Systematic Studies in Abildgaardieae

(Cyperaceae)

Kerri Lyn Clarke

B.Sc.Hons University of New England

A thesis submitted for the degree of Doctor of Philosophy of the University of New England

October 2005

The University of New England Armidale, NSW 2351, Australia

Declaration

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree of qualification

I certify that any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

Kerri Lyn Clarke

i

Prologue

Format

The format of this thesis follows broadly the Australian Systematic Botany format and recommendations as outlined in the Style Guide of the University of New England (http://www.une.edu.au/tlc/styleguide/).

Thesis structure

The thesis has been broken down into separate smaller studies to emphasise the Australian taxa and to provide a basis where each chapter may be prepared as separate papers for publication.

Nomenclature

Names for Australian species follow the Australian Plant name index, with the exception of species assigned to *Abildgaardia* by Goetghebeur (1986) i.e. *F. oxystachya*, *F. macrantha* and *F. pachyptera*, which are included in this thesis under *Abildgaardia*. All other species names, and authorities, were obtained from Index Kewensis and the more recent World Checklist of Monocotyledons (2004).

Provisional names have been included within the thesis for some species, however, these new names and combinations are not validly published here (Article 29 of the International Code of Botanical Nomenclature).

Acknowledgements

My sincere thanks are extended to all those who assisted, encouraged and supported me throughout the course of my PhD study.

Thanks to my supervisors Assoc. Prof. Jeremy Bruhl (UNE) for his support and patience provided during the finals months of thesis preparation; Adjunct Assoc. Prof. Karen Wilson (Royal Botany Gardens Sydney) for sharing her considerable knowledge of the group, especially regarding TYPE information; and Assoc. Prof. Nallamilli Prakash (UNE, now retired) for significant support and encouragement.

Sincere thanks to the Botany technicians Doug Clark and Richard Willis, for their friendly assistance and advice; Chris Cooper for digital image help and financial monitoring; and former members of Botany staff Matt Gray, Barb Blenman, Olive Bourke (now retired) and Geraldine Cronin for their assistance while employed at Botany and continuing friendship. Patrick Littlefield and Peter Garlick (now retired) provided assistance with scanning electron microscopy (SEM) that is much appreciated.

Special thanks to those who aided with accommodation and assistance during field excursions: John Clarkson (MBA) friendly accommodation and assistance at MBA; Ian Cowie (DNA) for his kindness, patience, and expertise in the field at Kakadu National Park; Lana Little, Queensland Parks and Wildlife Service Environmental Protection Agency, Chillagoe, for her good companionship and help in the field. Thanks also to the owners and manager of 'El Questro' resort in the Kimberleys for permission to collect specimens and providing accommodation. Many thanks to the following Herbarium directors and curators for providing bench space and to staff for assistance during visits, and providing subsequent large loans: NSW (special thanks to Leonie Purdie for assistance during my NSW visits, Miguel in the library, and the friendly postgraduates and technicians who entertained me at lunches), DNA (Clyde Dunlop now retired) BRI (with special thanks to Philip Sharpe), MEL, CANB, PERTH, MBA; also, overseas herbaria KEW, EA (special thanks to Dr Muthama Muasya), PRE, L, GENT, P for providing loan material. The Directors of Australian National Parks and Wildlife Service and equivalents in N.S.W, N.T., Qld, W.A. provided permission to collect in their service areas.

Many thanks to Professor Paul Goetghebeur for his comments on *Bulbostylis barbata* and *Abildgaardia vaginata*, and correspondence that provided general information on the range of species in *Bulbostylis* which ultimately aided in my drawing the 'sampling' line for the genus in this study. Also, Professor Káre Lye for sharing with me his views on the Australian *B. pyriformis* and the African *B. hispidula* group; I included some of the *B. hispidula* subspecies to assess the limits of *B. pyriformis*.

Thanks and appreciation to fellow postgraduates for comradery and advice where applicable. To my staunch allies and fellow postgrads Kathy Owen, Azadeh Hadaddachi and Mohammad Fatemi, I am indebted for their friendship, support and great advice. Special thanks to Liisa Atherton for her friendship, support and proofreading skills. A big thankyou to friend Sue Williams for providing accommodation during my visits to Sydney and her friendly support.

