
# THE AUSTRALIAN VASCULAR EPIPHYTES :

Top capy

## FLORA & ECOLOGY

by Benjamin John Wallace

Thesis submitted for the degree of Doctor of Philosophy of the University of New England, NSW. Botany Department December 1981 This work I dedicate to my father, Robert, who gave so much to his children and who urged me to continue my formal education as far as possible. Also, without my inheritance of his doggedness, this work would surely have foundered.



#### Acknowledgements

There is quite a number of people whom I wish to thank for their assistance, without which, this project would have been very much more difficult, if not impossible.

Foremost is Professor (now Emeritus) Noel C.W. Beadle, who in the first place assisted my entry into the Faculty of Science, which eventually led to the present work. During my postgraduate career he was my chief mentor and supervisor and I am grateful for this and particuarly for his allowing me to follow the projects of my own interest. Even in his retirement he offered advice and critically read some of the manuscript of this dissertation.

I am also considerably in debt to my present supervisors, Mr John Williams and Dr Jim Charley, not only for their advice, criticism and encouragement but also for the example of their academic astuteness and leadership.

To Dr Klaus Winter I owe a great deal for his prompting, advice and general facilitation of the work on CAM, which forms a crucial part of my thesis. He was very generous in allowing me to use the results of the CAM survey which he conducted, in his critical reading of the relevant manuscript and in offering encouragement and moral support when needed. Professor Barry Osmond also read this section and gave advice as well as having some  $\delta^{13}$ C ratio determinations done for me.

The staff of the CSIRO Forest Research Station, Atherton were helpful in various ways on my trips to north Queensland, particularly Messrs Geoff Stocker, Bernie Hyland, Alick Dockrill and Bruce Gray. The Stockers took me into their home while I recovered from the effects of scrub typhus.

The staffs of the herbaria of both Sydney and Brisbane were very co-operative in providing access to specimens and to literature in their libraries as well as offering advice and encouragement.

Mr Jack Sewell allowed me free access through his property to the Long Point study site and Messrs Cliff Faint and Mike Saunders provided me with rainfall data for that area. Messrs Keith Ingram, Don Blaxell, Ken Hill, Dick Windsor and Dr Col Bale all assisted by critically reading manuscript and offering encouragement generally.

The co-operation of the NSW and the Queensland National Parks and Wildlife services must be acknowledged. The Australian Orchid Foundation provided financial assistance for a field excursion to Cape York.

To my wife, Irene, I owe much for her patience and forbearance over the years of this project, particularly the last one, and also for typing up sections of the manuscript. Margaret Henderson also typed part of the manuscript.

Jenny Worgan typed most of the manuscript and compiled the Table of Contents, Lists of Tables, Figures and Plates. Her efficiency, cheerfulness and understanding helped considerably.

Many other friends and my family gave various forms of assistance and encouragement and my thanks go to them also.

Lastly, but certainly not least , I would like to thank the technical staff of this Department who assisted in various ways, particularly Gordon White whose unstinted co-operation and resourcefulness was well appreciated.

#### Statement of Originality

I certify that the substance of this dissertation has not been submitted for any degree and is not being currently submitted elsewhere.

Also, all of the work recorded herein is my own except as otherwise acknowledged.

