Early Cognitive Indicators of Dyslexia in Preliterate Children at

Genetic Risk

Annie-Lou Carn

A Thesis Submitted for the Degree of Doctor of Philosophy

University of New England

Date

June 2007

Certification

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree or qualification.

I certify that any help received in preparing this thesis and all sources used, have been acknowledged in this thesis.

Annie-Lou Carn

This thesis is dedicated to my father, John D. Carn,

who is my inspiration.

Thank you

Acknowledgements

It takes a village to raise a child and I think that this expression applies to writing a thesis as well. A lot of 'behind the scenes' folk have 'suffered for my art', in the creation of this thesis. Most particularly I thank my immediate family; my partner Will Castle, and my children, Ben and Jeni, my Tamworth family; my mother Helen and her husband Geoff Bennett; my sister Katie and Steven Keir, especially for their help with respite and Ben's 'balancings'. My friends who gave me practical help and humour, Denny Sutherland, Al Sutherland, Ingrid Matthews, Kim Anderson, Cath Robinson, Peter Quain, Ken Carn, deserve a big cheer. Thanks also to the technical staff at UNE School of Psychology, Dean Davidson and Chris Lisle; who also doubled as a puppet king. Mel O'Shea who managed to be both a kookaburra and a frog. My colleagues and fellow students, particularly Mel, Peter, Navjot, Talei and Will. You meet some great people in the process who help in all sorts of funny little ways, Dr Don Martin, Dr Don Hine, Dr Rhonda Brown, Dr Sue Watt, Dr Graham Jamieson, Shonette Bridgeman. Maybe they had the right joke at the right time, an encouraging word, a printing tip or a SPSS hit. Peter Browne the artist, deserves thanks. I would also like to thank my secondary supervisor, Professor Brian Byrne. Most importantly I would like to thank my primary supervisor, Dr Bruce Stevenson, who I can't thank enough.

Thanks, gang!

A lot of people have gone out of their way to provide me with assistance especially the children who played with me for hours on end, their teachers who rearranged timetables and let me disrupt their day, their parents who invited me into their homes to drill them on their reading skills and who also willingly agreed to their child's participation. For some reading disabled parents this was quite an ordeal and I admire their ability to rise above their embarrassment and participate.

Thanks a million!

Early Cognitive Indicators of Dyslexia in Preliterate Children at Genetic Risk

TABLE OF CONTENTS

TITLE PAGE	
CERTIFICATION	
DEDICATION	
ACKNOWLEDGEMENTS	(i)
TABLE OF CONTENTS	(ii)
LIST OF APPENDICES	(iv)
LIST OF TABLES	(xx)
LIST OF FIGURES	(xxv)
ABSTRACT	(xxviii)

CHAPTER ONE: THE PROBLEM OF DYSLEXIA

The Acquisition of Reading Skills	1
Psychological and Social Costs of Reading Failure	1
Defining Dyslexia	2
A Biological Basis	3
The Exclusion of 'Non-Dyslexics'	4
Direct Comparisons Across Studies	5
The Impact of the Matthew Effect	6
Isolating the Deficit(s)	7
A Visual Deficit	8
A Verbal Deficit	10
A Phonological Deficit	11
A Sub-Lexical Deficit	13
Double Deficit Theory	14

Automatisation Deficit	16
Working Memory Deficit	17
Empirical Evidence of the Involvement of WM in Reading Disabilities	19
Predictive Evidence Supporting the Involvement of WM in Reading Disabilities	20
Getting Around the Problems	21
Genetic Components	21
Evidence from Molecular Genetics	21
Evidence from Twin Studies	22
Evidence from Preliterate Studies	23
Importance of Early Intervention	24
Precursors of Dyslexia	24
Genetic Evidence Assists Early Detection	26
Chapter Summary	26