I'd especially like to thank my parents Lyn and Gerry Clarke, for their endless encouragement and support, and also to express my appreciation for looking after the grandkids (during field work, herbaria visits, conference attendence and periodically during thesis construction).

Lastly I would like to thank my five children Shannon, Melanie, Candace, Daniel and Poya, who have tolerated many years of my study, accompanied me on field work and survived great financial hardship and sometimes boredom. Their love and support has been the mainstay of my dedication to completing the doctoral dissertation. My 10 year old son Poya deserves recognition in his own right, as he has lived and breathed this project for as long as he can remember – he will be glad to have a mother again.

Provision of a 3 year PhD scholarship as part of a larger ABRS grant obtained by Jeremy Bruhl and Karen Wilson was gratefully received, as was an additional 6 month scholarship provided by UNERS (University of New England Research Scholarship). Financial support from Friends of Botany (1998-2004), Faculty of Sciences Postgraduate Support, UNE (1998-2001), Joyce W. Vickery Scientific Research Fund of the Linnean Society of New South Wales (1998) allowed for SEM, conference attendence in Perth (2000) and additional field work in Queensland (2000).

The work in this thesis is entirely my own except where specifically indicated to the contrary.

Kerri Clarke

Declaration	i
Prologue	ii
Format	ii
Thesis structure	
Nomenclature	
Acknowledgements	
Table of Contents	
List of Tables	
List of Figures	
e	
Abstract	XIII
Chapter 1	
General introduction	
Abildgaardieae Lye	
History of the tribe Abildgaardieae	
General history of genera of the Abildgaardieae	
Fimbristylis, Abildgaardia, and Bulbostylis	3
Embryo morphology and Anatomy	8
General aim	9
Thesis outline	9
Chapter 2	
General materials and methods	
Plant material	
Taxa Studied	
Sampling	
Phenetic studies	
Taxa for phenetic analyses	
Characters for phenetic analyses	
Analysis preparation.	
Analyses	
Ordination	
Classification	
Network analysis	
Evaluation	
Cladistic studies	
Analysis preparation.	
Ingroup	
Outgroup	
Characters	
Polymorphism	
Leaf blade and culm anatomy	
Embryo morphology	
Scanning electron microscopy	
Inflorescence–synflorescence homology	
Analyses	
Evaluation	
Photomicroscopy	
Chapter 3	
Crosslandia W.Fitzg.: a phenetic and cladistic study	39

Table of Contents

Introduction	
Materials and methods	
Taxa	
Phenetic study	
Characters	
Pattern Analyses	
Cladistic study	
Ingroup	
Embryo morphology and anatomy	
Inflorescence-synflorescence structure	
Results	
Phenetic study	
Crosslandia, Abildgaardia, Fimbristylis, and Bulbostylis	
Crosslandia, Fimbristylis spiralis and Abildgaardia vaginat	
Crosslandia complex	
Cladistic analysis	
Noteworthy characters	
Observations	
Inflorescence-synflorescence structure	
Floret sex	
Basal spikelets	
Embryo morphology	
Vegetative anatomy	
Discussion	
Nomenclature of Crosslandia	
<i>bildgaardia</i> Vahl: a phenetic and cladistic study Introduction Materials and Methods	94
Taxa	
Phenetic Study	
Pattern Analyses	
5	
Cladistic study	
Ingroup	
Embryo morphology	
Anatomy	
PAUP* Analyses	
Results	
Phenetic study	
Abildgaardia schoenoides group	
Abildgaardia pachyptera – A. oxystachya group	
Abildgaardia macrantha group	
Abildgaardia ovata – F. odontocarpa group	
Cladistic Analysis	
Observations	
Inflorescence–synflorescence structure	
Perianth	
Nut shape and pattern	
Embryo	
Anatomy	
Discussion	
Nomenclature of <i>Abildgaardia</i>	135