Signed

Date

25.1.82

### CONTENTS

| Acknowledgements                                                                                                                                                                                                       | 1   |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|
| List of Tables vi                                                                                                                                                                                                      |     |  |  |  |  |
| List of Figures                                                                                                                                                                                                        |     |  |  |  |  |
| List of Plates                                                                                                                                                                                                         | x   |  |  |  |  |
| List of Abbreviations                                                                                                                                                                                                  | xi  |  |  |  |  |
| Abstract                                                                                                                                                                                                               | xii |  |  |  |  |
| General Introduction                                                                                                                                                                                                   | 1   |  |  |  |  |
| CHAPTER 1: LITERATURE REVIEW & EPIPHYTE CLASSIFICATION                                                                                                                                                                 | 4   |  |  |  |  |
| 1.1 Review of selected, relevant literature                                                                                                                                                                            | 5   |  |  |  |  |
| 1.2 Epiphyte classification and terminology                                                                                                                                                                            | 11  |  |  |  |  |
| 1.3 Glossary of important and miscellaneous terms                                                                                                                                                                      | 18  |  |  |  |  |
| CHAPTER 2: THE AUSTRALIAN VASCULAR EPIPHYTES                                                                                                                                                                           | 22  |  |  |  |  |
| 2.1 Introduction                                                                                                                                                                                                       | 23  |  |  |  |  |
| 2.2 Materials and methods                                                                                                                                                                                              | 25  |  |  |  |  |
| 2.3 Results                                                                                                                                                                                                            | 25  |  |  |  |  |
| 2.3.1 Vascular epiphyte flora list                                                                                                                                                                                     | 25  |  |  |  |  |
| 2.3.2 Accidental epiphytes                                                                                                                                                                                             | 46  |  |  |  |  |
| 2.3.3 Facultative terrestrial/lithophyte/low epiphyte spp.                                                                                                                                                             | 47  |  |  |  |  |
| <ul> <li>2.3.4 Synopsis of Australian vascular epiphyte flora</li> <li>taxonomic group strengths</li> <li>main geographic distribution patterns</li> <li>life form groupings</li> <li>physiognomic type etc</li> </ul> | 49  |  |  |  |  |
| <ul> <li>exposure preference index</li> <li>occurrence of CAM</li> <li>disseminule type groupings</li> </ul>                                                                                                           |     |  |  |  |  |
| 2.4 Discussion                                                                                                                                                                                                         | 51  |  |  |  |  |
| 2.4.1 General considerations                                                                                                                                                                                           | 51  |  |  |  |  |
| 2.4.2 The groups                                                                                                                                                                                                       | 51  |  |  |  |  |
|                                                                                                                                                                                                                        |     |  |  |  |  |

| 2.5     | Biogeography of the Australian vascular epiphytes with particular reference to the Orchidaceae | 59  |  |  |
|---------|------------------------------------------------------------------------------------------------|-----|--|--|
| 2.6     | Myrmecophilous epiphytes in Australia                                                          |     |  |  |
| 2.7     | Conclusions                                                                                    | 68  |  |  |
| CHAPTER | 3: EPIPHYTE ENVIRONMENTS IN AUSTRALIA                                                          | 70  |  |  |
| 3.1     | Introduction                                                                                   | 71  |  |  |
| 3.2     | Materials and Methods                                                                          | 72  |  |  |
| 3.3     | Results                                                                                        | 73  |  |  |
| ,       | 3.3.1 Continental distribution of rainforest, MAR and average annual potential evaporation     | 73  |  |  |
|         | 3.3.2 Macrovegetation profiles                                                                 | 74  |  |  |
|         | 3.3.3 The study sites                                                                          | 76  |  |  |
|         | a. Subtropical Rainforest, Dorrigo NP, NSW                                                     | 76  |  |  |
|         | b. Littoral Rainforest, Shelly Beach,<br>Port Macquarie, NSW                                   | 79  |  |  |
|         | c. Dry Rainforest, Long Point, Hillgrove, NSW                                                  | 82  |  |  |
|         | d. Warm Temperate Rainforest, Humber Hill,<br>New England NP, NSW                              | 84  |  |  |
| ,       | e. Cool Temperate Rainforest, Wrights Lookout,<br>New England NP, NSW                          | 87  |  |  |
|         | f. Semi-evergreen Mesophyll Vine Forest, Leo Ck<br>McIlwraith Range, Qld                       | ,80 |  |  |
| 3.4     | Discussion                                                                                     | 90  |  |  |
|         | 3.4.1 Geography of epiphyte environments in Aust.                                              | 90  |  |  |
|         | 3.4.2 The study site macroenvironments                                                         | 92  |  |  |
|         | 3.4.3 Macrocommunity structure                                                                 | 93  |  |  |
|         | 3.4.4 Microhabitat physical factors                                                            | 95  |  |  |
|         | - Irradiance                                                                                   | 95  |  |  |
|         | - maximum and minimum air temperatures                                                         | 95  |  |  |
|         | - frequency of precipitation                                                                   | 96  |  |  |
|         | - air movement                                                                                 | 96  |  |  |
|         | - air evaporative power                                                                        | 97  |  |  |
| 3.5     | Conclusions                                                                                    | 97  |  |  |
| 3.6     | Recommendations for future investigation of epiphyte<br>microclimate                           | 98  |  |  |