CHAPTER TWO: WORKING MEMORY PROCESSES UTILISED FOR READING

The General Process of Paired Associate Learning	
PAL's Function in the Reading Acquisition Process	29
Evidence of a Deficit from the Dyslexia Literature	30
Domain General Functions: The Central Executive	31
Controlled Attention in the Reading Acquisition Process	32
Evidence of Deficit in Controlled Attention from the Dyslexia Literature	32
Inhibition and Interference	34
Inhibition and Interference in the Reading Process	34
Semantic Interference	35
Phonological Interference	36

iii

Evidence of an Inhibition Deficit in the Dyslexic Literature	36
Speed of Processing	38
Naming Speed and the Reading Process	39
Evidence of a Naming Speed Deficit in the Dyslexic Literature	39
Capacity Explanations	40
Span and the Reading Process	42
Evidence of a Span Deficit in the Dyslexic Literature	42
Domain Specific Functions: The Phonological Loop	43
Phonological Loop Functions and the Reading Process	44
Evidence of a Phonological Deficit in the Dyslexic Literature	44
Overall Design	
Measures Used in this Study	46
Participants	47
Test Time	48
Place of Testing	49
Adaptation of Measures	49
Initial Visit and Daily Procedure	50
Test Refusal	50
Feedback to Parents	51
Place of Parent Testing	51
Chapter Summary	52

CHAPTER THREE: CLASSIFICATION OF CHILDREN

Rationale	53
Establishing NEAR and FAR Status: A Discrete Factor Versus A Continuum	53

iv

u	ay 1: Exploring Unildren's Measures and Establishing Unita Risk Factors	
	Participants	55
	Materials and Procedure	55
	Letter Name Recognition	57
	Procedure	59
	Letter Sound Recognition	59
	Procedure	60
	Phonological Awareness Measures	60
	Sound Matching: Initial and Final Sounds Procedure	61
	Rhyme and Final Sound Procedure	61
	Syllable and Phoneme Blending Procedure	62
	Syllable and Phoneme Elision Procedure	62
	Word Blending Procedure	62
	Word Elision Procedure	63
	Lexical Access Naming	63
	Rapid Automatized Naming (RAN)	63
	RAN Procedure	65
	The Boston Naming Test	65
	Boston Naming Procedure	66
	Non-Verbal Ability	67
	Block Design Subtest of the Wechsler Preschool and Primary Scale of	
	Intelligence	67
	Block Design Procedure	67
	Overall Procedure	69

Study 1: Exploring Children's Measures and Establishing Child Risk Factors

Results	69
Scoring of Standardized Measures	69
Correlations for Data Reduction Considerations	69
Factor Analyses for Data Reduction	74
Discussion	76
Study 2: Exploring the Parents' Measures and Establishing Parent Risk Factor	5
Participants	81
Materials and Procedure	82
Test of Word Reading Efficiency	82
Procedure	82
Woodcock Reading Mastery Tests (Form G): Word Attack Subtest	83
Procedure	83
Stanford Diagnostic Reading Test	84
Procedure	84
Results	85
Continuous Parents' Risk Factors Based on Regression Analyses	90
Continuous Parents' Risk Factors Based on Factorial Analyses	92
Continuous Combined Parent Risk Factors	93
Parents' Dichotomous Factors	93
Are There Differences in NEAR and FAR Children's Performance When t	he Parent
Risk Factors are used to Predict Membership?	95
Discussion	99
General Discussion	102

CHAPTER FOUR: PAIRED ASSOCIATE LEARNING

1

Aim	103
Rationale	103
One Modality Versus Two Modalities	105
Effects With Words	106
Effects With Non-Words	108
The Impact of Phonological Stimuli	109
Main Study Hypotheses	112
Pilot PAL 1	
Aim	113
Participants	114
Materials	114
Item Considerations	114
Initial Design	116
Procedure	117
Procedural Considerations	119
Results	120
Discussion	120
Pilot PAL 2	
Aim	121
Participants	122
Materials	122
Procedure	122
Results	122
Discussion	122

Study 1 and 2: PAL Tasks Visual/Non-Word, Visual/Synthesised Sound

Aim	123
Participants	124
Materials	124
Procedure	124
Results	125
Data Cleaning	125
FAR Categorical Analyses	126
Acquisition	127
Retention	128
FAR and CAR Continuous Analyses	130
Discussion	132
Chapter Summary	136

