
Chapter 1

Introduction

Suppose we have a set of objects, for example the handwritten digits 0 and 1. Normally, they

will be stored in the format of grey scale digitized images in a uniform size such as 28 x 28 and

well aligned. To represent them, we will naturally convert them into vectors by concatenating

the intensities of pixels leading to a 784 dimensional vector for an image. However, it is obvious

that with such high dimensionality, we can barely understand the relational structure among

them. It then gives rise to the searching for the representatives of these images in much lower

dimensional space where we can interpret their relationships easily. This is what we call the

problem of dimensionality reduction (DR). There are many definitions for DR from different

point of view. We take the simplest one as

Dimensionality Reduction: Given a set of data {Yi}~l E lI~P, the problem of dimensionality

reduction (DR) is to find their representation {Xi}~1 E IRd with d « D.

The concept of relationship is inevitably involved which will basically be expressed by cer

tain measure of either similarity or dissimilarity for instance distance metric. Intuitively, the

Euclidean distance of the ith and jth images applies here to evaluate the dissimilarity denoted by

Sij' Assume we already have the representatives of these handwritten digits in low dimensional

space, we would believe that the pairwise distances are reasonably preserved, i.e. dij = Sij where

dij is the distance in low dimensional space. However, owing to the loss of the degree of freedom

from the greatly reduced dimensionality, we cannot expect the preservation to be exact. So we
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Figure 1.1: An illustration of dimensionality reduction. 1001's and O's are plotted here (50 each)
to show the relational structure of these digits.

resort to the minimization of the inconsistency between these two distance measures according

to which the optimal configuration is found by virtue of optimization techniques. This idea is

concretised as the well known MultiDimensional Scaling (MDS) [25] algorithm, the first method

addressing the dimensionality reduction problem in a principle manner. It was originated from

mathematical psychology and extended into other areas rapidly afterwards. This simple idea

of distance matching along with a workable algorithm enables us to find the representatives of

handwritten digits in arbitrary dimensional space. We then plot them in a 2D plane as shown

in Figure 1.1 where we can figure out the relations among those digits directly. In Figure 1.1,

different 1's and O's form two clear groups and similar pairs locate close to each other. This can

also be observed from the pairwise distances Sij whereas it is possible only when the pool of the

objects is rather small.

The similar scenarios appear frequently in machine learning area. Dimensionality reduction
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has become one of important preprocessing steps for following tasks such as pattern recogni

tion, classification, regression etc. The data range from surveillance video clips to web texts.

A common feature of these data is that they all reside in very high dimensional spaces. The

dimensionality grows exponentially with the complexity of the objects. For the handwritten dig

its in the former example, it is 784. As we shall see later, the vector representation for a piece

of news could be more than 6000! Unfortunately, there is significant proportion of the dimen

sions are redundant in describing the nature of the objects. They will not only take too much

storage space, but also pose serious challenge to processing algorithms caused by the "curse of

dimensionality". For example, in polynomial regression of order m, the number of independent

coefficients is (D~m) which rapidly breaks down this method in the setting that the dimension

D is too large. Another extreme case is in the neural networks. The amount of the training data

required increases exponentially with the number of weights in the networks which is determined

by the D of input data. It is impractical with these algorithms without dimensionality reduction

for this kind of data.

A natural question would follow is how to reduce the dimensionality. Actually, the recent

years have witnessed a great advance in this area. A number of methods [63, 87, 44, 93, 1, 65,

14,133,134,13,41,92,108,129,116,31,89,16,78,137, 57,19,17,128,146,145,32]

have been proposed other than the MDS used in the handwritten digit visualization example.

Different points of views to the same problem generate a considerable variety of forms which

not only enriched the DR algorithms family, but also provided a profound understanding of the

nature of the DR itself. Among them, some are scaling the dimension by varying the objective

functions where simple metrics are adopted for data. Nevertheless, some are seeking the accurate

descriptions of the relationships among the objects by referring to the manifold hypothesis. There

are both deterministic models which have simple elegant structure and probabilistic extensions

paying attention to improving the robustness to the noise at the cost of simplicity. The history

of the development of DR algorithms tells us that they are evolving from linear to nonlinear,

global to local and even turning to the integration of these directions. However, no matter how

different they seem to be, a fundamental principle plays an important role in DR, that is, some

features existing in input objects should be retained in their low dimensional representatives in
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such a manner that the distortion or information loss is minimized as much as possible. In our

example, we maintained the pairwise distances and the distortion was due to the inconsistency

between the dimensions of these two Euclidean distance measures which was minimized. Yet

there are quite a few of DR methods consider the local relational structure of each object which

is faithfully reconstructed in low dimensional space. Carefully analyzing what the existing DR

approaches behave will provide us the hints for exploring new algorithms.

Another very important issue we need to mention is the type of the input objects in DR. There

is a kind of so-called non-vectorial data (or structured data) emerged and quickly taken the princi

pal position in machine learning area. They are often a highly structured combination of features,

strings of symbols, sequences of segmentations, mixtures of different modalities such as images

(expressed as graphs or sets of components), graphs, organic molecules, protein sequences, web

pages and so on. They are often more natural representations for real-world data than vectors.