iv

| CHAPTER | 4: SY                                    | 'NEC | 0L0(       | SY OF EPIPHYTES                               | 99   |
|---------|------------------------------------------|------|------------|-----------------------------------------------|------|
| 4.1     | Introd                                   | ucti | on         |                                               | 100  |
| 4.2     | Syneco                                   | logy | of         | the Australian epiphytes                      | 103  |
|         | 4.2.1                                    | Int  | rodu       | ction and aims                                | 103  |
|         | 4.2.2                                    | Mat  | eria       | ls and methods                                | 104  |
|         |                                          |      | <b>-</b> D | lot location and size                         |      |
|         |                                          |      | _          | norophyte table                               |      |
|         |                                          |      |            | piphyte table                                 |      |
|         |                                          |      |            | istribution charts                            |      |
|         |                                          |      |            | norophyte/epiphyte transect profiles          |      |
|         |                                          |      | _          | orophy coropipation cranacet profiles         |      |
|         | 4.2.3                                    | Res  |            |                                               | 106  |
|         |                                          |      | Plo        | t l : STRf, Dorrigo NP                        | 106  |
|         |                                          |      | Plo        | t 2 : LRF, Shelley Beach                      | 110  |
|         |                                          |      | Plo        | t 3 : DRf, Long Point                         | 113  |
|         |                                          |      | Plo        | t 4 : WTRf, Humber Hill                       | 116  |
|         |                                          |      | Plo        | t 5 : CTRf, Wrights Lookout                   | 119  |
|         |                                          | 1    | Plo        | t 6 : SEVF, Leo Creek                         | 121  |
|         |                                          | •    | Sum        | mary of phorophyte & epiphyte parameters      | 125  |
| • .     | 4.2.4                                    | Dis  | cuss       | ion                                           | 126  |
|         |                                          | A.   | The        | phorophytes                                   | 126  |
|         |                                          | в.   | The        | epiphytes                                     | 126  |
|         |                                          |      | 1.         | Floristic diversity                           | 126  |
|         |                                          |      | 2.         | Population densities                          | 127  |
|         |                                          |      | 3.         | Structural complexity of epiphytic vegetation | 129  |
|         |                                          |      |            | a. zonation                                   | 129  |
|         |                                          |      |            | b. physiognomic types & life forms            | 131  |
|         |                                          | c.   | Epi        | phyte-phorophyte relationships                | 133  |
|         |                                          |      | 4.         | Specificity                                   | 133  |
|         | ·                                        |      | 5.         | Epiphyte-bearing ability of phorophytes       | 136  |
|         |                                          |      |            | i. phorophyte axeny & epiphyte pronenes       | s136 |
|         |                                          |      |            | ii. epiphytes and allelopathy                 | 138  |
|         |                                          |      |            | iii. phorophyte size/age effect               | 141  |
| 4.3     | Summar                                   | y of | epij       | phyte synecology discussion                   | 146  |
| 4.4     | Nest-epiphyte communities and succession |      |            | 148                                           |      |

v

| CHAPTER     | 5: EPIPHYTES AND CRASSULACEAN ACID<br>METABOLISM (CAM)                                                                          | 156 |
|-------------|---------------------------------------------------------------------------------------------------------------------------------|-----|
| 5.1         | Introduction and Review                                                                                                         | 157 |
| 5.2         | The ecology of CAM in the epiphytes Dendrobium speciosum<br>Sm. and Plectorrhiza tridentata (Lindl.) Dockrill,<br>(Orchidaceae) | 164 |
|             | 5.2.1 Introduction                                                                                                              | 164 |
|             | 5.2.2 Selection of site, species and individuals                                                                                | 164 |
|             | 5.2.3 Methods                                                                                                                   | 168 |
|             | - leaf acidity                                                                                                                  |     |
|             | - diffusive resistance of leaf                                                                                                  |     |
|             | - leaf surface temperature                                                                                                      |     |
|             | - air temperature                                                                                                               |     |
|             | - solar radiation                                                                                                               |     |
|             | - relative humidity                                                                                                             |     |
|             | - vapour pressure deficit                                                                                                       |     |
|             | 5.2.4 Results                                                                                                                   | 170 |
|             | 5.2.5 Discussion                                                                                                                | 179 |
|             | 5.2.6 Conclusions                                                                                                               | 183 |
|             | Research needs into CAM in these species                                                                                        | 183 |
| 5.3         | Discussion on CAM in the Australian vascular epiphyte<br>flora                                                                  | 185 |
| GENERAL     | CONCLUSIONS                                                                                                                     | 193 |
| Bibliograph | ıy                                                                                                                              | 197 |
| Appendix 1  | <ul> <li>descriptive illustrated key to the Australian</li> <li>vascular epiphyte flora - separate volume</li> </ul>            |     |
| Appendix 2  |                                                                                                                                 | 210 |
| Appendix 3  |                                                                                                                                 |     |
| wheners 2   |                                                                                                                                 | 225 |

