application

and the method of learning. The fingerprint features that induce the original features space from
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which individual semantic spaces are being learned are obtained by multispectral decomposition

of fingerprints (taken as texture images) using a bank of Gabor filters aligned in eight different

directions.

In this research, the learning model can be considered as a dimensionality reduction process

in which the features space corresponds to the input space while the semantic space to the em­

bedding (or latent) space. From this, we apply BCTKE to incrementally learn both the semantic

space and the mapping function by which novel fingerprints can be classified in the semantic

space [47, 48]. Experimental evaluation conducted on a subset of the open Fingerprint Verifica­

tion Competition 2002 (FVC2002) Db2 database reveals the potential of this learning framework

for examiner-centric fingerprint classification [94].

The learning framework will be developed as follows. In Section 9.2, a diagram of the

learning framework is presented, with major components highlighted and explained. In Section

9.3, the procedure of extracting spectral features by multispectral decomposition of fingerprints

using Gabor filters will be briefly described. In Section 9.4, the relevance feedback process and

the dimensionality reduction algorithm by which the examiner-centric semantic space is learned

will be explained. In Section 9.5, experimental evaluation using a subset of the FVC2002's Db2

database will be presented. Finally, we will conclude and mention future directions in Section

9.6.

9.2 Overview Of Learning Framework

The proposed learning framework consists of two major components, namely Features Extrac­

tion and Semantic Space Learning. Semantic Space Learning is in turn comprised by the rele­

vance feedback and the dimensionality reduction modules. A diagram illustrating the relationship

between these components and modules, together with their input and output, is shown in Figure

9.1. In the remaining of this section, we will briefly overview the role of each of these main

components and modules while leaving further details to their respective sections.

First, the input to the Features Extraction component is a set of m fingerprint images that

will altogether constitute the database. The size and resolution of these images depend on the
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particular fingerprint scanner that was used. Within this module, a series of image processing

steps are performed, like image enhancement, segmentation of fingerprint regions, detection and

extraction of fingerprint features, and mapping features to numeric values. The set of numeric

values will be merged to form a vector. Depending on the number of features involved, each

of these vectors can be viewed as a point in a high-dimensional Euclidean space of dimension

D. The distance between any pair of fingerprints, i and j, can be measured by the Minkowski

distance of order p (i.e., Ilvi - Vj lip) of the difference vector. Based on these distances, an m by

m distance matrix can be obtained.

Second, a fingerprint examiner interacts with the classification system via the relevance feed­

back module. In the training phase, an image q in the database can either be picked randomly by

the system or chosen by the examiner. Based on the image selected, the system returns a subset

of images (excluding q) that are similar based on the nearest neighbor criterion. The examiner

indicates as positive examples those images that are judged similar based on prior experiences.

The negative examples are those that are judged dissimilar. With the positive and negative exam­

ples, the corresponding entries in the distance matrix will be decreased or increased accordingly.

The relevance feedback loop repeats until the examiner decides to exit. The outcome is a distance

matrix that has learnt the semantic judgment of the examiner.

Finally, through the dimensionality reduction module, both the d-dimensional (d « D) se­

mantic space of the examiner and a mapping function that is capable of embedding a novel

fingerprint in the semantic space directly can be obtained. Here, BeTKE is the inference engine

behind this DR module. By mapping novel fingerprints directly onto the personalized semantic

space, examiner-centric fingerprint classification can be achieved.

9.3 Extraction Of Spectral Features

A fingerprint reflects the pattern of individual epidermal ridges and furrows that appear on the

surface of a finger. Its uniqueness depends upon the overall pattern of ridges and furrows and the

local ridge anomalies known as minutiae. Out of more than 150 minutiae that were identified, the

ridge endings and ridge bifurcations are the most common (Refer to Figure 9.2). Normally, the
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Figure 9.1: The Learning Framework showing the major components, Features Extraction and
Semantic Space Learning. Semantic Space Learning is in turn comprised by Relevance feedback
and Dimensionality reduction modules.

pattern of flow of ridges and furrows on a finger varies continuously so that it can be considered

an oriented texture field. Often, textured images (including fingerprints) contain a small range

of spatial frequencies. Textures that are mutually distinct differ considerably in their dominant

frequencies. By decomposing the texture field into a number of spatial frequency and orientation

channels, textured regions possessing different spatial frequency, orientation, or phase can be

easily discriminated.