Non-vectorial data normally have no vectorial forms and are not readily converted to vectors as

well. To deal with the non-vectorial data, various methods have been presented recently. One of

them is to embed the structured data into a metric space which falls in the scope of this thesis. We

will apply DR to non-vectorial data to uncover their intrinsic structure in low dimensional space.

But most existing DR methods require the vectorial input with the assumption that the objects are

already in some vector spaces that is violated in non-vectorial setting. We have to develop new

algorithms taking into consideration of this special data type. As pointed out before, we shall

at first select an appropriate descriptor to characterize the relationships among the non-vectorial

data (distances, kernels [120, 42] etc.), and then determine which feature(s) to be preserved and

how to perform the reconstruction in low dimensional space endowed with a suitable measure.

These issues will be unfolded in this thesis at length. We will try to go into very details of the

DR and focus on the methods we developed for non-vectorial data.

The thesis will be organized as follows. We start with a literature review of several typical

methods which are interesting and instructive in Chapter 2. The understanding of these methods

naturally leads to a series of new algorithms. In the following chapter, we will discuss the de

scriptors of the relationships among non-vectorial that will be adopted in our DR algorithms and
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present a kernel specially designed for images and shapes. It is followed by a chapter introduc

ing a simple method called Kernel Laplacian Eigenmaps (KLE) which projects the non-vectorial

data to low dimensional space through changing the structure of original Laplacian Eigenmaps a

little. In Chapter 5, we generalize the idea of KLE by employing another kernel in low dimen

sional space and we call this algorithm Twin Kernel Embedding (TKE). This algorithm is then

applied to the fingerprint visualization and kernel learning in Chapter 6. In Chapter 7 and 8, we

focus on the out-of-sample extension of the TKE which is followed by an interesting applica

tion on personalized fingerprint searching and classification. Finally we draw a conclusion and

discuss the future work in this direction.



Chapter 2

Literature Review

2.1 Overview

Dimensionality reduction (DR) is an important step in many advanced applications such as ex

ploratory data analysis and manifold learning, etc. It has been successfully applied in many areas

including robotics [50], information retrieval [55], biometrics [113, 18, 97, 106], and bioinfor

matics [131, 68, 36, 105]. As defined in the last chapter, the target of DR is mainly to find the

corresponding counterparts of input data in a much lower dimensional space (usually Euclidean)

without incurring significant information loss. In this chapter, we will review several typical DR

algorithms. With great development in computational ability, there are tens of such DR methods

proposed each year recently and the arsenal of DR tools has been largely expanded. We will not

review them exhaustively here, but have chosen to describe in more detail those that are closely

related to our work. There are also a number of DR reviews available. In a recent report by

L.J.P. van der Maaten et al. [136], the authors analyzed some linear techniques and nonlinear

techniques that are representatives of existing methods by comparing their performances on both

synthetic and real datasets. [153] compared the SOM (Self-Organizing Map) family methods

with other popular ones. In [10, 119], the authors gave the comprehensive introduction to the

spectral methods. Some old surveys of the DR could also be a good start such as [38,103] where

quit a few of classical approaches were discussed at great length.
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To facilitate the further explanation, the following notations as in Table 2.1 will be adopted

throughout the whole thesis. Note that if the input data have vector forms or Y is a vector space,

we can have the dimensionality of the data as D and D » d. However, for non-vectorial data,

we do not actually have the dimensionality. In this case, finding the embeddings of the data is to

embed the input data into a low-dimensional space where the following tasks can be performed.

Y
X
't

N

{Yi}~l
{Xi}~l
D
d
y

X
a
A or {aij}
[A]ij or aij
tr[A]
(a,b)
Iiall
dij or d(i, j)
N(j1, L:)

Table 2.1: Notation conventions used in this thesis
input space (ambient space or abstract object space)
latent space (low-dimensional space, usually Euclidean)
the index
the number of data
given date set in Y
embeddings (embedded data) in X
dimension of Y (if it is defined)
dimension of X
the set of input data in Y (if Y is a vector space, Y would be a matrix)
the set of embedded data in X (it is normally a matrix with data in rows)
vector (in column)
matrix
the element at ith row and jth column in matrix A
the trace of matrix A
the inner product between a and b
L2 norm of vector a(ila - bll is the Euclidean distance between aand b)
the distance between object i and j
normal distribution with mean j1 and covariance matrix L:

2.2 Taxonomy of DR

There are many classification methods for the DR methods. According to whether a linear map

ping between Y and X exists, they can be classified as linear methods and nonlinear methods (or

NLDR for short). It seems that all the efforts of the research on DR have been concentrated on

NLDR. So we have very limited number of linear methods since it is recognized that the linearity

assumption does not hold in most situations. Because NLDR is not limited by such assumption,

it gradually becomes the mainstream.
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Another standard to classify the DR methods is to examine whether the method focuses on

global structure or local neighborhoods. Some methods pay only attention to the overall structure

expressed by the given data set and reproduce it in low-dimensional space. This kind of methods

are called global methods. However, sometimes the neglected local structures veiled by the

global structure that the global methods can never see contain more interesting information which

may determine the nature of the data. In this case, local methods do better than the global ones.