vi

List of Tables

|   |               |    |                                                            | Page |
|---|---------------|----|------------------------------------------------------------|------|
|   | 2.la          | 2  | Australian vascular epiphyte flora list                    | 27   |
|   | 2.lb          | (  | Geographic distribution patterns                           | 49   |
|   | 2.lc          | 1  | Life form groupings                                        | 50   |
|   | 2.1d          | ]  | Physiognomic types etc                                     | 50   |
|   | 2.le          | I  | Exposure preference index means of groups                  | 50   |
|   | 2.1f          | (  | CAM in the Australian vascular epiphytes                   | 50   |
|   | 2 <b>.</b> 1g | I  | Disseminule type groupings                                 | 50   |
|   | 2.2           | ]  | Ploristic diversity of epiphyte distributional areas       | 59   |
|   | 2.3           | S  | Southward decrease in epiphyte diversity                   | 61   |
|   |               |    |                                                            |      |
|   | 3.1           | (  | Climatic parameters of the subtropical sites               | 93   |
|   |               |    |                                                            |      |
| • | 4.2.3.        | la | Phorophytes of Dorrigo STRf                                | 106  |
|   |               | 1b | Epiphytes " "                                              | 107  |
|   |               | 2a | Phorophytes of Shelly Beach LRf                            | 110  |
|   |               | 2b | Epiphytes " " "                                            | 111  |
|   |               | 3a | Phorophytes of Long Point DRf                              | 113  |
|   |               | 3b | Epiphytes " " "                                            | 114  |
|   |               | 4a | Phorophytes of Humber Hill WTRf                            | 116  |
|   |               | 4b | Epiphytes " " "                                            | 116  |
|   |               | 5a | Phorophytes of Wrights Lkt CTRf                            | 119  |
|   |               | 5b | Epiphytes " " "                                            | 119  |
|   |               | 6a | Phorophytes of Leo Ck SEVF                                 | 121  |
|   |               | 6b | Epiphytes " " "                                            | 122  |
|   | 4.7           | S  | Summary of phorophyte & epiphyte parameters of the plots   | 125  |
|   | 4.8           | C  | Comparative abundance of physiognomic types and life forms | 131  |
|   | 4.9           | 5  | Specificity of common epiphytes in recording plots         | 134  |
|   | 4.10          | ]  | Prolific & axenic phorophytes of the recording plots       | 137  |
|   |               |    |                                                            |      |
|   | 5.1           | I  | Data from Long Pt. CAM studies, winter                     | 221  |
|   | 5.2           |    | " " " " spring                                             | 222  |
|   | 5.3           |    | " " " " summer                                             | 223  |
|   | 5.4           |    | " " " " autumn                                             | 224  |

D - ---

4.2.6 Trunk/branch transects on Acronychia & Endiandra, Leo Ck. SEVF 124 4.2.7 Epiphyte distribution chart, Sloanea, Dorrigo STRf 108 11 " 4.2.8 Tristania, Shelly Bch LRf 111 4.2.9 .. .. 11 Planchonella, Long Pt DRf 114 4.2.10 ... 11 11 Schizomeria, Humber Hill WTRf 117 4.2.11 11 ... н Rhodhamnia, Leo Ck SEVF 123 4.2.12 11 .. Cryptocarya, " ы 123 4.3.1 153 Nest-epiphyte communities 5.2.1 (Graph) CAM ecology & physiol., D. speciosum, tree sun, 211,212 winter 5.2.2 " tree shade, 211,212 winter 5.2.3 11 ... 53 11 .. rock, winter 213,214 11 11 5.2.4 .. 11 \*\* Plectorrhiza 213,214 .. 5.2.5 11 11 11 11 D. speciosum, tree sun, 215,216 spring 5.2.6 .. •\* 11 ., .. tree shade, 215,216 spring 5.2.7 " 11 ... n 11 ... " rock, spring 217,218 .. . 11 .. 11 5.2.8 Plectorrhiza 217,218 5.2.9 11 11 ŧĬ. 11 11 D. speciosum, tree sun, 219,220 summer 5.2.10 11-.. 11 18 tree shade, 219,220 summer ... 5.2.11 Ð ... .. ... 11 11 rock, summer 171,172 ., 11 a 5.2.12 •• .. Plectorrhiza 171,172 f I .. ... 11 11 5.2.13 D. speciosum, tree sun, 173,174 autumn п 5.2.14 .. ıı, 11 .. tree shade 173,174 autumn 5.2.15 11 . 21 Đ ... 11 rock, autumn 175,176 11 n \*\* " 11 5.2.16 Plectorrhiza autumn 175,176 5.2.17a,b Thermohygrographs, winter, Long Point 221 5.2.18a,b .. 11 222 spring, H 11 5.2.19a,b summer, 223 11 11 11 5.2.20a,b autumn, 224 Epiphytes on Ficus, Dorrigo STRf in relation to CAM 5.3.1 188