CHAPTER FIVE: MEASURING INHIBITION: THE FLANKER TASK AND THE ALTERNATIVE

Aim	137
Rationale	137
Explanations of Negative Priming	140
Negative Priming in Sub-Populations	141
Flanker Designs	142
Study 1: Measuring Inhibition Using the Flanker Paradigm	
Hypotheses	144
Participants	145
Materials	145
Item Considerations	145

viii

Item Choice for Conditions	147
Design Considerations	148
The Problem of Leakage Across Conditions	149
Design	150
Procedure	151
Results	154
Data Cleaning	154
Evidence of Priming Effects	155
Dichotomous FAR Measure as a Predictor Of Each Priming Effect	156
NEAR Group	156
FAR Group	157
Relationships Among Response Times, Across Conditions and Groups	158
NEAR and FAR Groups	158
Continuous FAR Measure as a Predictor of Each Priming Effect	159
NEAR Group	159
FAR Group	160
Continuous CAR Factors as a Predictor of Each Priming Effect	160
NEAR Group	160
FAR Group	160
Continuous CAR Variables as Predictor of Each Priming Effect	161
Are There Group Differences in Exposure Time?	163
Discussion	163
Evidence of Sub-Groups	167

Study 2: Alternative Flanker Study: The RAN Flanker

Rationale	167
Hypotheses	168
Participants	169
Materials	169
Design	170
Item Consideration	171
Procedure	172
Results	173
Evidence of Interference Effects	174
Dichotomous FAR Measure as a Predictor Of Each Priming Type	175
NEAR Group	175
FAR Group	177
NEAR and Far Groups	178
Relationships Among Inhibition Effects Across Conditions and Groups	178
Continuous FAR Factors and Variables as Predictors of Each Inhibition Effect	179
Continuous CAR Factors as Predictors of Each Inhibition Effect	180
NEAR & FAR Groups	180
Continuous CAR Variables as a Predictor of Each Inhibition Effect	180
Continuous CAR Variables as a Predictor of Each Interference Condition	181
Discussion	181
Parent and Child Measures	183
Children's Measures	183
General Discussion	184

X

CHAPTER SIX: ENUMERATION TASK AND DISCRIMINATION TASKS

Rationale	185
Enumeration Tasks	185
Discrimination Tasks	189
Properties of Targets and Distracters	190
Pilot Enumeration	
Aim	192
Participants	192
Materials	192
Design Considerations	193
Procedure	193
Results	195
Discussion	198
Pilot Multi-Item Discrimination	
Aim	200
Participants	200
Materials	200
Item Considerations	200
Design Considerations	201
Procedure	202
Results	204
Discussion	208
Pilot Single Item Discrimination	
Aim	210
Participants	210

Materials	210
Item Considerations	210
Procedure	211
Design Considerations	211
Results	212
Discussion	215
Study 1: The Enumeration Task	
Hypotheses	215
Participants	216
Materials	216
Stimuli	216
Design Considerations	217
Procedure	218
Results	220
Data Cleaning	220
Evidence of the Dichotomous Pattern	221
Dichotomous FAR Measure as a Predictor of Performance	221
Relationships Amongst Conditions for Each Risk Group	223
Continuous FAR Measure as a Predictor of Span, Speed and Controlled Attention	224
NEAR and FAR Groups	225
Continuous CAR Factors as Predictors of Span, Speed and Controlled Attention	227
NEAR and FAR Groups	227
Continuous CAR Variables as Predictors of Span, Speed and Controlled Attention	227
NEAR and FAR Groups	228
How do Span, Speed and Controlled Attention Correlate With Flanker Inhibitions?	228

Discussion	230
Study 2: The Discrimination Task	
Hypotheses	232
Participants	233
Materials	233
Design Considerations	233
Procedure	234
Results	235
Data Cleaning	235
Evidence of the Dichotomous Pattern	235
Dichotomous FAR Measures as a Predictor of Performance	237
Continuous FAR Measure as Predictors of Speed and Controlled Attention	238
Continuous CAR Factors as Predictors of Speed and Controlled Attention	239
Continuous CAR Variables as a Predictors of Speed and Controlled Attention	239
NEAR and FAR Groups	240
How Do Speed and Controlled Attention Correlate With the PAL Task?	242
How Do Speed and Controlled Attention Correlate With the Flanker Measures?	242
How Do Speed and Controlled Attention in the Discrimination Task Correlate With	
Enumeration Speed and Controlled Attention?	243
Discussion	243
No Subitizing Range	243
Evidence of a Speed of Processing Deficit	244
Predictive Value of Parent Measures	244
Predictive Value of Children's Risk Factors	244
Predictive Value of Children's Risk Variables	245

xiii

	Does Discrimination Speed and CA Correlate With Other Tasks?	246
Gene	eral Discussion	246

