Strategies for Growing Canola in

Low Rainfall Environments of Australia

Georgina C Pengilley

B. RurSc. (Hons) University of New England, Armidale

A thesis submitted for the degree of Doctor of Philosophy of the

University of New England

March, 2006

DECLARATION

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree or qualification.

I certify that any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

ACKNOWLEDGEMENTS

I would like to thank my supervisors Assoc. Prof. Robin Jessop and Dr. Philip Wright for their encouragement, guidance and support throughout this work.

I would also like to thank Ms Sharon Nielsen, Mr Richard Maccallum, Dr Neil Fettell and other friends and colleagues for their guidance.

Thanks must go to my grandfather, G.L. Roberts, for his optimism and encouragement, my father, I.M. MacKinnon, for his unrelenting encouragement and guidance and my mother, D.P. MacKinnon for her encouragement and support during the completion of this thesis.

I also gratefully acknowledge the financial support of the Grains Research and Development Corporation and the NSW Department of Primary Industries.

Finally, I thank my husband Keith, Daughter Isobel and Son, Archibald for their continued patience, guidance, support and encouragement throughout this thesis.

ABSTRACT

Canola (*Brassica napus*) production in Australia, although generally successful, is not well developed in the low rainfall environments of the eastern wheat belt. Whilst there are varieties being developed to allow increased canola production in these areas, there is limited understanding of the relationship between sowing time, variety, soil moisture and plant growth. The experiments detailed in this thesis set out to examine these issues and provide an understanding of which of these factors, or a combination of these, limit canola production in low rainfall environments.

Two field experiments were conducted comparing plant growth, yield and yield components and water use of several canola varieties sown across a series of sowing times, under two water regimes, one involving the application of supplementary water using irrigation. These were conducted during 2002 and 2003 at Condobolin in the central western district of New South Wales.

Sowing canola earlier than mid-late April as currently recommended (McRae *et al.* 2003), resulted in significantly higher plant growth (13% increase in dry matter production), water use efficiency (16% increase in grain water use efficiency), grain yield (28% increase) and oil concentration (5% increase). The early maturing canola varieties Ag-Outback, Ag-Emblem and Rivette produced significantly higher grain yields (up to 26% higher) when sowing was delayed beyond mid - late April, when compared with later maturing varieties. The later maturing varieties Hyola 60, Rainbow, Oscar, Ripper and Dunkeld produced significantly higher grain yields (up to 58% higher) when sowing was conducted in mid-late April as compared with late May and early June. Water use efficiency was increased by up to 65% and oil concentration by up to 10% when canola was sown in April rather than May or June, both significant improvements.

The results from this study illustrate that early sowing of canola in low rainfall environments of Australia could increase canola production and that correct varietal choice might further increase grain yields. However, caution must be extended when considering how much earlier canola should be sown than the current recommendations, as there may be other factors which could alter plant growth and yield that were unable to be investigated in this thesis.

TABLE OF CONTENTS

Declaration	i
Acknowledgements	ii
Abstract	iii
Table of Contents	v
List of Tables	viii
List of Figures	<i>ix</i>
Chapter 1 Introduction	1
Chapter 2 Literature review	
2.1 Brassicaceae	3
2.2 Physiology of Brassica napus	4
2.3 Canola in low rainfall environments of Australia	12
2.4 Canola sowing times	13
2.5 Canola varieties	20
2.6 Canola and supplementary water	
2.7 Conclusion	29
Chapter 3 Materials and methods	
3.1 Introduction	
3.2 Site and climate	
3.3 Experimental design and analysis	
3.4 Measurements 2002	
3.5 Measurements 2003	41
3.6 Management 2002	41
3.7 Management 2003	42
Chapter 4 Plant growth	43
4.1 Introduction	43
4.2 Results	45
4.2.1 Phenology	45
4.2.2 Leaf area	48
4.2.3 Dry matter production	49
4.2.4 Siliqua dry weight	53

