The Relationship of Eggshell Structure to Eggshell Penetration by *Salmonella* Typhimurium in Table Eggs

Aaron Ray

Bachelor of Science (Physiology and Microbiology) (University of New England)
Bachelor of Science with Honours (University of New England)

A thesis submitted for the degree of Master of Science of the University of New England

September, 2015
I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree or qualification. I certify that any help received in preparing this thesis and all sources used have been acknowledged in this thesis.

Signature
Table of Contents

List of Tables

| List of Tables | VIII |

List of Figures

| List of Figures | IX |

Acknowledgements

| Acknowledgements | XI |

Summary

| Summary | XII |

Chapter 1. Literature Review

1. **Introduction**

1.2. **Microbiology of the Egg**

1.2.1. Egg Contamination by Microorganisms

1.2.2. *Salmonella*

1.2.3. *Salmonella Enteritidis*

1.2.4. *Salmonella Typhimurium*

1.2.5. Pathogenicity of *Salmonella*

1.2.6. Shell Penetration by *Salmonella Serovars*

1.2.7. Colonisation of the oviduct by *Salmonella Serovars*

1.2.8. Anti-Microbial Defences of the Egg

1.2.9. Physical Defences of the Egg

1.2.10. Chemical Defences of the Egg

1.2.11. Microbiological Experimental Procedures

1.3. **The Egg**

1.3.1. Formation of the Egg and Shell

1.3.2. The Ovary

1.3.3. The Oviduct

1.3.4. Structures of the Egg and Shell

1.3.5. Layers of the Shell

1.3.6. The Shell Membranes

1.3.7. The Egg Albumen

1.3.8. The Vitelline Membrane

1.3.9. The Yolk

1.3.10. Eggshell Pores

1.3.11. Conductance and Porosity

1.3.12. Different Pore Structures

1.3.13. Changes in the Shell Post Lay
1.4. Eggshell Translucency
 1.4.1. Cause of Eggshell Translucency 33
 1.4.2. Relationship Between Translucency and Shell Features 34

1.5. Imaging of the Eggshell
 1.5.1. Candling 36
 1.5.2. Scanning Electron Microscope 37
 1.5.3. Computed Tomography 38

1.6. Introduction to the Current Study 41

Chapter 2. General Materials and Methods. 43

2.1. Egg Candling 43
2.2. CT Scanning 44
2.3. CT Image Analysis 45
2.4. Scanning Electron Microscopy (SEM) 47
2.5. SEM Image Analysis 50
2.6. Statistical Analysis 51

Chapter 3. Experiment 1. A pilot study, examining the imaging possibilities and statistical powers of imaging eggshells with Computed Tomography and Scanning Electron Microscopy 52

3.1. Experiment 1 - Introduction 52

3.2. Experiment 1 - Method
 3.2.1. Sample Collection and Translucency Scoring 55
 3.2.2. CT Scanning 55
 3.2.3. CT Image Processing 55
 3.2.4. Scanning Electron Microscopy 56
 3.2.5. Statistical Analysis 56

3.3. Experiment 1 - Results
 3.3.1. Shell Structures - Transverse CT Images 58
 3.3.2. Shell Structures - SEM Images of the Shells Mammillary Layer 60
 3.3.3. Replicates from the same egg shell 61

3.4. Experiment 1 - Discussion 63
Chapter 4. Experiment 2. Analysis of eggshell structures of consecutive eggs from individual hens. 66

4.1. Experiment 2 - Introduction 66

4.2. Experiment 2 - Methods 68
4.2.1. Sample Collection 68
4.2.2. CT Scanning 68
4.2.3. CT Image Processing 69
4.2.4. Scanning Electron Microscopy 69
4.2.5. Statistical Analysis 69

4.3. Experiment 2 - Results 70
4.3.1. Consecutive Eggs 70
4.3.2. Storage Time 74
4.3.3. Relationship with Egg Weight 75

4.4. Experiment 2 - Discussion 77

Chapter 5. Experiment 3. Identifying the Relationship Between Eggshell Translucency and Shell Structures With CT And SEM. 79

5.1. Experiment 3 - Introduction 79

5.2. Experiment 3 - Method 83
5.2.1. Sample collection and translucency scoring 83
5.2.2. CT scanning 83
5.2.3. CT Image Processing 84
5.2.4. Scanning Electron Microscopy 84
5.2.5. Statistical Analysis 84

5.3. Experiment 3 - Results 86
5.3.1. Storage Conditions 86
5.3.2. Flock Age 86
5.3.3. Initial Translucency 88
5.3.4. Final Translucency 89
5.3.5. Change in Translucency 90

5.4. Experiment 3 - Discussion 92
5.4.1. Sources of Error and Improvements in Method 95
Chapter 6. Experiment 4. Agar Egg Penetration of Shells By Salmonella Typhimurium Phage Type 9 And The Relationship Between Penetration And Shell Translucency And Other Shell Structures.