They favor the locality or neighborhood structure of each point in input space and reconstructed

it in the latent space as similar as possible. But before we know the intrinsic structure of the data

or the input space, we cannot objectively judge which one is better. Even so, locality preserving

methods have gained more popularity especially in manifold learning.

Basically the DR procedure belongs to unsupervised learning. What DR faces is to uncover

the coordinates of a given data set in low-dimensional space. The labels of the given data seem

to be superfluous. But, it is also interesting to include the label information in DR. A typical ap

plication is the classification where DR is regarded as an interim step. Because the classification

is to find an optimal boundary or decision function, DR can be seen as finding the optimal space

where the input data are well separated. As the emergence of the semi-supervised learning, DR

can also be adapted to this setting by consider only part of the label information. It does make

sense in the situation that the labels are extremely hard or expensive to get. These known labels

can be incorporated into the DR procedure to provide valuable hints on how the embeddings

should locate or what the latent space would be.

So far we only focused on a fixed data set. Nevertheless, it is necessary to consider the

extension to the novel samples in real applications, for example the classification. In DR, this is

called Out-Of-Sample (OOS) extension. It is also a problem attracting more and more attention in

DR research. We need not only the embeddings for the given data, but also a mechanism for new

inputs. For those methods without OOS extension, the only possibility to get the representatives

of new arrivals is to start the algorithms all over again using the expanded data set which is

time consuming and wasteful. The results found in the previous step will entirely be abandoned.

More seriously, as the number of the inputs grows, the complexity would increase rapidly. This

will be problematic in real time systems such as objects motion tracking where new data flood
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in continuously. Unfortunately, not all DR methods have such ability to handle new input data

even though some of them have satisfactory results for given data set. Consequently, there are

researches on how to extend the existing methods to novel samples in different ways. Some

DR methods have flexible structures such as neighborhood graph which can be exploited to

accommodate new samples without reconstruction of the whole graph. Nonetheless, situations

for others could not be easy to deal with. This issue will be discussed in Chapter 7 in more detail.

In addition to these classification standards for DR algorithms, some other standards still

exist. For example, according to the underlying models from the statistical point of view, they

can be classified to deterministic model or probabilistic model. Or to see whether there is a

graph underpinning the method induce to graph based model and non-graph based model and

so on. Though there are a variety of standards available, sometimes the boundary is ambiguous.

Therefore, it is not necessary to group those methods so rigidly. It is just a tool facilitating us to

understand some basic properties of these methods.

In following sections, we will discuss several popular and instructive DR algorithms. Through

the analysis of these methods, we will comprehend the core part of the dimensionality reduction

and its underlying principle.

2.3 Principal Component Analysis

Principal Component Analysis (PCA) [63] is perhaps the most widely used linear dimensionality

reduction algorithm due to its simplicity. The basic assumption is that the input data can be

projected onto a subspace spanned by d orthonormal axes (the so-called principal components)

where the covariance of the data is mostly preserved. This idea is achieved by minimizing the

following reconstruction error
N

2: IIYi - Yi1l
2

,

i=l
(2.1)

where Yi is the projection of Yi on the optimal orthonormal axes preserving the maximum vari

ance in the data. That is, Yi = y + ~~=l (Yi, ej)ej where y = -t ~~l Yi is the mean of data Yi

and ej is the j-th principal component and d the number of principal components. A constraint
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from the orthonormality is (ei, ej) = 6ij where 6ij is the Kronecker delta (i.e. 6ij = 1 if i = j

and 6ij = 0 otherwise). Minimizing (2.1) is equivalent to maximizing 2:[:1 Y!Yi because of

the distance preserving property of orthogonal transformations. It has been proved in [63] that

the optimal orthonormal axes (principal components) can be obtained by solving a characteristic

equation of an eigensystem of the form

AV = Cv,

where C is the covariance matrix of the centered observations Yi:

N
C 1 ~ - -T

= N ~YiYi
i=1

(2.2)

(2.3)

where Yi = Yi - y. Denote M = [VI' .. Vd] the D x d matrix composed by those orthonormal

leading eigenvectors of (2.2) corresponding to d largest eigenvalues. M forms the linear mapping

from input space to latent space, i.e.

To see the principal components retain most of the variance present in input data, consider

the variance of the projections onto the first principal component:

(2.4)

which should be maximized subject to the condition viVI = 1. Use the technique of Lagrange

multipliers and maximize

where A is a Lagrange multiplier. Differentiation with respect to VI gives

or

(2.5)

Thus A is an eigenvalue of C and VI is the corresponding eigenvector. Substitute (2.5) into (2.4),

the variance is
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so A must be as large as possible to maximize the variance. Therefore, A is the largest eigen

value and hence VI is the corresponding first principal component. For the following principal

component, we have similar results.