Chapter 5	
Phenetic and cladistic analyses of Australian	
Bulbostylis Kunth	
Introduction	
Materials and methods	
Taxa	
Phenetic study	
Pattern analyses	
Cladistic analysis	
Ingroup	
Outgroup	
Characters and homology	
Embryo morphology	
Anatomy	
PAUP* analyses	
Results	
Phenetic study	
Bulbostylis densa group	
Bulbostylis turbinata-B. sp. aff. burbidgeae group	
Cladistic analysis	
Observations	
Inflorescence-synflorescence structure	
Amphicarpy	
Nut sculpturing	
Embryo morphology	
Discussion	
Nomenclature of Bulbostylis in Australia	
Chapter 6	
Testing monophyly of the tribe Abildgaardieae Lye	
Introduction	
Materials and methods	
Ingroup	
Outgroup	
Characters and homology	
Embryo morphology and anatomy	
Analyses	
Results	
Cladistic analysis	
Characters	
Observations	
Inflorescence-synflorescence	
Nut epidermal pattern	
Embryo	
Anatomy	
Discussion	
General Conclusion	
Appendices	
4 1	

List of Tables

Table 1.1 Tribes of the Cyperaceae. 2
Table 1.2 Classification of <i>Bulbostylis</i> by Clarke
Table 2.1 Ordination stress values. 21
Table 3.1 Specimens sampled as the focus group in the assessment of the genus
Crosslandia44
Table 3.2 Attribute codes and definitions used in the main phenetic analyses for
Crosslandia45
Table 3.3 Taxa included in the cladistic analyses to assess the relationships of
Crosslandia setifolia, provisional C. anthelata, Fimbristylis spiralis and
Abildgaardia vaginata 49
Table 3.4 Floret sex distribution seen in aerial spikelets for sampled specimens in
<i>Crosslandia setifolia</i> and the provisional <i>C. anthelata</i>
Table 3.5 Comparison of species to be assigned to Crosslandia
Table 4.1 Specimens sampled as the focus group in the assessment of Australian
Abildgaardia
Table 4.2 Attribute codes and definitions used in the main phenetic analyses for the
Australian <i>Abildgaardia</i> 100
Table 4.3 Taxa included in the cladistic analyses to assess the relationships of species
in Abildgaardia102
Table 5.1 Specimens sampled as the focus group in the phenetic assessment of
Australian <i>Bulbostylis</i> 140
Table 5.2 Attribute codes and definitions used in the main phenetic analyses for
Australian <i>Bulbostylis</i> 143
Table 5.3 Taxa included in the cladistic analyses to assess the relationships of species
in Australian <i>Bulbostylis</i> 147
Table 6.1 Taxa included in cladistic analysis to assess monophyly of the tribe
Abildgaardieae191