6.1. Experiment 4 – Introduction
6.1.1. Salmonella Typhimurium
6.1.2. Disinfection Agents
6.1.3. The Agar Egg Penetration Experiment

6.2. Experiment 4 – Method
6.2.1. Disinfection Agents and Their Effects on the Shell and Cuticle.
6.2.2. Sample Collection
6.2.3. Preparation of XLD Agar
6.2.4. Preparation of Salmonella
6.2.5. Infection Procedure
6.2.6. Fixed sample preparation for SEM
6.2.7. Remaining Sample Preparation for CT
6.2.8. CT scanning and Processing
6.2.9. Scanning Electron Microscopy
6.2.10. Statistical Analysis

6.3. Experiment 4 – Results.
6.3.1. Effect of Disinfection Agents on the Eggshell Cuticle
6.3.2. Observations of 'Fixed' Shell Samples
6.3.3. Effect of Inoculation and pre-inoculation storage times on Penetration by Salmonella
6.3.4. Eggshell features and bacterial penetration
6.3.5. Eggshell characteristics and bacterial penetration

6.4. Experiment 4 – Discussion.
6.4.1. Effect of Disinfection Agents on the Eggshell Cuticle
6.4.2. Visual Observations of 'Fixed' Shell Samples
6.4.3. Effect of Time on Eggshell Penetration by Salmonella
6.4.4. Bacterial penetration and shell properties
6.4.5. Conclusion
Chapter 7. Discussion

7.1. Future Avenues of Research

7.2. Conclusion

Chapter 8. References

Appendices
Appendix A
Appendix B
Appendix C
Appendix D
List of Tables

Chapter 3 - Experiment 1
Table 3.3.1. Average values for CT measured shell features 58
Table 3.3.2. Average values for SEM measured shell features 58
Table 3.3.3. Average values for CT measured shell features examined by replicate number 62
Table 3.3.4. Average values for SEM measured shell features examined by repeat group 62

Chapter 4 - Experiment 2
Table 4.3.1. Repeated measures ANOVA results for egg measures 70
Table 4.3.1.2. Repeated measures ANOVA results for CT measures 72
Table 4.3.1.3. Repeated measures ANOVA results for SEM measures 73
Table 4.3.2.1. Storage time related to egg quality measures 74
Table 4.3.2.2. Storage time related to CT identified shell structures 74
Table 4.3.2.3. Storage time related to SEM identified shell structures 75

Chapter 5 - Experiment 3
Table 5.1.1. Previously suggested structural basis of eggshell Translucency 81
Table 5.3.1. Refrigerated storage and translucency 86
Table 5.3.2. Initial Translucency examined by CT measures 88
Table 5.3.3. Initial Translucency examined by SEM measures 89
Table 5.3.4. Final Translucency examined by CT measures 89
Table 5.3.5. Final Translucency examined by SEM measures 90

Chapter 6 - Experiment 4
Table 6.1.1. Previously used methods to disinfect eggshells 100
Table 6.3.1. Treatment groups examined by egg measures 113
Table 6.3.2. Penetrated and non-penetrated treatment groups examined by CT measures 114
Table 6.3.3. Penetrated, non-penetrated and control groups examined by SEM measures 115
Table 6.3.4. Penetrated and adjacent shell regions examined by CT measures 116
Table 6.3.5. Penetrated and adjacent shell regions examined by SEM measures 117
List of Figures

Chapter 1 - Introduction
Figure 1.2.1. Age specific distribution of human salmonellosis cases in the 7
Figure 1.4.1. Candled eggs demonstrating translucency scores 31

Chapter 2 - General Materials and Methods
Figure 2.1.1. UNE egg candler 43
Figure 2.2.1. GE Phoenix Micro CT scanner 44
Figure 2.3.1. Two dimensional transverse image of externally branching pore 46
Figure 2.3.2. Three dimensional reconstruction of the shells mammillary layer showing an externally branching pore formation 46
Figure 2.4.1. Biorad (PT7150) RF plasma barrel etcher 47
Figure 2.4.2. JEOL Neocoater (MP-19020NCTR) gold sputter coater 48
Figure 2.4.3. Jeol Neoscope, bench top Scanning Electron Microscope (JM-5000) 48
Figure 2.5.1. 100X magnification SEM image typical of a 'normal' mammillary layer 51
Figure 2.5.2. 200X magnification SEM image typical of a 'normal' mammillary layer 51