In this research, we made use of a features extraction algorithm proposed in [59]. It em­

ploys both global and local ridge characteristics to construct a short and fixed length vector for

every fingerprint called FingerCode. Each FingerCode is comprised of an ordered enumeration

of the features extracted from the local ridge characteristics contained in each sub-image or sec­

tor specified by a tessellation. Thus, each sector captures the local information and the ordered

enumeration of the tessellation captures the invariant global relationships among these local pat­

terns. Finally, Gabor filters are applied to decompose the local discriminatory characteristics in

each sector into bi-orthogonal components based on their spatial frequencies. In summary, this

algorithm consists of four processing stages (refer to Figure 9.2):
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1. locate a reference point in the fingerprint image;

2. extract and tessellate the region of interest into sectors around the reference point;

3. spectral decomposition in eight different directions using a bank of Gabor filters;

4. compute the FingerCode based on individual sectors in the filtered region of interest.
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In the following sub-sections, each of these steps will be briefly explained. Interested readers are

referred to the original paper [59] for more details.

9.3.1 Locate Reference Point

In [59], the reference point (xn Yr) is defined as the location of maximum curvature along the

concave ridges of the fingerprint image. The method used was based on multiple resolution

analysis of the orientation field. For a fingerprint image, the orientation field 0 is defined as

an M by N image where O(i, j) indicates the local ridge orientation at pixel (i, j). Instead of

having one value at every pixel, the local ridge orientation is often specified for a block of size w

byw.

There are largely six steps in this processing stage:

1. Estimate the orientation field 0 using a block of size w by w (w =15, 10, or 5 pixels could

be used)l.

2. Construct a smoothed orientation field 0' by convolving 0 with a two-dimensional low­

pass filter W with unit integral, whose size is w¢ by w¢ as follow:

where

, .. 1 (<I?~(i,j))o (z,J) = - arctan 'C .) ,
2 <I?x z,J

(9.1)

w<t>/2

<I?~(i, j) = L
w<t>/2

L W(u,v)· cos((20(i - uw,j - vw))), (9.2)

I Refer to [59] p.850 for the orientation field estimation algorithm based on least mean square.
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Figure 9.2: Extraction of Spectral Features by multispectral decomposition using a bank of Gabor
filters aligned in eight different directions including 0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135°,
157.5°. All images are shown in half their original sizes.

w<t>/2 w<t>/2

<I?~(i,j) = L L W(u,v)· sin((20(i - uw,j - vw))). (9.3)
u=-w<t>/2 v=-w<t>/2

3. Using only the sine component of 0', construct an image S as:

S(i,j) = sin((O'(i,j))). (9.4)

4. Next, another image L is constructed from S by taking the difference between the sums

of pixel intensities computed in two geometric regions2 R 1 and R2 in the neighborhood of

each pixel (i, j) as:

L(i, j) = L S(i, j) - L S(i, j).
Rl R2

(9.5)

5. Determine the pixel in L that has the maximum value, and assign its coordinate as the

reference point.

2Refer to [59] p.85! (Figure 7) for a diagram of these geometric regions.



9.3. EXTRACTION OF SPECTRAL FEATURES 147

6. Repeat steps 1-5 using a different block size w' by w' (W' < w) for a pre-defined number

of iterations until a stable reference point is found.

9.3.2 Extract and Tessellate Region of Interest

Once the reference point (xr,Yr) on a fingerprint image is located, the region of interest can be

extracted and tessellated. In [59], the region of interest is defined as the set of all sectors Si

tessellated in terms of two parameters rand eas:

Si = {(x,y)lb(Ti + 1)::; r::; b(Ti +2), e::; e< ei+1 , 1::; x::; N, 1::; Y::; M}, (9.6)

where

Ti = i/k,

ei = (i mod k) x (27f/k),

e= arctan((y - Yr)/(x - xr)).

(9.7)

(9.8)

(9.9)

(9.10)

Here, band k denote the width and the number of sectors of each band, respectively. Also, i takes

value from 0 to (B x k - 1), where B is the number of concentric bands encircling the reference

point (xn Yr). Note that the values of b, k and B are dependent on both the size and resolution

of the fingerprint images that one is working with. In our own experiments, b = 20, k = 16, and

B = 4 were used.

9.3.3 Spectral Decomposition using Gabor Filters

A bank of Gabor filters, oriented in eight different directions, is used in filtering the region of

interest in order to obtain the spatial frequency along a particular orientation. Prior to filtering,

the region of interest is normalized in order to minimize the errors introduced by noises and other
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deformations occurred during fingerprint capture3
. Each of the Gabor filters used in [59] is even

symmetric and has the following general form:

where

{
I [X'2 y'2] }G(x, y; I, B) = exp( 2 0;, + o~, )cos((27rIx'))

x' = x sin(B) + y cos(B),

y' = x cos(B) - y sin(B).