List of Figures

Figure 2.1 Schematic representation of the 'type' of variation in the photosynthetic pathway
that correlates with the arrangement of tissues within vascular bundles in Cyperaceae
(from Soros & Bruhl 2000; Soros & Dengler 2001)28
Figure 2.2 General embryo types of the Cyperaceae (adapted from Haines and Lye 1983
after Van der Veken 1965)
Figure 3.1 MDS ordination in 2-dimensions (stress = 0.17)
Figure 3.2 Correlation of attributes with ordination space in figure 3.1
Figure 3.3 WPGMA phenogram (β =-0.1) using the Gower metric similarity coefficient
showing groups that correspond with the ordination (Figure 3.1)
Figure 3.4 MDS ordination in 2-dimensions (stress = 0.11) showing groups formed when
Abildgaardia vaginata is included within the Crosslandia complex58
Figure 3.5 Correlation of characters that fit the ordination space in Figure 3.4
Figure 3.6 UPGMA phenogram (β =-0.1) using the Gower metric similarity measure showing
four groups
Figure 3.7 MDS ordination in 2-dimensions (stress = 0.19) showing three groups:
Crosslandia setifolia (G1), Crosslandia anthelat' (G2), and Fimbristylis spiralis (G3).
62 62
Figure 3.8 Correlation of attributes with the ordination in Figure 3.7
Figure 3.9 Minimum spanning tree (MST) for OTU linkages of <i>Crosslandia setifolia</i> ,
<i>C. anthelata</i> and <i>Fimbristylis spiralis</i> that correspond to the ordination in Figure 3.464
Figure 3.10 UPGMA phenogram (β =-0.1) using the Gower metric similarity measure that
corresponds to the ordination in Figure 3.7
Figure 3.11 Cladogram for tree 2 of 4 shortest trees (tree length=725) to assess monophyly
for <i>Crosslandia</i> . <i>Crosslandia setifolia</i> , <i>C. anthelata</i> , <i>F. spiralis</i> and <i>A. vaginata</i> form a
monophyletic group sister to species of <i>Abildgaardia</i>
Figure 3.12. Inflorescence–synflorescence variation observed within <i>Abildgaardia</i> vaginata.
Tigure 5.15. Innorescence-symolescence variation observed within Abhagaarata vaginata.
Figure 3.14 The reduced anthelodium <i>Crosslandia anthelata</i>
Figure 3.15 Highly reduced secondary anthelodium <i>Crosslandia anthelata</i>
Figure 3.16 A terminal head of spikelets as sessile ramified reduced anthelodia <i>Crosslandia</i>
setifolia
Figure 3.17 Lateral head of sessile spikelets in <i>Crosslandia setifolia</i>
Figure 3.23 Variation in embryos of Crosslandia setifolia and Abildgaardia vaginata85
Figure 3.24 Leaf and/or culm transverse sections showing C ₄ fimbristyloid
anatomy. <i>Crosslandia setifolia</i>
Figure 4.1 MDS ordination in 2-dimensions for OTUs of Abildgaardia, Crosslandia,
Fimbristylis and Bulbostylis
Figure 4.2 MDS ordination (stress = 0.13) showing OTUs forming broad species groups
within Abildgaardia
Figure 4.3. Correlation of attributes with ordination space in Figure 4.2 106
Figure 4.4 Minimum spanning tree (MST) from network analysis that corresponds to the
ordination in Figure 4.2107
Figure 4.5. WPGMA (β =-0.1) phenogram for the full Abildgaardia analyses, using the
Gower metric association measure, corresponds to the ordination in Figure 4.2 108
Figure 4.6 Two dimensional MDS ordination (stress = 0.1) showing OTUs grouped as
Abildgaardia oxystachya, A. pachyptera and A. sp. aff. pachyptera111
Figure 4.7 Minimum spanning tree from network analysis that corresponds to the ordination
in Figure 4.6
Figure 4.8 WPGMA (B=-0.1) phenogram, using the Gower metric association measure, that
corresponds to the ordination in Figure 4.4