CHAPTER SEVEN: MEASURES OF DOMAIN SPECIFIC CAPACITY

249

Aim	249
Theories of WM Capacity	249
Resource Sharing Model	250
Inhibition Based Model	250
Measurement Issues	250
Digit Span Measures	251
Span Measure Considerations	253
Pilot 1: Identifying the Appropriate Items	
Aim	256
Participants	256
Materials	256
Procedure	256
Results and Discussion	257
Pilot 2: Identifying the Appropriate Procedure	
Aim	257
Participants	257
Materials	258

Design Considerations	258
Procedure	259
Regults	260

Kesuiis	200
Discussion	260

Study 1: Sentence Completion Span

Hypotheses	261
Participants	262
Materials	262
Design Considerations	262
Procedure	263
Scoring	264
Results	265
Relationships Among Conditions	266
Dichotomous FAR Measures as a Predictor of Span Size	267
Continuous FAR Measures as Predictors of SC Span and SC Interference	267
NEAR Group	267
FAR Group	267
Continuous CAR Factors as Predictors of SC Span and Proactive Interference	268
NEAR Group	268
FAR Group	268
Continuous CAR Variables as Predictors of SC Span and SC Interference	29
NEAR and FAR Groups	270
Continuous CAR Variables & SC Interference	271
NEAR and FAR Groups	271
How do SC Span and SC Interference Correlate with PAL Measures?	272
NEAR and FAR Groups	272
How do SC Span and SC Interference Correlate with Flanker Measures?	272
How do SC Span and SC Interference Correlate with Enumeration Span, Speed and	
Controlled Attention?	273

	NEAR Group	273
	FAR Group	274
	Discussion	274
Stı	udy 2: Gesture Span	
	Aim	275
	Participants	276
	Materials	276
	Item Consideration	276
	Procedure	277
	Scoring	278
	Results	278
	Relationships Among Conditions	279
	Dichotomous FAR Measures as a Predictor of Span Size	279
	Continuous FAR Measures as Predictors of Gesture Span	280
	NEAR and FAR Groups	280
	Continuous CAR Factors as Predictors of Gesture Span	280
	NEAR and FAR Groups	280
	Continuous CAR Variables as Predictors of Gesture Span	280
	NEAR and FAR Groups	281
	Did Gesture Span Correlate With PAL Measures?	281
	NEAR and FAR Groups	281
	Did Gesture Span Correlate With Flanker Measures?	281
	Does Gesture Span Correlate with Enumeration Span, Speed and Controlled Attention?	282
	What is the Relationship Between SC Span and Gesture Span?	282
	Discussion	283

xvi

Evidence of Sub-Groups	284
General Discussion	284

CHAPTER EIGHT: MEASURING THE PHONOLOGICAL LOOP

Rationale	286
Hypotheses	289
Participants	290
Materials	290
Item Considerations	290
Design Considerations	291
Procedure	291
Results	293
Relationships Among Conditions	294
NEAR and FAR Groups	295
Dichotomous FAR Measures as a Predictor of Lexical and Similarity Effect	295
NEAR and FAR Groups	296
Continuous FAR Measures as Predictors of Each Phonological Span	297
Continuous CAR Factors as Predictors of Each Phonological Span	297
NEAR and FAR Groups	298
Continuous CAR Variables as Predictors of Each Phonological Span	298
NEAR and FAR Groups	299
How do Phono. Span Measures and Phono. Effect Measures Correlate with	
PAL Performance?	300
NEAR and FAR Groups	301

How do Phono. Span Measures and Phono. Effect Measures Correlate with	
Flanker Measures?	301
How do Phono. Span Measures and Phono. Effect Measures Correlate with	
Enumeration Span, Speed and Controlled Attention?	301
How do Phono. Span Measures and Phono. Effect Measures Correlate with	
Discrimination Speed and Controlled Attention	302
How do Phono. Span Measures and Phono. Effect Measures Correlate with	
SC Span and Gesture Span?	302
Discussion	302

CHAPTER NINE: GENERAL DISCUSSION

Aim	305
The Predictive Power of Standardised Children's Measures	305
Suggestions for Future Research	306
A Link Between Hereditary Aspects of Dyslexia and Domain General WM Processes	306
Parents as Predictors of Dyslexia	306
Suggestions for Future Research	307
Binding of Associates in WM	308
Suggestions for Future Research	310
CE Function of Cognitive Inhibition	311
Inhibition of Interference in a Discrete Task	311
Inhibition of Interference in a Continuous Task	313
Suggestions for Future Research	312
CE Functions; Span, Speed and Controlled Attention	314
The Enumeration Speed	314
The Discrimination Speed	315

xviii

Suggestions for Future Research	316
Domain General Span	316
Susceptibility to Proactive Interference	316
Non-Verbal Span	318
Suggestions for Future Research	319
Domain Specific Span	319
A Speed of Processing Deficit and The Matthew Effect	320
Summary	320
REFERENCES	322