4.	2.5 Siliqua number	56
4.	2.6 Main raceme siliqua dry weight	60
4.	2.7 Branch siliqua dry weight	64
4.	2.8 Main raceme siliqua number	66
4.	2.9 Branch siliqua number	67
4.	2.10 Plant height	70
4.	2.11 Branch number	75
4.	2.12 Harvest index	77
4.3 Discu	ssion	79
4.	3.1 Leaf area	79
4.	3.2 Dry matter production	82
4.	3.3 Siliqua dry weight	83
4.	3.4 Siliqua number	87
4.	3.5 Plant height	91
4.	3.6 Branch number	93
4.	3.7 Harvest index	94
4.4 Conclus	sions	96
Chapter 5 Yield	and yield components	97
5.1 Introd	luction	97
5.2 Resul	ts	98
5.	2.1 Grain yield	98
5.	2.2 Oil concentration	.103
5.	2.3 Protein concentration	.106
~	2.4.1000	100

Chapter 5 Yield and yield components	
5.1 Introduction	97
5.2 Results	
5.2.1 Grain yield	98
5.2.2 Oil concentration	
5.2.3 Protein concentration	106
5.2.4 1000-grain weight	
5.3 Discussion	
5.3.1 Grain yield	111
5.3.2 Oil concentration	
5.3.3 Protein concentration	128
5.3.4 1000-grain weight	131
5.4 Conclusions	134
Chapter 6 Water use and water use efficiency	135
Chapter of thater abound mater abo enforced y	

•	•	
	6.1 Introduction	

6.2 Results
6.2.1 Crop water use -volumetric soil moisture content
6.2.2 Crop total water use146
6.2.3 Pre-anthesis water use14
6.2.4 Post-anthesis water use152
6.2.5 Grain water use efficiency153
6.2.6 Dry matter water use efficiency155
6.2.7 Pre-anthesis water use efficiency150
6.2.8 Post-anthesis water use efficiency159
6.3 Discussion
6.3.1 Crop water use and water use efficiency
6.4 Conclusions169
Chapter 7 General discussion and conclusions
7.1 Introduction
7.2 Discussion
7.2.1 Sowing time and canola production17
7.2.2 Water use and canola production174
7.2.3 Canola varieties and efficient production
7.3 Conclusions and recommendations178
7.3.1 Conclusions17
7.3.2 Recommendations17
REFERENCES
APPENDICES
Appendix 2.1
Appendix 2.2
Appendix 3.1
Appendix 3.2
Appendix 3.3
Appendix 3.4
Appendix3.5
Appendix 3.6
Appendix 3.7

LIST OF TABLES

Table 3.1 Monthly actual and long term mean monthly rainfall, water deficit one moisture
applications and water deficit two moisture applications for 2002 and 2003 at Condobolin
Agricultural Research and Advisory Station
Table 3.2 Experimental design in 2002
Table 3.3 Experimental design in 2003
Table 4.1 Plant growth stage (Sylvester-Bradley and Makepeace, 1984) of four canola varieties
sown over three sowing times at Condobolin in 200246
Table 4.2 Plant growth stage (Sylvester-Bradley and Makepeace, 1984) of three canola varieties
sown over four sowing times at Condobolin in 200347

LIST OF FIGURES

Figure 4.4 The effects of sowing time and variety on dry matter production $(g m^{-2})$ of canola at Condobolin in 2002. Error bars represent +/- one standard error at the 5% significance level ...51

Figure 4.8 The effects of sowing time and variety on siliqua dry weight (g m⁻²) of canola at Condobolin in 2002. Error bars represent \pm - one standard error at the 5% significance level55

Figure 4.12 The effects of variety and days after sowing on siliqua number (m^{-2}) of canola at Condobolin in 2003. Grey lines represent +/- one standard error at the 5% significance level ...59

Figure 4.14 The effects of water deficit on main raceme siliqua dry weight (g m⁻²) of canola at Condobolin in 2002. Error bars represent +/- one standard error at the 5% significance level ...61