Figure 4.9 MDS ordination in 2-dimensions (stress = 0.17) showing OTUs grouped as
Abildgaardia ovata, A. macrantha, F. odontocarpa, and F. sp. aff. odontocarpa 115
Figure 4.10 WPGMA (B=-0.1) phenogram, using the Gower metric association measure, that
corresponds to the ordination in Figure 4.6116
Figure 4.11 One of 126 equally most parsimonious trees (TL=987, CI=0.4863, HI=0.5137).
Figure 4.12 Variation of the inflorescence–synflorescence structure seen in species of
Abildgaardia
Figure 4.13 Perianth in <i>Abildgaardia</i>
Figure 4.14 Scanning electron micrographs (SEM) and light micrographs (LM) of nuts in species of <i>Abildgaardia</i>
Figure 4.15 Scanning electron micrographs (SEM) of nuts in species of <i>Abildgaardia</i> 124
Figure 4.16 Scanning electron micrographs (SEW) of huis in species of <i>Abilaguardia</i> 124 Figure 4.16 Scanning electron micrographs for <i>Abildgaardia hygrophila</i> and <i>Fimbristylis</i>
variegata
Figure 4.17 Light micrographs of mostly whole cleared embryos for Abildgaardia-type
embryos in species of <i>Abildgaardia</i>
Figure 4.18 Light micrographs of whole cleared embryos for some species assigned to
Abildgaardia
Figure 4.19 Culm and leaf blade transverse sections for two species of <i>Abildgaardia</i> showing
the typical outlines, arrangement of sclerenchyma strands per vascular bundle, and C_4
fimbristyloid anatomy
Figure 4.20 Culm and leaf blade transverse sections for species of <i>Abildgaardia</i> showing the
typical outlines, arrangement of sclerenchyma strands per vascular bundle, and C_4
fimbristyloid anatomy
Figure 5.1. MDS ordination in 2-dimensions (stress = 0.17) from primary phenetic analysis
(see Chapter 3) highlighting Bulbostylis
Figure 5.2. MDS ordination for OTUs of <i>Bulbostylis</i> (stress = 0.18)
Figure 5.3 Characters that correlate (>80%) to group formation in the ordination shown in
Figure 5.1. Figure 5.4. Minimum spanning tree (MST) for OTUs of Bulbostylis
corresponding to ordination in Figure 5.2152
Figure 5.4. Minimum spanning tree (MST) for OTUs of Bulbostylis corresponding to
ordination in Figure 5.2153
Figure 5.5. WPGMA (β = -0.1) phenogram that corresponds with the ordination in Figure
5.2, for all OTUs of Bulbostylis154
Fig 5.6 Figure 5.6 MDS ordination in 2 dimensions (stress = 0.18) for the <i>Bulbostylis densa</i>
group from the primary Bulbostylis analysis (see Figure 5.2)156
Figure 5.7 Characters correlated (> 70 %) with the ordination in Figure 5.6 for OTUs of the
Bulbostylis densa group157
Figure 5.8 Minimum spanning tree (MST) with linkages for the <i>Bulbostylis densa</i> group
plotted onto the 2-dimensional ordination in Figure 5.6
Figure 5.9 WPGMA (β = -0.1) phenogram for the <i>Bulbostylis densa</i> subset (see Figure 5.2
for all species of <i>Bulbostylis</i>) that best correlates with the ordination (Figure 5.6) and
Minimum Spanning Tree (MST) (Figure 5.8)
Figure 5.10 MDS ordination in 2-dimensions (stress= 0.18) for OTUs of the <i>B. turbinata</i> group from Figure 5.2
Figure 5.11 Attributes correlated (>80%) with the ordination in Figure 5.10 for OTUs of the
Bulbostylis turbinata group
Figure 5.12 Minimum spanning tree (MST) with linkages for the <i>Bulbostylis turbinata</i> group
plotted onto the 2-dimensional ordination of Figure 5.10.
Figure 5.13 WPGMA (β = -0.1) phenogram for the <i>Bulbostylis turbinata</i> subset (see Figure
5.2 for all OTUs of <i>Bulbostylis</i>) that fits the ordination (Figure 5.10) and MST (Figure
5.12)
Figure 5.14 Cladogram for tree 1 of 112 shortest trees (tree length = 1490) in the assessment
of monophyly for Australian species of <i>Bulbostylis</i>
Figure 5.15 Variation of synflorescence structure for some species of <i>Bulbostylis</i>