If we substitute (2.3) into (2.2)

N
\ 1 ,,",--T
AV = N L-J YiYi V,

i=l

it is clear that the eigenvector V is actually spanned by input data. So we can define

where a = [al"'" aN]T and Y = [Yl' Y2, ... ,YN]T, then (2.2) can be rewritten as the following

eigensystem for a

Because (v, v) = 1, we have

NAa = yyT a (2.6)

which leads to the normalization of the a being a/)N A. Let aI, a2, ... , ad be the first d

leading eigenvectors of (2.6) corresponding to the principal components and eigenvalues. Denote

a = [)NAlal' )NA2a2,"" )NAdad] which is an N x d matrix. It is actually the new

coordinates (i.e. X) in low-dimensional space spanned by principal components. To clarify this,

the projections of y/s are

(2.7)

We will see that in next section, it is actually the result of classical scaling.

Since PCA assumes the linear relation in the input data, it may not work well when this

condition is violated. This gives rise to the nonlinear version of PCA which is called Kernel PCA

[121]. The idea is to map the input data into a feature space by a nonlinear mapping function

where the PCA is carried out by resorting to the "kernel trick". We will take a look at it in section

2.11. Another observation is that the PCA takes into account all the input data at a time, so it is
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a global method. Variants like local PCA proposed by Nandakishore Kambhatla et. al. [65] and

topological local PCA by Zhiyong Liu et. al. [89] are capable of exploiting both global and local

structure of the input data. Interestingly, the probabilistic view of the PCA leads to probabilistic

PCA [134] and the corresponding probabilistic version of local PCA is mixtures of probabilistic

PCA [133]. It is clear that different treatment will result in many variants of the PCA like sparse

PCA [157], binary PCA [127] and so on. The research on PCA has been carried on for years and

will continue in future. Its simple formulation and clear interpretation are always the inspiration

for new methods.

2.4 Multi-Dimensional Scaling

Multi-Dimensional Scaling (MDS) [25] is a collection of methods preserving pairwise similari

ties. We shall start with the simplest classical scaling and then discuss the variants of MDS.

Classical scaling originated in the 1930s when it was shown that the coordinates of a set of

points in an Euclidean space can be found that recovers the distances matrix of the given data

set. Let dij be the distance between Yi and Yj, then

T T 2 T= Yi Yi + Yj Yj - Yi Yj'

Let the inner product matrix be B, where [ELj = bij = yJYj' We have

bij = yJYj,

lIN 1 N 1 N N

= -2(d;j - N Ld;j - N Ld;j + N2 LLd;j)'
i=1 j=1 i=1 j=1

Let aij = - ~d;j and the matrix of aij be A as [A] ij = aij, and hence the inner product matrix B

IS

B=HAH (2.8)

where H = I - iJ 11T with I the identity matrix and 1 the column vector of Nones. H is called

the centering matrix and above operation is called doubly centering. Now the inner product
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matrix B can be expressed as

B=XXT ,

13

which means the coordinates in X can recover the inner product matrix B and hence retain the

pairwise distance between input data. Now B is written in terms of its spectral decomposition

(2.9)

where A = diag(Al' A2' ... ,AN), the diagonal matrix of ordered eigenvalues (in descending

order) {Ai} of B, and V the unitary matrix consisting of orthonormal corresponding eigenvectors
1

and V = [VI, V2, ... ,VN]. Let X = V A2, then X can perfectly recover B. In practice, we just

select d leading eigenvalues, that is

and thus

Then the difference brought by this choice is measured by

L(bij - b;j)2 = tr[B - B*]2
ij

where B* = VIAlvi the inner product matrix of X. The above error will be

N

LA;.
i=d+l

(2.10)

(2.11)

(2.12)

Since B is positive semi-definite matrix, Ai ~ O. Selecting first d leading eigenvectors will give

us the minimum error. The advantage of using distance matrix is to embrace other dissimilarity

measures. To be of practical use, a configuration of points needs to be found for a set of dissimi

larities {6ij } rather than simply for the Euclidean distances between input data {dij }. It has been

proved that when the doubly centered inner product matrix B derived from dissimilarity matrix

A where [A]ij = 6ij is positive semi-definite of rank p, then a configuration in p dimensional

Euclidean space can be found that preserves the dissimilarity.
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Combining equations (2.9), (2.10), we can see that V is the principal components of yyT
and thus

x = [VI, V2,···, vd]diag(A,~, ... ,~)

= [AVI' ~V2"'" ~Vd'],

which is the same as the result of PCA as shown in (2.7) up to a scale VN. Because only inner

products are involved in the formulae, we can also take this advantage together with the "kernel

trick" to make MDS and PCA non-vectorial data applicable. This will be discussed later in

section 2.11.

From (2.10), (2.11) and (2.12), we can see that the classical scaling is actually minimizing

the following objective function

L(yJYj - xJXj)2,
ij

where the Yi 's have been centered. It can also be interpreted as to minimize the difference of two

inner products: one is in input space and the other is in latent space. This least squares can be

naturally extended to other measures such as dissimilarity such as Euclidean distances as

L(IIYi - Yj II - Ilxi - Xj 11)2.
ij

(2.13)

Equation (2.13) is also called the stress function. Some variants of the stress functions has been

proposed later on. One of them is the Sammon cost function [25] which emphasizes the locality

to some extent

L IIYi - Yjll-I(IIYi - Yjll- IjXi - xjll)2 / L I!Yi - Yjll·
i<j i<j

(2.14)

The weights introduced by the inverse of the distance put on the difference force the algorithm to

pay more attention to those pairs inputs that are close to each other. The denominator, Li<j IIYi

Yj II is a normalizing term making the above cost function scale free.