Figure 4.24 The effects of variety and days after sowing on plant height (m) of canola at Condobolin in 2002. Grey lines represent +/- one standard error at the 5% significance level ...72

Figure 4.26 The effects of sowing time and water deficit on plant height (m) of canola at Condobolin in 2003. Error bars represent +/- one standard error at the 5% significance level74

Figure 4.27 The effects of variety and days after sowing on plant height (m) of canola at Condobolin in 2003. Grey lines represent +/- one standard error at the 5% significance level ...74

Figure 4.31 The effects of sowing time (a) and variety (b) on harvest index of canola at Condobolin in 2003. Error bars represent +/- one standard error at the 5% significance level ...79

Figure 4.32 Phenotypic correlation between maximum leaf area index $(m^2 m^{-2})$ and dry matter production $(g m^{-2})$ of canola sown at Condobolin in 2002 (a) and 2003 (b)80

Figure 4.33 Phenotypic correlation between maximum leaf area index $(m^2 m^{-2})$ and grain yield $(t ha^{-1})$ of canola sown at Condobolin in 2002 (a) and 2003 (b)81

Figure 4.34 Phenotypic correlation between siliqua dry weight $(g m^{-2})$ and maximum leaf area index $(m^2 m^{-2})$ of canola sown at Condobolin in 2002 (a) and 2003 (b)85

Figure 5.3 The effects of sowing time and water deficit on grain yield (t ha⁻¹) of canola at Condobolin in 2003. Error bars represent +/- one standard error at the 5% significance level ..101

Figure 5.7 The effects of sowing time and water deficit on oil concentration (%) of canola at Condobolin in 2003. Error bars represent +/- one standard error at the 5% significance level ..106

Figure 5.9 The effects of sowing time and water deficit on protein concentration (%) of canola at Condobolin in 2003. Error bars represent +/- one standard error at the 5% significance level ..108

Figure 5.10 The effects of sowing time and variety on protein concentration (%) of canola at Condobolin in 2003. Error bars represent +/- one standard error at the 5% significance level ..109

Figure 5.11 The effects of sowing time and variety on 1000 grain weight (g) of canola at Condobolin in 2002. Error bars represent +/- one standard error at the 5% significance level ..110

Figure 5.12 The effects of sowing time and variety on 1000 grain weight (g) of canola at Condobolin in 2003. Error bars represent +/- one standard error at the 5% significance level ..111

Figure 5.15 Cumulative probability (%) of frost damage (-2°C) occurring from July 28 until August 11 at Condobolin, over the last forty six years to 2003115

Figure 5.16 Phenotypic correlation between grain yield (t ha ⁻¹) and siliqua number (m ⁻²) of
canola sown at Condobolin in 2002 (a) and 2003 (b)116

Figure 5.20 Phenotypic correlation between grain yield (t ha⁻¹) and leaf area index (m² m⁻²) of canola sown at Condobolin in 2002 (a) and 2003 (b)118

Figure 5.21 Phenotypic correlation between grain yield (t ha^{-1}) and branch number (m ⁻²) of	
canola sown at Condobolin in 2002 (a) and 2003 (b)119	

Figure 5.24 Phenotypic correlation between protein concentration (% whole grain, at 8.5% moisture) and 1000 grain weight (g) of canola sown at Condobolin in 2002 (a) and 2003 (b) ..130

Figure 6.10 The effects of variety and water deficit on total water use (mm) of canola sown at Condobolin in 2002. Error bars represent +/- one standard error at the 5% significance level ...147

Figure 6.12 The effects of variety and water deficit on total water use (mm) of canola sown at Condobolin in 2003. Error bars represent +/- one standard error at the 5% significance level ...148

Figure 6.16 The effect of sowing time on pre-anthesis water use (mm) of canola sown at Condobolin in 2003. Error bars represent +/- one standard error at the 5% significance level ..152

Figure 6.17 The effect of sowing time on post-anthesis water use (mm) of canola sown at Condobolin in 2002. Error bars represent +/- one standard error at the 5% significance level ...153