6.1

Mineral analyses from D. speciosum & Plectorrhiza

225

List of Figures

|          |                                                          | Page  |
|----------|----------------------------------------------------------|-------|
| 3.1a     | Continental distribution of rainforest and MAR           | 73    |
| 3.1b     | Average annual potential evaporation                     | 73    |
| 3.2a     | Dorrigo STRf macrovegetation profile                     | 74    |
| 3.2b     | Shelly Beach LRf "                                       | 74    |
| 3.2c     | Long Point DRf ""                                        | 74    |
| 3.2d     | Humber Hill WTRf ""                                      | 75    |
| 3.2e     | Wrights Lookout CTRf "                                   | 75    |
| 3.4      | Air movement at 2 levels in Dorrigo STRf and Long Pt DRf | 75    |
| 3.5a     | Light intensity at 2 levels in Dorrigo STRf              | 76    |
| 3.6a     | Temperature maxima and minima """                        | 78    |
| 3.7a(i)  | Summer thermohygrographs """                             | 78    |
| 3.7a(ii) | Winter " " "                                             | 78    |
| 3.5b     | Light intensity in Shelly Beach LRf                      | 79    |
| 3.6b     | Max./min.temps " " "                                     | 81    |
| 3.7b(i)  | Summer thermohygrographs """                             | 81    |
| 3.7b(ii) | Winter " " "                                             | 81.   |
| 3.5c     | Light intensity in Long Point DRf                        | 82    |
| 3.6c     | Max./min. temps " " "                                    | 83    |
| 3.7c(i)  | Summer thermohygrographs" "                              | 83    |
| 3.7c(ii) | Winter " " " "                                           | 83    |
| 3.5d     | Light intensity in Humber Hill WTRf                      | 84    |
| 3.6d     | Max./min. temps. """                                     | 86    |
| 3.7d(i)  | Summer thermohygrographs " " "                           | 86    |
| 3.7d(ii) | Winter " " "                                             | 86    |
| 3.5e     | Light intensity in Wrights Lookout CTRf                  | 87    |
| 3.6e     | Max./min.temps """"                                      | 88    |
| 3.7e(i)  | Summer thermohygrographs "                               | 88    |
| 3.7e(ii) | Winter """                                               | 88    |
|          |                                                          |       |
| 4.1      | (Graph) Epiphyte concentration per dbh on Dendrocnide    | 142   |
| 4.2      | " " " " " Cryptocarya                                    | 142   |
| 4.3      | " " " " " Backhousia                                     | 143   |
| 4.2.1    | Trunk/branch transect, Ficus watkinsiana, Dorrigo STRf   | 109   |
| 4.2.2    | " " <i>Tristania/Ficus</i> , Shelly Bch. LRf             | 112   |
| 4.2.3    | " " Backhousia sciadophora, Long Pt DRf                  | 115   |
| 4.2.4    | """ Schizomeria ovata, Humber Hill WTR:                  | f 118 |
| 4.2.5    | " " <i>Nothofagus, Dicksonia,</i> Wrigts Lkt<br>CTRf     | 120   |
|          |                                                          |       |