Different objective functions require different optimization methods. For (2.14) iterative min

imization such as gradient based method has to be employed while the simple eigendecomposi

tion of a pairwise dissimilarity matrix could be applied to classical scaling. The MDS mentioned
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above are the so-called metric MDS. There is also another category MDS called nonmetric MDS

among which the Kruskal approach [73, 74] can be regarded as the foundation where a loss

function was defined and numerical solution was provided.

2.5 Laplacian Eigenmaps

Laplacian Eigenmaps (LE) [6] is a typical nonlinear method that belongs to the family of graph

based DR methods. It attempts to preserve proximity relations in the input data which is ex

pressed by a weight matrix based on adjacency graph (or called neighborhood graph). This

adjacency graph G is constructed by referring to c neighborhood or n nearest neighbor criterion.

An edge will connect Yj and Yi if

• IIYi - Yj 11
2 < c (c neighborhood),

• or if Yj is among n nearest neighbors of Yi and vice versa (n nearest neighbor).

The advantages of c neighborhood include its geometric motivation and inherent symmetry. But

it often leads to graphs with several connected components and the value of c is hard to determine

in practice. A heuristic search has to be involved in choosing a suitable c. Conversely, in n

nearest neighbor, the n is easy to choose and it does not tend to end up with disconnected graphs.

However, it will have less geometrical meaning than c neighborhood. Some methods such as

[150] are proposed to construct a valid adjacency graph more efficiently. It is worth noting that

the adjacency graph (or neighborhood graph) plays an important role in dimensionality reduction

which leads to a series of graph based methods [119, 147].

After the construction of the adjacency graph, the weights on the edges are evaluated that

reveals the proximity relations among the input data. There are also two variations of finding the

weights in LE:

• exponential decay function:

{

e-u\lYi-YjI12 if y' is connected with y,.
. , t J'

the weIght Wij =
0, otherwise.
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• binary (0" = 0): Wij = 1 if Yi and Yj are connected, and Wij

simplification avoids the need to choose 0".

o otherwise. This

The choice of the weights not only reflects the proximity among the data but also meets the

requirement of the weights in spectral graph theory [22] which underpins this method, that is, the

weights should be positive. The weight matrix W ({Wij } ) containing the proximity information

is then included in an objective function to be minimized

N N

LL Wijllxi- X jl12,
i=1 j=1

(2.15)

subject to XTDX = I and XTDI = 0 where the diagonal matrix D is derived from W with

[D]ii = L::~=1 Wij' 1 and 0 are alII and 0 column vectors respectively. The constraint XTDX =

1 removes an arbitrary scaling factor in the embeddings and XTDI = 0 can be interpreted

as removing a translation invariance in X. The objective function with the choice of weights

Wij incurs a heavy penalty if neighboring points Yi and Yj are mapped far apart. Therefore,

minimizing it is an attempt to ensure that if Yi and Yj are "close", then Xi and Xj are close

as well. It is obvious from equation (2.15) that Laplacian Eigenmaps matches the proximity

structure of the input data to the Euclidean distances of their embeddings in the latent space. The

embeddings are obtained by solving the generalized eigenvector problem

Lv = ADv,

where L = D - W is the Laplacian matrix which is a symmetric, positive semidefinite ma

trix. Suppose the eigenvalues are ordered in ascending order 0 = Ao ::; Al ::; ... ::; AN-l

corresponding to eigenvectors va, VI,'" ,VN-l, the result is

left out the eigenvector va corresponding to the eigenvalue O.

LE is a local method since it is constructed on the adjacency graph. Several variants are

derived from original LE such as the LPP (Locality Preserving Projection) [56] and the KLE

(Kernel LE) [46]. LPP introduces a linear constraint between input data and embeddings, i.e
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Xi = AYi while KLE replaces the weight matrix by a sparse kernel Gram matrix. They are

variants of the LE algorithm but attempting to solve different problems, that is LPP provides a

solution for the out-of-sample problem (estimation of the embeddings for new input data [9])

and KLE is applicable to non-vectorial data by virtue of the kernel mapping. These two methods

will be analyzed in detail in Chapter 4 and 7.

2.6 Isomap

The Isomap (Isometric feature mapping) proposed in [129] is a global method actually built on

the classical MDS. It uses the geodesic distances rather than the Euclidean distances between all

pairs of data points to capture the intrinsic geometry of the data. The algorithm consists of 3

steps.

The first step constructs a neighborhood graph with edges of weight dy (i, j) (the Euclidean

distance of Yi and Yj) between the neighbouring points. The graph G over all data points con

nects points Yi and Yj if (as measured by dy(i, j)) they are closer than E (E-Isomap), or if Yi is

one of the n nearest neighbors of Yj (n-Isomap). To eliminate the guess work for n or E, Nathan

and John [98] proposed an adaptive technique to find the optimal neighborhoods automatically.