APPENDICES

А.	Information Sheet for Participants	366
	Consent Form	367
	Letter to Parents	368
	Background and Contact Information	369
В.	List of Participating Preschools and Schools	370
С.	Letter Name Knowledge Test	371
	Letter Sound Knowledge Test	372
D.	Stanford Speed Reading Test	373
E.	Paired Associate Task	374
F.	Pictures used in Flanker Task	376
G.	Flanker Task: The Forty Prime/Probe Pairs and Conditions	383
H.	Flanker Task Phase 1 Items	386
Ι.	Alternative Picture Flanker	387
J.	Alternative Flanker Sheets	388
К.	A Black and White Copy of CTOPP RANO for Comparison with the Flanker RAN Task	397
L.	Icon Items used in the Multiple Discrimination Pilot Study with their Corresponding	
	Name and Feature Manipulation	400
М.	Sentence Completion Span Instructions and Data Collection Instrument	401
N.	Gesture Repetition Instructions and Data Collection Instrument	407
О.	Data Collection Measure for Non and Real Word Repetition Study	409
Ρ.	List of Words and Non-Words Generated for Phonological Span Measures	411
Q.	Matrices for Similarity and Dissimilarity Ratings	412

1

LIST OF TABLES

Table 1: Age and Gender Differences Across Demographic Areas	48
Table 2: All Partial Correlations for Children's Standardized Measures, Using Age	
as a Covariate	73
Table 3: Factor Loadings for the Age Adjusted Residuals Used in the Factor Analysis	
on Each of the Three Children's Risk Factors	75
Table 4: Correlations Between the Four Parents' Variables	86
Table 5: Correlations Between Parents' Variables for Mothers and for Fathers	87
Table 6: Correlations Between the Mean Parents' Performance and Children's	
Performance	89
Table 7: Correlations Between the Mean Parents' Performance and Children's Risk	
Factors	89
Table 8: Significant Best and Worst Parents' SDRT Predictors of Child Variables and	
Factors	91
Table 9: Cut Off Criteria for the Creation of Dichotomous Parent Status Factors for Raw	
Scores.	94
Table 10: Using Each of the Three Parent Dichotomous Factors, T-Tests Compared the	
NEAR and FAR Groups on each of the Children's Performance Variables and	
Children's Risk Factors, With Age Co-Varied	96
Table 11: Number of Participants Classified as NEAR or FAR, Based on the USA	
FAR Factor and the Parent Report Factor	97
Table 12: Means (Standard Deviations) for Each of the Children's Variables, Using	
Parent Report to Define NEAR and FAR Status	99
Table 13: Number of PAL Trials To Criterion for Each Reading Group and Each	
Stimulus Type	120

Table 14: Group Means (Standard Deviations) for the Number of Trials to	
Criterion, for Each of the Four PAL Conditions	125
Table 15: NEAR and FAR Group Means (Standard Deviations) for the Number	
of Trials to Criterion for Each Condition, in the Acquisition Session	126
Table 16: NEAR and FAR Group Means (Standard Deviations) for the Number	
of Trials to Criterion Required for Each Condition, in the Retention Session	128
Table 17: Savings From Acquisition Session to Retention Session, for Each Risk Group	129
Table 18: An Example of One Set of Flanker Trials with Fictitious Response Times	139
Table 19: An Example of a Prime Probe Pair for Each Condition	148
Table 20: The Latin Squares Design Distribution of Prime/Probe Pairs Across the Five	
Stimulus Lists	149
Table 21: Priming Effects for Each Type of Interference, Expressed in Milliseconds	156
Table 22: Probe Mean Response Times for the NEAR Group, for Each Interference	
Туре	156
Table 23: Probe Mean Response Times for the FAR Group, for Each Condition and	
Priming Effect	157
Table 24: Partial Correlations Between Flanker Conditions for the NEAR and FAR	
Groups	159
Table 25: Correlations Between RTs for Each Flanker Condition and Children's	
Variables, for the NEAR and FAR Groups	162
Table 26: Group Means for Each Flanker Interference Type and Interference	
Presentation	174
Table 27: Mean RTs for the NEAR Group for Each Interference Type and Each	
Interference Presentation	176