(9.11)

(9.12)

(9.13)

Here, I denotes the frequency of the sine wave along one of the eight directions B(0°, 22.5°, 45°,

67.5°, 90°, 112.5°, 135°, and 157.5°), measured from the x-axis. Ox' and Oy' are the widths of

the Gaussian envelope along the x' and y' axes, respectively. In actual implementation, the filter

mask is set to size 33 by 33 pixels.

9.3.4 Compute the FingerCode

Every sector Si of the eight filtered images provides one value for the k x B x 8 dimensional

FingerCode. This value, Vie, is the average absolute deviation (AAD) from the mean of the

particular filtered image that Si belongs to, and is defined as:

(9.14)

where Fie (x, y) is the B-direction filtered image for sector Si.

9.4 Learning Examiner-Centric Semantic Space

In this section, we will first discuss how to incorporate an examiner's subjective judgment

through relevance feedback by iteratively updating the distance matrix. Then, we will explain

the dimensionality reduction process by which both the semantic space and the mapping function

can be obtained so that a novel fingerprint can be embedded in the semantic space directly for

classification.

3 Refer to [59] p.851 for the method of normalizing the region of interest prior to filtering.
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Relevance feedback is closely linked with information retrieval in the literature. The goal is to

exploit user's subjective judgment to improve the quality of retrieval often measured in terms of

the precision and recall metrics. As data other than texts such as images and multimedia pro­

liferate, studies on relevance feedback for Content-based Image Retrieval (CBIR) systems grew.

In this research, we exploit relevance feedback to incorporate a fingerprint examiner's subjec­

tive judgment in the formation of a personalized and persistent semantic space for classification.

The idea has similarities to long-term learning in image retrieval proposed in [54,55], but differ

both in the application and the method of learning. In terms of application, we are concerned

with classification of novel fingerprints rather than retrieval of similar images, as in the case of

[54, 55]. The difference in the method of learning will be explained in further details in the next

sub-section on dimensionality reduction.

The relevance feedback procedure can be summarized as follows. Inputs are the m by m

distance matrix and a parameter k indicating the number of fingerprints in the feedback. By

either accepting an image picked by the examiner or selecting an image q randomly from the

database, it returns a subset of images (excluding q) that are based on smallest distances or

largest similarities. The examiner then indicates as positive or negative examples those images

that are judged similar or dissimilar based on prior experiences. Based on the set of positive

and negative examples, their entries in the distance matrix will be updated. In this work, we

also exploit the apriori class information by adjusting entries for fingerprints that belong to the

same classes as those of the positive and negative examples which was not done in [54, 55]. The

relevance feedback procedure repeats until the examiner is satisfied. The output is a modified

distance matrix that has learnt the subjective judgment of the examiner. The pseudo code of the

overall procedure is given in Table 9.1.

9.4.2 Dimensionality Reduction

As mentioned above, the construction of an examiner's semantic space and the mapping func­

tion for embedding novel fingerprints is being cast as a dimensionality reduction problem. In
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INPUT: m x m distance matrix, k
OUTPUT: updated m x m distance matrix
UPDATE FUNCTION: (J"(d) = l+exp((1og~ed-l)±O)) where +5/ - 5 for positive/negative images
respectively.

bool satisfied = FALSE;
while (not satisfied)

i f (examiner selects an image)
q = selected image;

else
generate a random number;
select an image q from the database;

end
display the nearest k images to image q based on smallest distances or largest similarities
(excluding q);
the examiner selects both positive and negative examples;
for (positive images i that are similar to q)

update their entries in the distance matrix by d_iq = d_qi = (J"(d_iq);
end
for (negative images i' that are not similar to q)

update their entries in the distance matrix by d_i'q = d_qi' = (J" ( d_i'q);
end

if (the examiner is satisfied) satisfied = TRUE; end
end
return updated distance matrix;

Table 9.1: Pseudo code of relevance feedback procedure.
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e et a .
Steps:
1. Update distance matrix by relevance feed­
back;
2. Construct neighborhood graph by kNN;
3. Apply Laplacian Eigenmaps (LE);
4. LE semantic space without a mapping
function;
5. Using FingerCode and LE embeddings,
train a Radial Basis Function Neural Network
to obtain the mapping function;
6. Use mapping function to embed novel im­
ages in approximated LE semantic space for

ur met 0

Steps:
1. Update distance matrix by relevance
feedback;
2. Apply BCTKE;
3. BCTKE semantic space with a mapping
function;
4. Use mapping function to embed novel
fingerprints in TKE semantic space for
classification.