List of Plates

| •     |                                                 |     |
|-------|-------------------------------------------------|-----|
| 2.1   | Sarcochilus falcatus                            | 63  |
| 2.2   | Sarcochilus ceciliae                            | 63  |
| 2.3   | Sarcochilus tricalliatus                        | 64  |
| 2.4   | n v                                             | 64  |
| 2.5   | Sarcochilus serrulatus                          | 65  |
| 2.6   | Sarcochilus australis                           | 65  |
| 2.7   | Myrmecophilous epiphyte community               | 67  |
| 2.8   | 11 11 11                                        | 67  |
| 2.9   | Platycerium veitchii                            | 54  |
| 2.10  | Peperomia tetraphylla                           |     |
| 2.11  | Ficus watkinsiana                               | 56  |
| 2.12  | Bulbophyllum minutissimum                       | 56  |
|       |                                                 |     |
| 3.1   | View over canopy, STRf, Dorrigo NP              | 77  |
| 3.2   | Sub-canopy view ""                              | 77  |
| 3.3   | Canopy of LRf, Shelly Beach                     | 80  |
| 3.4   | Sub-canopy view, LRf                            | 80  |
| 3.5   | Sub-canopy view, WTRf, Humber Hill              | 85  |
| 3.6   | CTRf, Wrights Lookout                           | 85  |
|       |                                                 |     |
| 4.1   | Upper shade-epiphyte community                  | 149 |
| 4.2   | Shade community of semi-epiphytic climbers      | 149 |
| 4.3   | Asplenium australasicum nest-epiphyte community | 150 |
| 4.4   | 11 11 11 11 11                                  | 150 |
|       |                                                 |     |
| 5.2.1 | Dry Rainforest margin, Long Point               | 165 |
| 5.2.2 | Dendrobium speciosum, tree plant                | 165 |
| 5.2.3 | Dendrobium speciosum, rock plant                | 166 |
| 5.2.4 | D. speciosum leaf with sunburn                  | 166 |
| 5.2.5 | Plectorrhiza tridentata                         | 167 |
| 5.2.6 | P. tridentata microhabitat                      | 167 |
|       |                                                 |     |

Page

| Afr.           | Africa                                         | NT                 | Northern Territory                                          |
|----------------|------------------------------------------------|--------------------|-------------------------------------------------------------|
| Amer.          | America                                        | NVF                | complex notophyll vine forest                               |
| Austr.         | Australia                                      | NZ                 | New Zealand (STRf)                                          |
| с.             | Cape                                           | NSŴ                | New South Wales                                             |
| ca.            | about                                          | occas.             | occasional(1y)                                              |
| CAM            | Crassulacean Acid<br>Metabolism                | Pac<br>PAR<br>Pen. | Pacific<br>Photosynthetically Active Radiatn.<br>Peninsula  |
| Cm             | centimetre(s)                                  | Qld                | Queensland                                                  |
| cosmopol.      | cosmopolitan                                   | R.                 | River                                                       |
| CTR£           | cool temperate<br>rainforest (MFF*)            | Ra<br>rft          | Range<br>rainforest                                         |
| diam.          | diameter                                       | SEC                | Semi-epiphytic climber                                      |
| DRf            | dry rainforest<br>(MVT* or SEVT*)              | SEVF*              | semi-evergreen mesophyll vine<br>forest (tall monsoon rft)  |
| DVT*           | deciduous vine thicket                         | SEVT*              | semi-evergreen vine thicket<br>(Bottle Tree scrub to relict |
| E              | east                                           |                    | rft scrub or DRf)                                           |
| Ect            | rft/open community<br>(ecotone)                | SNEVF*             | simple notophyll evergreen<br>vine forest (WTRf)            |
| esp.           | especially                                     | S                  | south                                                       |
| Fig.           | Figure                                         | sp.                | species (singular)                                          |
| Fl.            | flowering (period)                             | spp.               | species (plural)                                            |
| fls.           | flowers                                        | ssp.               | subspecies                                                  |
| incl.<br>infl. | including<br>inflorescence                     | STRf               | subtropical rainforest (NVF*)                               |
| Is.            | Islands                                        | Tas.               | Tasmania                                                    |
| lvs.           | leaves                                         | tblds              | tablelands                                                  |
| LRF            | littoral subtropical<br>rainforest (NVF*)      | temp.              | temperature                                                 |
| m              | metres                                         | trop.              | tropical                                                    |
| MAR            | Mean Annual Rainfall                           | usu.               | usually                                                     |
| MFF*           | microphyll fern forest                         | var.               | variety                                                     |
|                | (CTRf)                                         | Vic.               | Victoria                                                    |
| mm             | millimetres                                    | W                  | west                                                        |
| Mt.            | Mount, Mountain                                | Wdl                | woodland                                                    |
| MVF *          | mesophyll vine forest<br>(trop. rft)           | WSF                | wet sclerophyll forest<br>or tall open forest               |
| MVT            | microphyll vine thicket<br>(DRf)               | WTRf               | warm temperate rainforest<br>(SNEVT*)                       |
| MVW*           | microphyll vine woodland<br>(rft relict scrub) | ±                  | more or less                                                |
| N              | north                                          | дЕ, дEin           | microeinstein, unit of irrad-                               |
| N. Cal.        | New Caledonia                                  |                    | iance (quantum)                                             |
| NG             | New Guinea                                     |                    |                                                             |
|                |                                                |                    |                                                             |