xxii

Table 28: Mean RTs for the FAR Group for Each Interference Type and Each	
Interference Presentation	177
Table 29: Correlational Relationships Between Interference Effects for the Total	
Group and for NEAR and FAR Groups	179
Table 30: Significant Correlational Relationships Between the RAN Flanker	
Conditions and the Children's Variables	181
Table 31: Span, Speed and Controlled Attention RT Means for Pilot Enumeration	198
Table 32: Results of the Four Trend Analyses Examining the Linear Function Created	
By the Use of Different Sets of Icons	208
Table 33: Speed, Span and Controlled Attention RT Means for Pilot Discrimination	214
Table 34: Speed, Span and Controlled Attention RT Means for Children's Enumeration	
Task	222
Table 35: Frequency Distribution of Enum. Spans for Both the NEAR and	
FAR Group	223
Table 36: All Parent Performance Measures That Correlated With Enumeration CE	
Measures	225
Table 37: All Parent Performance Measures That Correlated With Enumeration CE	
Measures for the NEAR and FAR Groups	226
Table 38: Speed and Controlled Attention RT Means (in ms) for the Discrim. Task	237
Table 39: Means (Standard Deviations) for CA and Speed for the Discrimination	
Task for NEAR and FAR Groups	238
Table 40: Correlational Relationships Between Children's Variables and Speed and	
Controlled Attention for the Discrimination Task	240
Table 41: Correlational Relationships Between Children's Variables, Speed and Controlled	
Attention for the FAR Group Only	241

Table 42: An Example of Short, Medium and Long Sentence Completion Norms for	
Adults and Their Corresponding Response Time for Each Derivative	255
Table 43: Frequency Distribution of Spans Across the Whole Group and NEAR	
and FAR Groups	266
Table 44: Correlational Relationships Between Children's Variables and SC Span and	
SC Interference	269
Table 45: Correlational Relationships Between SC Span and Children's	
Variables for NEAR and FAR Groups	270
Table 46: Frequency Distributions of Gesture Spans Across the Whole Group and	
NEAR and FAR Groups	279
Table 47: Frequency Distributions of Phono. Spans Across Conditions, for the	
Whole Group	293
Table 48: Means (Standard Deviations) for the Four Conditions, for the Whole	
Group and for NEAR and FAR Groups	294
Table 49: Correlational Relationships Between Lexical and Similarity Effects for	
NEAR and FAR Groups	296
Table 50: Correlational Relationships Between the Children's Risk Factors and	
Phono. Spans	297
Table 51: Correlational Relationships Between the Children's Risk Factors	
and the Phono. Conditions for the NEAR Group	298
Table 52: Correlational Relationships Between the Children's Performance Variables	
and Phono. Span and Effects	299
Table 53: Correlational Relationships Between the Children's Performance Variables	
and Phono. Spans for NEAR and FAR Groups	300

LIST OF FIGURES

Figure 1: Diagrammatical Presentation of the Sampling Window	165
Figure 2: The Six Items From the Phon. Condition, Demonstrating a Bunched	
Presentation	171
Figure 3: The Six Items From the Phon. Condition, Demonstrating a Bunched	
Presentation	171
Figure 4: The Pattern of Counting Time Observed in a Standard Enumeration Task,	
Expressed in Milliseconds, as a Function of the Number of Icons Presented	
On Any One Screen	186
Figure 5: A Typical Counting Array Screen Used in the Pilot Enumeration Task	194
Figure 6: A Typical Response Recording Screen Used in the Pilot Enumeration Task	195
Figure 7: The Pattern of Counting Time Expressed in Milliseconds for the Pilot	
Enumeration Task, as a Function of the Number of Icons in an Array	197
Figure 8: A Multi-Item Discrimination 'Different' Screen	203
Figure 9: A Series of Graphs Displaying the Pattern of Mean RTs for Each	
Icon Set Including the Type of Manipulation Used for Each Set	205
Figure 10: Patterns of RTs Depending on Either the Orientation, Movement	
Or Feature Differences of Sets of Icons	207
Figure 11: A Single Item Discrimination 'Different' Screen	211
Figure 12: The Pattern of Counting Time Expressed in Milliseconds for the Pilot	
Discrimination Task, as a Function of the Number of Icons in an Array	213
Figure 13: Response Screen for Child Enumeration Task	219
Figure 14: A Line Graph Visually Displaying the Groups' Performance on the	
Enumeration Task	221