In the second step, Isomap estimates the geodesic distances de (i, j) between all pairs of points

by computing their shortest path distances in the graph. Finally Dc = {de (i, j)} is input to

the classical scaling (see section 2.4) to find the embeddings. Hence the objective function to be

minimized is

(2.16)

where D x = {llxi - Xj II} is the Euclidean distance matrix. In order to comply with the con

ditions of MDS, the T operator in (2.16) converts the distance to an inner product defined as

T(D) = -HSH/2, where S is the matrix of squared distances {Sij = d;j}' and H = 1 - l/N

the "centering matrix" exactly the same as the one in (2.8) (I is the identity matrix and 1 is the

matrix with alII entries). In essence, Isomap is preserving the geodesic distances since equation

(2.16) attempts to constraint IIxi - Xj II = de (i, j).
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Isomap is guaranteed to recover the true dimensionality and geometric structure of a strictly

larger class of nonlinear manifolds asymptotically. This guarantee of asymptotic convergence

rests on a proof that as the number of data points increases, the graph distances dc (i, j) pro

vide increasingly better approximations to the intrinsic geodesic distances dM ( i, j), becoming

arbitrarily accurate in the limit of infinite data. However, the sample size required to estimate

geodesic distance accurately may be impractically large as the manifold where the data points lie

on or near to is very irregular exhibiting extreme values or deviating from a uniform density.

By improving several aspects of the Isomap, many variants emerged recently. Having ob

served that certain standard phenomena in images such as occlusion, non-convexity of the un

derlying parametrization can prevent Isomap from working perfectly [35], David and Carrie

proposed the local Isomap [34] that uses the same geodesic distances as Isomap but only in a

local fashion. Also, after comparing advantages and disadvantages of global and local methods,

Yin de and Joshua presented Conformal Isomap and Landmark Isomap [30] as a combination

of global and local methods with the virtues of computational sparsity and ability to invert con

formal maps. Moreover, [11, 154, 61] extended the Isomap to novel input samples. As the

topological instability of Isomap was revealed in [5], robust kernel Isomap was then proposed

[21]. Furthermore, its drawbacks of topological instability and overly strong assumptions on

convexity and global isometry also leads to new algorithms, say Hessian LLE [33] (see section

2.8).

2.7 Locally Linear Embedding

Proposed in [116], Locally Linear Embedding (LLE) preserves the local linear relations in the

input data. This is accomplished by capturing the proximity information in a weight matrix W

that is used in minimizing the reconstruction error defined by

L Ilxi - L wijxjl12,
j

(2.17)
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where [W]ij = Wij is the weight derived from a neighborhood graph. There are also 3 steps in

LLE: First, assign neighbors to each data point Yi (for example by using the n nearest neigh

bors). Second, compute the weights Wij that best linearly reconstruct Yi from its neighbors by

minimizing the following constrained least-squares problem

N N

W = arg~nL !IYi - L W ijYjl12
i=l j=l

subject to ~j Wij = 1 and Wij = 0 if there is no edge between Yi and Yi in the neighborhood

graph. In essence, the weight matrix W depicts the similarity relations in the input data that is to

be enforced in the latent space. Finally compute the low-dimensional embedding vectors X best

reconstructed by Wij by minimizing (2.17) under the constraints ~i Xi = 0 and iJ ~i XiX; = I

to remove arbitrary translations of the embeddings and avoid degenerate solutions. The objective

function can be written in a quadratic form

L mij(xJXj)
ij

with mij = 6ij - Wij - Wji + ~k WkiWkj and 6ij is 1 if i = j and 0 otherwise. The optimal

embedding X, up to a global rotation of the latent space, is found by computing the bottom d + 1

eigenvectors (those corresponding to its smallest d+ 1 eigenvalues) of the matrix M ({mij}). The

bottom eigenvector of this matrix, which we discard, is the unit vector with all equal components;

it represents a free translation mode of eigenvalue zero. (Discarding it enforces the constraint that

the embeddings have zero mean.)

Because the matrix M can be stored and manipulated as a sparse matrix, it brings substantial

computational savings for large values of N. Moreover, its bottom d + 1 eigenvectors can be

found efficiently without performing a full matrix diagonalization. Hence LLE has low compu

tational cost which is desirable in real applications. This feature was further extended in incre

mental locally linear embedding [72] where a much smaller optimization problem replaced the

"batch" optimization. Although only linear algebra is employed in the algorithm, the constraint

that points are only reconstructed from neighbors can result in highly nonlinear embeddings.

Therefore, LLE is actually a nonlinear DR method.
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Several problems exist in LLE. For example it is shown that it is sensitive to the outliers since

in the presence of the noisy data which are not on the manifold, the n nearest neighbor would

no longer give an appropriate approximation of the linear patch. Hence robust LLE [19] was

proposed. Another problem is non-convexity which occasionally occurs in computer vision for

instance the occlusion, restricted areas etc. Furthermore, the assumption of the sufficiency of

data is not clear for image manifolds.