Table 9.2: Comparison of He et al. (2004) [55]'s dimensionality reduction procedure and the one
adopted in this research.

essence, we seek a lower-dimensional representation of the original high-dimensional features

space that preserves (and reflects) the examiner's subjective judgment as close as possible. Fu­

ture classification of novel fingerprints can thus be performed in the newly constructed semantic

space which is expected to be more efficient and more amiable to visualization.

Similar to relevance feedback, this idea is inspired by the long term learning model pro­

posed in [55]4. However, there are several differences which will become clear in the following

companson.

One might notice in the above comparison that [55]'s dimensionality reduction procedure

requires two stages (Steps 2-4 and Step 5) to arrive at the actual semantic space with the mapping

function. In contrast, ours is a more direct process that requires only one stage (Steps 2-3).

Also, the semantic space constructed in [55] is approximate, which is obtained by a previous

training step using a neural network. The semantic space constructed by our method is not an

approximated one, which is obtained directly through BCTKE. Table 9.2 shows the procedures

of our method and the one proposed in [55].

4Refer to [55] Section 3.2 and Section 3.3 for a detailed description of their dimensionality reduction process.
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9.5 Experimental Evaluation

A set of experiments was conducted on a subset of the Fingerprint Verification Competition 2002

(FVC2002)'s Db2 database. The fingerprints were captured by an optical sensor. The image size

is 296 x 560 pixels while the resolution is 569 dpi. The Db2 database is divided into two sets,

Db2_a and Db2_b. The width and depth of the Db2_a set are 100 and 8 respectively, meaning

there are 100 fingers each having 8 impressions. Similarly, the width and depth of the Db2_b set

are 10 and 8 respectively. Altogether, Db2 has 880 fingerprint images.

For our experiments, we randomly select twenty fingers from Db2. Six of the eight impres­

sions in each finger are taken to form the initial database, totaling 120 fingerprint images. In

other words, the dimension of the initial distance matrix is 120 x 120. The remaining two im­

pressions from each finger are grouped to form the set of novel fingerprints to test the quality of

classification. Although the database size here is limited, it is adequate to illustrate the benefits

of the proposed learning framework. In production setup, we would expect a larger database for

the fingerprint examiners to work with.

In Figures 9.3(a)-(e), the semantic space before relevance feedback, after 50 times, after 100

times, after 150 times and after 200 times are shown respectively. k is set to lOin order to avoid

degrading the quality of feedback. It is clear that as relevance feedback repeats the clusters of

fingerprints are becoming more and more compact. This is consistent with the improvement

in quality of classification as subjective judgment is increasingly incorporated into the distance

matrix.

In Table 9.3, we compare the quality of classifying the set of 40 test fingerprints between the

baseline (that is simply using the initial distances), semantic space in 2-dimension before and

after certain number of relevance feedback. The metric used is the k-NN classification errors.

While the initial semantic space has worse classification quality than the baseline (due to infor­

mation loss in DR), the quality improves as the examiner's subjective judgment is increasingly

incorporated.
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Figure 9.3: Semantic space embedded in two dimensions by TKE before and after 50, 100, 150
and 200 relevance feedback iterations.



154 CHAPTER 9. EXAMINER-CENTRIC LEARNING FRAMEWORK

Errors Baseline No relevance feedback 50 times 100 times 150 times 200 times
1-NN 7 26 17 20 14 10
2-NN 6 25 17 21 14 9
3-NN 10 28 17 19 16 10
4-NN 12 28 17 20 19 13
5-NN 19 29 17 20 20 15
6-NN 30 34 28 25 24 22

Table 9.3: Comparing classification quality between baseline, semantic space in 2-dim before
and after relevance feedback.

9.6 Summary

By exploiting relevance feedback from fingerprint examiners, a personalized and persistent se­

mantic space over the database of fingerprints for each examiner can be incrementally learned.

The fingerprint features that induce the initial features space from which semantic spaces are

being learned were obtained by multispectral decomposition of fingerprints (taken as texture im­

ages) using a bank of Gabor filters. In this learning framework, we apply the BCTKE to learn

both the semantic space and the mapping function for classifying novel fingerprints. Experimen­

tal evaluation verifies the potential of this learning framework for examiner-centric fingerprint

classification.