\* Following Webb, 1978

xi

#### Abstract

Firstly, recent literature dealing with the systematics and ecology of vascular epiphytes is reviewed, as are a selection of older key papers. The classification and terminology of vascular epiphytes is briefly reviewed and discussed and the system used here is delineated; terms are defined, including a number of new and previously ill-defined ones.

The Australian vascular epiphyte flora is then described in a tabulated list and in a more detailed, illustrated descriptive key (Appendix 1). The flora is next discussed in relation to its taxonomic composition, diversity and affinities biogeography, life forms and physiognomic forms, and diaspore dispersal methods; these are also briefly related to basic ecology of the groups.

Next, physical ecological factors of epiphyte environments in Australia are investigated. This includes discussion of continental macroclimate and its bearing on the distribution of epiphyte-favoured vegetation types, particularly rainforests, and investigation of microclimate components at different levels within selected sites in five different rainforest subformations of the subtropics. The results of this show that microsites near the canopy are considerably brighter, drier and more temperature-extreme than are those near the tree trunk bases.

Beginning with a review of relevant works, the synecology of epiphytes is next discussed and the system of study for use here is outlined. The epiphytic vegetation of five subtropical sites (those mentioned above) and a tropical one, are investigated using this system which involves marked plots and the recording of all trees and epiphytes within them. The data derived from these are used in conjunction with that mentioned above and other observations for comparison and discussion of such topics as epiphyte floristic diversity, population density, vegetational complexity, occurrence of different epiphyte forms, specificity of epiphyte/phorophyte relationships, phorophyte axeny and epiphyte-proneness, allelopathy and phorophyte age effect. Observations and review on nest-epiphytes and succession are discussed.

Some basic functions of CAM in two epiphytic orchids were investigated under field conditions and the results are discussed in relation to its adaptive significance; the results of a survey of CAM in the Australian epiphytes are discussed and from this and the former, it is concluded that CAM is a very important water-conserving mechanism particularly to the heliophilous epiphytes. Relevant literature is reviewed.

It is generally concluded from all of the above that epiphytism has been developed by small, slow-growing plants to avoid competition for light and in doing so, they have had to concomitantly adapt to water-stress and nutrient deficiency.

xii

#### General Introduction

According to the Oxford English Dictionary, the word epiphyte, in botanical usage<sup>1</sup>, means a plant which grows on another plant; usually restricted to those which derive only support (not nutrition) from the plants on which they grow. From the same authority, it was first used in the literature by John Lindley in 1830 (in Nat. Syst. Bot. 264, as the derived adjective epiphytic). Its etymological origin is from the Greek epi, upon + phyton, plant (Flood, 1960). Thus, other reference texts give the meaning of epiphyte as, e.g., a plant which grows on other plants but not parasitically; an air plant (Jackson, 1928); a plant growing on another plant but not deriving food from it (Usher, 1966); plant attached to another plant, not growing parasitically upon it but merely using it for support (Abercrombie et al., 1966); ... and so on.

From these the meaning appears to be clear but still certain ambiguities remain. For instance, most definitions refer to the epiphyte not deriving nutrients from its substrate plant but many studies show that some, even most of the minerals absorbed by many epiphytes, come from stemflow much of which mineral content is leached from the phorophyte (bearer-plant). Most writers have interpreted the word to mean *non-parasitic* i.e., such nutrient sources used by the epiphyte are not available to the phorophyte (but see, however, Herbert, 1958, and Nadkarni, 1981, reviewed in Ch. 1). Even so, *epiphyte* is sometimes used in a broad sense to include parasites such as mistletoes.