2.8 Hessian Locally Linear Embedding

Hessian LLE (HLLE) [33] is closely related to LE in that HLLE replaces the graph Laplacian

with a quadratic form based on the Hessian. HLLE addresses the problem inherent in Isomap

such as the assumption of global isometry and convexity etc. HLLE derives from a conceptual

framework of local isometry which is able to handle a significantly wider class of situations

than the original Isomap algorithm. The solution of HLLE is inspired by LLE. They share quite

similar procedures. HLLE also considers the linear patches of the manifold and maps them into

a low dimensional space. However, in HLLE, this is done by warping the patches as little as

possible. Practically, the "warping" is measured by the Frobenius norm of the Hessian matrix

7-{(f) which is minimized through solving an eigenvalue problem.

HLLE algorithm has 3 steps. First, find the nearest neighbors which is identical to LLE.

Second, for each point on the manifold, perform the PCA of neighboring points to estimate the

tangent space and then develop the least-squares estimation of the Hessian. Finally, optimal

solution takes rows of X as the eigenvectors of 7-{(f) with minimal eigenvalues, excluding the

constant eigenvector.

HLLE performs well on those problems with partial non-convexity. One of the attracting

features is its asymptotic stability. As the size of the input data increase, it will give better

approximation of the embedding. A drawback of HLLE is that the Hessian approach requires

estimation of second derivatives, and this is known to be numerically noisy or difficult in very

high-dimensional data samples.

HLLE differs from the methods mentioned above in that it is seeking the recovery of the
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underlying isometric coordinates of the manifold embedded in ambient space through the local

coordinates. It is based on the observation that the quadratic form of the Hessian matrix on the

manifold has d + 1 null space consisting a d-dimensional space of functions spanned by the

original isometric coordinates. The linear construction of a given data point in LLE is replaced

by a Frobenius norm of the Hessian matrix at that point. This local linear structure is copied to

the low-dimensional space where the isometric coordinates reside based on the assumption of

local isometry.

2.9 Local Tangent Space Alignment

Local Tangent Space Alignment (LTSA) [156] is a manifold learning algorithm benefitted from

the assumption of local linearity. This leads to the result that the tangent space of each point

on the manifold admits an orthonormal d-dimensional basis where its neighboring points will

be projected onto and forms a set of local coordinates. To recover the underlying parameters

which determine the manifold and hence the intrinsic low dimensional representation, these local

coordinates are aligned by minimizing a set of local reconstruction error incurred by transforming

the local coordinates to global ones

where Xij denotes the global coordinates of jth neighbor of Xi, e; the corresponding local co

ordinates, L i the local affine transformation matrix, E~ the reconstruction error to be minimized

and Xi the mean of the Xi neighborhood. The neighborhood is determined by adjacency graph

and the local coordinates are obtained by performing peA on each neighborhood.

The overall reconstruction error can be reformulated in matrix form as

with Xi the set of centered neighbors of Xi and 8 i the set of local coordinates. Because of the

quadratic form of the objective function and linearity assumption, the optimization with respect

the X can be fulfilled by solving a eigensystem.
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The idea of LTSA stems from the local coordinates alignment that is to find local coordinates

based on some assumptions such as the local linearity in LTSA and then align them somehow

in a global coordinate system. LTSA accomplishes it in deterministic manner by virtue of the

manifold differentiation which is somewhat obscure. While some probabilistic treatments such

as mixture of factor analysis [44, 39] is quite straightforward in coming up with the local coor

dinates. A series of DR methods follow this line of design [115,137,128,17] which bring fresh

air into the research of the DR. Several extensions of LTSA have been proposed later on such as

supervised LTSA [85], linear LTSA [155], partitional LTSA [148], incremental LTSA [88] etc

improving different aspects of the original LTSA.

2.10 Gaussian Processes Latent Variable Model

Gaussian Processes Latent Variable Model (GPLVM) [83] introduces the concept of Gaussian

processes into unsupervised learning. It is derived from dual probabilistic PCA (DPPCA) through

generalizing a linear model to any smooth function model. Each dimension of the input data is

assumed to be governed by a Gaussian process parameterized only by a mean and a covariance

function. Typically the mean is 0 and the covariance function is an RBF kernel. Maximizing

the log-likelihood of P(YIX) with respect to X gives us the optimal embeddings. Thus, it is

equivalent to minimizing (suppose Y has been properly centered)

ND D 1
-In 21r + -In IKI + -Tr(K-1yyT

),
2 2 2

(2.18)

where K is the covariance matrix derived from the covariance function which is actually a kernel

Gram matrix on embedded data. If we let 8 = D-1yyT, 8 can be seen as a linear kernel up to

a scaling of D-l, and hence can be interpreted as a Gaussian covariance on the input data. With

two sets of measurements given by 8 and K in the two spaces, we can define two Gaussians

N(o, 8) and N(o, K). The Kullback-Leibler divergence between them can easily be calculated

as follows

1 lIN
KL(N(O, 8)IIN(o, K)) = 2ln IKI- 2ln 181 + 2Tr(8K-1

) - 2' (2.19)
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It is recognized as a generalized objective function of (2.18) since the ~ In IS I and the other

constant terms are independent of X and therefore contribute nothing in optimization. Thus, in

GPLVM, the objective is to match the two Gaussians by minimizing the KL divergence between

them. The optimization of (2.19) with respect to X (X is embedded in the expression of K) is

accomplished by gradient based methods such as conjugate gradient or scaled conjugate gradient

algorithm [102].