Figure 5.16 Scanning electron micrographs (SEM) showing the variation of nuts for some
samples of the Bulbostylis densa group171
Figure 5.17 Scanning electron micrographs (SEM) showing the variation of nuts for samples
of the <i>Bulbostylis burbidgeae</i> group
Figure 5.18 Scanning electron micrographs (SEM) showing the variation of nuts for samples
of the Bulbostylis turbinata group173
Figure 5.19 Scanning electron micrographs (SEM) showing the variation of nuts for samples
from Bulbostylis pyriformis and the B. hispidula complex
Figure 5.20 Scanning electron micrographs (SEM) showing the differences between nuts of
Bulbostylis barbata and B. sp. aff. barbata
Figure 5.21 A. Embryo morphology in <i>Bulbostylis</i>
Figure 5.22 Variation in <i>Bulbostylis</i> embryo size, shape, and development of second
primordial leaf177
Figure 5.23 Culm and leaf blade transverse sections in <i>Bulbostylis</i>
Figure 5.24 Culm and leaf blade transverse sections for Bulbostylis
Figure 5.25 Culm and leaf blades transverse sections for Bulbostylis
Figure 6.1 Cladogram for tree 2 of 66 shortest trees (tree length = 1490) for the tribe
Abildgaardieae
Figure 6.2 Nelmesia melanostachya ISOTYPE showing general habit, including solitary spikes
where the lateral spikelet is reduced to a single floret
Figure 6.3 Scanning electron micrographs (SEM) showing the variation of nut outline and
epidermal sculpturing in some species of Fimbristylis
Figure 6.4 Scanning electron micrographs (SEM) showing the variation of nut outline and
epidermal sculpturing in some species of Fimbristylis
Figure 6.5 Scanning electron micrographs (SEM) and light micrographs (LM) showing the
variation of nut outline and epidermal sculpturing in species of <i>Fimbristylis</i> (including
<i>Tylocarya</i>)
Figure 6.6 Scanning electron micrographs (SEM) showing the nut outline and epidermal
surface in two species of Nemum. 205
Figure 6.7 Scanning electron micrographs (SEM) showing the variation of nut outline and
epidermal sculpturing in species from the provisional tribe Arthrostylideae
Figure 6.8 Scanning electron micrographs (SEM) showing the variation in nut outline and
epidermal sculpturing for outgroup species of Schoenoplectus and Schoenoplectiella.
Figure 6.9 Light micrographs of whole cleared embryos showing the variation in shape and
size for some species assigned to <i>Fimbristylis</i> , plus schematic embryos for <i>Tylocarya</i>
and Nelmesia. Fimbristylis depauperata (K.L. Clarke 305, L. Little)
Figure 6.10 Light micrographs of whole cleared embryos for some species from the outgroup
used in cladistic analyses: Actinschoenus, Trachystylis and Schoenoplectiella
Figure 6.11 Culm and leaf blade transverse sections for some species from the provisional
tribe 'Arthrostylideae' selected as outgroup taxa for use in cladistic analyis, showing the
typical outlines, arrangement of sclerenchyma strands per vascular bundle, and C_3
anatomy
Figure 6.12 Culm and leaf blade transverse sections for <i>Fimbristylis, Tylocarya, and Nemum</i> .
Figure 0.12 Cullin and lear blade transverse sections for <i>Fimoristyns, Tytocarya, and ivenum.</i>

Abstract

The tribe Abildgaardiaae Lye is composed of 5-7 genera: *Crosslandia*, *Fimbristylis*, *Abildgaardia* (= *Fimbristylis* section *Abildgaardia*), *Bulbostylis*, *Nemum*, *Nelmesia* and *Tylocarya* (= *Fimbristylis nelmesii*). There has been little disagreement about the general boundaries of the tribe. However, limits of the main genera are disputed and unresolved. Some species and generic boundaries of *Crosslandia*, *Abildgaardia* and Australian *Bulbostylis* require assessment across their morphological and geographical range of distribution.

The general aim of this thesis is to test monophyly of and within the tribe Abildgaardieae. To address the aim, the limits for *Crosslandia*, *Abildgaardia* and Australian *Bulbostylis* are assessed to determine the species and generic limits on a global level.

Data from morphology, vegetative anatomy and embryo morphology were used in phenetic and cladistic analyses. Phenetic analyses of morphological data were used to test and set species limits. Additional characters from morphology, vegetative anatomy and embryo morphology were used in cladistic analyses to test monophyly of the tribe and previous classifications. Representative samples from *Fimbristylis*, *Nemum*, and the monotypic genera *Nelmesia* and *Tylocarya* (= *Fimbristylis nelmesii*) were added to those species defined in phenetic analyses. Data were polarised using the outgroup method; with outgroup taxa selected from the provisional Arthrostylideae, *Schoenoplectus* and *Schoenoplectiella*.

Cladistic analysis revealed that the tribe Abildgaardieae is not monophyletic when *Nemum, Nelmesia* and *Tylocarya* are included. Members of 'Arthrostylideae' violated monophyly of Abildgaardieae. The limits of *Crosslandia* and *Abildgaardia*

are revised: *Crosslandia* 4 spp., all endemic to Australia and *Abildgaardia* 11 spp., 9 in Australia, 8 endemic. The limits for Australian species of *Bulbostylis* remain unresolved, with further testing of a wider sample of overseas species needed. A new species of *Bulbostylis*, *B. kakadu* ined., is recognised. Species of *Nemum* are not monophyletic and *Nelmesia* rendered *Abildgaardia* non-monophyletic in the full tribal analysis. *Tylocarya* formed a clade with *Fimbristylis depauperata*. Species of *Fimbristylis* did not form a monophyletic group. Suggestions for further work are given.