Figure	15: Two Line Graphs Visually Displaying the NEAR and FAR Groups'	
	Performance on the Enumeration Task	222
Figure	16: The Pattern of Mean Counting Time Expressed in Milliseconds, as a Function	
	of the Number of Icons Presented on Any One Screen	236

ABSTRACT

The aim of this thesis was to assess a sample of 81 preliterate children (3 to 5 years old) who were from a Family At Risk of dyslexia (FAR) or Not Easily Associated with Risk (NEAR) in respect to a range of working memory and standardised language tasks (children's measures) in an attempt to identify cognitive features that might be implicated in dyslexia. Because dyslexia appears to have hereditary components, parent's performance on a range of reading related tasks was also correlated with children's performance to assess which tasks were most predictive of risk status.

Utilising information gained by previous longitudinal studies, standardized tasks provided a continuous classification of the children's likely risk status based on their own performance. Three factors were gleaned from a factorial analysis, component manipulation ability, rapid automatised naming, and letter knowledge, and this accords with current research (Bishop, 2003) suggesting that these three factors are good predictors of future reading success. In terms of the children's non-standardised measures, the ability to pair visual stimuli with articulated and synthesised sounds was investigated. Measures of central executive functions (cognitive inhibition, susceptibility to interference, various span measures, speed, and controlled attention) were also examined. Tasks were adapted, or developed, specifically to meet the attentional, knowledge and skill levels of these young children.

Children were categorised in terms of risk status using two methods based upon their parent's literacy performance. Firstly, several continuous predictors were identified. Of these, the worst parent's comprehension score was the best predictor of children's performance and supports the idea that the hereditary component of dyslexia appears more likely to involve central executive functions, like speed, and possibly central coherence, which in turn impact on phonological processing. The second method produced the discrete

xxvii

categories of family at risk (FAR) and not easily associated with risk (NEAR). This method proved to be most informative when categorisation was based on self-report by the parents concerning their past competence in reading.

The only performance differences between NEAR and FAR groups, in terms of paired associate learning was when the FAR group out performed the NEAR group when the sound was synthesised. It is suggested that this may be the result of enhanced perceptual discrimination for acoustic input, with reduced likelihood of language-specific categorical (phonological) processing.

Two measures of cognitive inhibition were designed using picture flanker tasks. Overall, the results suggested that the FAR children were more likely to interpret pictures semantically, relying on a more literal perceptual interpretation, rather than assigning a quick linguistic label. The use of this strategy would require greater reliance on an eidetic memory and thus accords well with their performance on the paired associate tasks.

Using an enumeration task, there were no group differences on the basis of span or controlled attention, yet the FAR group showed a speed of processing deficit supporting similar results for individuals with dyslexia (e.g., Bowers, 1995). Similarly, using a discrimination task, the FAR group demonstrated a trend towards slower response times. The results of the enumeration and discrimination tasks, in conjunction with performance on some of the standardised tasks, highlight a critical role for processing speed.

A sentence completion active span task demonstrated no group differences in span sizes, but FAR children were more susceptible to proactive interference from previous trials and lower span in this group predicted proactive interference. This susceptibility to interference may have a genetic component, where poor sight word reading ability displayed by the parents with the worst reading skills was strongly associated with greater susceptibility to interference for the children. For simple word span, the NEAR group demonstrated a larger span size for similar real words relative to the FAR group. This provides tentative support that a deficit may lie in the distinctiveness of the phonological representation at a lexical level, leading to difficulty when it comes to retrieval. It is highly possible that if a deficit occurred here, a strategy to overcome this deficit may be to focus on acoustic properties at the time of encoding in order to improve their performance.

Overall, the performance of FAR children would suggest a primary speed of processing deficit that may have a cascading effect. Speed deficits contributed to poor performance not just in tasks that were timed (e.g., rapid automatised naming tasks), but also in tasks requiring the segmentation of speech stream (e.g., rhyme awareness, word blending ability and word elision skills). The pattern of associations between children's measures reported throughout the thesis would suggest that the Matthew Effect is indeed impacting way *before* the reading acquisition process even begins, emphasizing the need for further investigation in the preliterate population.