Chapter 3 - Experiment 1
Figure 3.3.1. Straight, unbranching pore proceeding radially through the shell 58
Figure 3.3.2. Internally branching pore 59
Figure 3.3.3. Externally branching pore 59
Figure 3.3.4. Common appearance of an externally branching pore 59
Figure 3.3.5. 200x SEM showing large mammillary bodies and a type A body 60
Figure 3.3.6. 100x SEM showing late mammillary layer fusion and type B bodies 60
Figure 3.3.7. 100x SEM showing small mammillary body size, late mammillary layer fusion and type B mammillary bodies. 60
Figure 3.3.8. 200x SEM showing late mammillary layer fusion and cubic calcite 60
Chapter 4 - Experiment 2
Figure 4.3.1.1. Consecutive egg weight of a single hen 71
Figure 4.3.1.2. Consecutive pore counts of a single hen 72
Figure 4.3.3.1. Regression plot, egg weight and shell weight 76
Figure 4.3.3.2. Regression plot, egg weight compared to egg translucency 76
Figure 4.3.3.3. Regression plot, egg weight compared to internally branching pores 76
Figure 4.3.3.4. Regression plot, egg weight compared to mammillary body size 76

Chapter 5 - Experiment 3
Figure 5.3.1. Regression plot, flock age compared to the number of straight pores 87
Figure 5.3.2. Regression plot, flock age compared to the mammillary body size 87
Figure 5.3.3. Regression plot, flock age compared to the rate of type B bodies 87
Figure 5.3.4. Regression plot, change in translucency and externally branching pores 91
Figure 5.3.5. Regression plot, change in translucency and mammillary layer fusion 91
Figure 5.3.6. Regression plot, change in translucency and type A mammillary bodies 91

Chapter 6 - Experiment 4
Figure 6.2.1. Experimental design flowchart 103
Figure 6.3.1. Eggshell exterior, hydrogen peroxide exposed 109
Figure 6.3.2. Eggshell exterior, Iodine solution exposed 109
Figure 6.3.3. Eggshell exterior, 70% Ethanol solution exposed 109
Figure 6.3.4. Eggshell exterior, 100% Ethanol solution exposed 109
Figure 6.3.5. 3,000x Magnification scanning electron micrograph showing suspected Salmonella Typhimurium bacteria 110
Figure 6.3.6. 10,000x Magnification scanning electron micrographs 111
Figure 6.3.7. Distribution of penetration rates by Salmonella Typhimurium 112
Acknowledgements

This project could not have proceeded without the assistance and guidance from a number of people. Special thanks to the University of New England and the University of Adelaide for facilitating this research.

Thanks to the Poultry CRC who supported this project through research funding, scholarship funding and professional development and guidance.

I would also like to thank Dr Matt Tighe and Dr Rebecca Haling for their assistance with the initial CT scanning and developing the scan parameters.

Finally and most significantly I would like to thank my supervisors Julie Roberts, Kapil Chousalkar and Richard Flavel. Without their support and guidance this project could not have proceeded.
Summary

This project sought to correlate external shell features with underlying shell structures and examine if these structures are indicative of increased incidence of eggshell penetration by *Salmonella Typhimurium*.

Eggs are an important nutrient and protein source in most cultures around the world, and the importance of food safety in intensive food production industries is likely to increase. Microbial infection of eggs is the source of approximately 49% of *Salmonella* food poisoning cases in Australia each year. The most significant source of these infections in Australia is *Salmonella Typhimurium*. Eggshell translucency is a phenomenon observed when an egg is candled over a light source; the underlying cause and incidence of eggshell translucency form the basis of our investigations of shell structures. In order to image eggshell structure, both Computed Tomography and Scanning Electron Microscopy were used to examine different structural components of the shell.

Shell structures were found to be different among shells, even consecutive shells from the same bird. There was a clear relationship between refrigerated storage and the appearance of translucency, and that there were significant differences in the type of mammillary bodies and pore formations between low and high translucency shells. There was no consistent relationship between translucency and eggshell penetration; however, there were some significant correlations. This experiment also identified a number of structural features that were potentially conducive to bacterial entry.

Although there was no clear relationship between higher incidence of eggshell translucency and increased rates of bacterial penetration, this project has confirmed a number of shell structures that are more commonly associated with bacterial penetration of intact table eggs.