Another problem, less easily disposed of, centres on the growing upon part of the definition. Lianas growing upon trees could perhaps, in the broadest sense, be called epiphytes but these are usually classified separately as most do not attach themselves to their support by actually growing onto it. There are some however, that do attach by growing adventitious roots onto the support and sometimes these roots may ramify and produce substantial root systems. As such, they probably derive nutrients from the outer, dead tissues of the support plant and from stemflow

1. N.B. the same word is used in pathology in reference to a plant, e.g. fungus, growing on the skin of an animal.

etc. Such vine /epiphytes are a problem as the classical definition does not exclude plants that grow upon a bearer-plant as well as in the soil at the same time<sup>1</sup>. A further clarification of the definition, involving major source of nutrients would appear to be useful (see Ch. 1.2).

Epiphytes have fascinated botanists ever since Europeans first ventured to the tropics where vascular epiphytes are common, varied and prominent in many different plant communities. Columbus is credited with the first recorded comment on vascular epiphytes when he wrote in his log in 1492 that many of the tropical trees "have a great variety of branches and leaves, all of them growing from a single root" (from Gessner, 1956). Perhaps most of the plants transported from the tropics to Europe for the horticultural trade from the 17th century to the present, have been epiphytic species of orchids, bromeliads, aroids, ferns and others. Not only are they attractive, with highly ornamental foliage, inflorescences and flowers but they are a small and manageable size at maturity. Also they are often ± strongly drought tolerant with minimal nutrient needs and thus may thrive on neglect, an important necessity of indoor plants for people who appreciate their beauty without appreciating cultural requirements, or are forgetful or neglectful.

Probably the most intriguing attribute of epiphytes is that they grow independent of the ground and that this is their normal, 'chosen' way of life. From this arise the questions of how they manage to survive and indeed, thrive in such apparently arid and nutrient-poor situations, especially since other plants have their roots in the ground where they are protected and water and minerals are not severely limited. Also the environmental forces that gave rise to the development of the epiphytic way of life, the mode of development and evolutionary steps and the phyletic origins of epiphytes all pose questions of great interest. Though basically of a survey/review type, this dissertation attemps to clarify some of these problems.

More specifically, the Australian vascular epiphytes have not been the subject of a comprehensive study previously and the present one is an attempt at laying some groundwork and initiating some specific lines of

1. A separate group, viz, semi-epiphytic climbers, has been instituted here to accommodate these (see Ch. 1.2).

2

investigation. Accordingly, the epiphytic flora has received considerable attention in this report and more specific reasons for this are detailed in the introduction to the flora chapter (Ch. 2).

Similarly, the synecology of the epiphytes has been little studied and this has been approached here by developing a system of recording of data from plots in different rainforests as a basis for comparison and discussion. Five such epiphyte recording plots were in the subtropics but only one tropical representative was investigated, owing partly to the great distances involved and the associated expense and partly also to the writer's experience with the tropical disease Leptospirosis while there.

Defining and characterising epiphyte microhabitats present great problems relating to the number of ecological variables, their fluctuation over even very short distances, and their interactions with one another. The patchiness of substrate and the importance of the vertical dimension in epiphyte ecology multiply these problems. Even so, some attempt is made in this study to coarsely characterise macro-microhabitat physical factors to relate to the flora and vegetation work. A full attempt at such an investigation will require a major project with the emphasis on this aspect and will involve considerable equipment (and expense), extensive data collection and appropriate analyses.

The ecology and adaptive significance of the physiological mechanism known as Crassulacean Acid Metabolism (CAM) has been investigated in two epiphytic orchids under natural field conditions and a survey of CAM in the Australian epiphytes was carried out in co-operation with others in an attempt to assess its importance in the ecology of epiphytes.

For several reasons, non vascular epiphytes are not investigated in this study. The state of taxonomy and naming of the Australian flora requires a great deal more work to bring it to a state where it can be readily worked with by non-experts in that field. Also, their physiology, especially water relations and poikilohydry set them clearly apart from most vascular epiphytes and give rise to ecological relations that are also quite different. For these reasons particularly, they require specialisation of study.

Thus, N.B. in the present work, where the word epiphyte is used without qualification, it is to be taken as referring to *vascular* epiphytes.

3