As Gaussian process and probabilistic framework applied in GPLVM, several benefits come

naturally. Because GPLVM actually defines a mapping from latent space to input space and

GP provides smooth functions for that mapping, the extrapolation is feasible and easy. The

other one is the ability to handle the missing value. As other probabilistic algorithms such as

PPCA, GPLVM can process the lost attributes of the input data in a principle manner. Moreover,

probabilities associated with the embeddings are also provided indicating the confidence that can

be reposed in the results.

GPLVM actually enforces the dissimilarity matching, i.e., it focuses on keeping things apart

in latent space that are far apart in data space. As such, GPLVM can be considered as dissimilarity

preserving in some sense. But this property is not always desirable especially when input data lie

on highly nonlinear manifold. [84] presented the GPLVM with back constraints where locality

preserving is forced upon the algorithm and the out-of-sample extension is also achieved.

2.11 Kernel Principal Component Analysis

All the methods mentioned above assume that input data are in vectorial representation. Nev

ertheless, the applicability of DR algorithms to non-vectorial objects is demanded in advanced

applications. Lacking efficient vectorised representations, the similarity among non-vectorial

data cannot simply be evaluated by their Euclidean distances. By invoking the kernel trick, [120]

made the first attempt to overcome the problem with non-vectorial input in a principled manner.

The kernel trick reads: given an algorithm which is formulated in terms of a positive definite

kernel K" one can construct an alternative algorithm by replacing K, by another positive definite

kernel K-. Because dot product of normal vectors is actually the linear kernel, we simply replace
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the dot product by a kernel. Since a positive definite kernel function admits a feature mapping

by the fact that

(¢(x), ¢(y)) = ~(x, y),

where x and y are objects from general sets including non-vectorial data and ¢O is the feature

mapping, it can be viewed as having the kernelized algorithm working on the feature space owing

to the mapping function.

Any linear methods involves only inner products could in theory be "kernalized" so that non

vectorial data can be properly processed. Kernel Principal Component Analysis (KPCA) [121]

is a kernel version of PCA. It is a nonlinear generalization of PCA in the sense that PCA is

performed in a feature space of arbitrarily large (possibly infinite) dimensionality via a kernel

function which endows it the ability to handle non-vectorial data. Through the feature mapping

associated with the kernel function, KPCA projects the mapped data onto the principal feature

"vectors" in the feature space. Compared to standard PCA, KPCA solves a similar eigenvector

problem as (2.6) with the inner product matrix yyT being substituted by the centered kernel

Gram matrix through applying the kernel trick:

NAa = Ka, (2.20)

where K is the centered kernel Gram matrix defined on the input data and N the number of input

objects. K is centered by using the same technique in (2.8) where A is replaced by the original

kernel Gram matrix K, i.e. K = HKH. The projections of the input data have the same form as

(2.7) but aI, ... , ad are d leading eigenvectors from solving (2.20). It is straightforward to get

the coordinates for new input data y,

K(Y1'Y)

K(Y2' y)

where K(', .) is the kernel function value after centering and A/S are the eigenvalues associated

with ai'S.
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As we have seen in Section 2.4 X is recovered from spectral decomposition of inner product

of yyT in classical MDS. If we replace the inner product matrix by K and proceed the same

procedure, we can have a set of coordinates. Through the analysis in section 2.4, we see that it is

actually the result of KPCA whereas it is from the kernelized classical MDS.

As a union of kernel method and PCA, KPCA allows the simultaneous processing of non

vectorial data and the construction of their low-dimensional embeddings. The dimensionality of

non-vectorial data is difficult to define as it is closely linked with feature selection and extraction.

By resorting to the kernel trick, feature representation of the input data can be implicitly defined,

relieving KPCA the necessity of any explicit features representation.

There are other linear DR methods suitable for kernelization. Linear Discriminant Analysis

(LDA) [37] is a well accepted supervised linear DR though it was designed for classification.

Its corresponding kernel version is the Generalized Discriminant Analysis (GDA) [41]. Never

theless, kernel function itself is also a similarity or dissimilarity measure which applies to non

vectorial data. This feature can be exploited in DR. Some methods like Stochastic Proximity

Embedding (SPE) [2] can accept kernel Gram matrices instead of vectors as input and produce

the embeddings preserving the similarity relations expressed by the kernel. We generalize this

idea to other DR methods such as LE. Rather than kernelizing it, we take kernal as a similarity

measure and incorporate it in LE. As a result, we proposed the Kernel LE (KLE). We will discuss

this method in detail in Chapter 4.

2.12 Summary

From the above analysis of several representative DR methods, we see that the implementation

of DR varies by different point of view such as the global alignment of local coordinates (LTSA,

HLLE etc). However, most of these methods are preserving some measures in both the input

and latent space. Basically, a feature of the input data such as pairwise distances (MDS, Isomap

etc), local neighborhood (LE, LLE etc), covariance (PCA, GPLVM etc) is extracted from the

input data, and reproduced in corresponding embeddings. This procedure becomes the main

stream in DR. The methods we proposed follow this design and process non-vectorial data as the
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main goal. Before describing our methods, we will first present a kernel designed for shapes and

images that will be frequently used in our methods in the next chapter.




