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Abstract.  ASKBILL is a web-based program that uses farm measurements, climate data and 10 

information on genetics to predict pasture growth, animal performance and animal health and 11 

climate risks. The program uses several biophysical models, which are customized by user inputs, 12 

localized daily weather updates and a dynamical probabilistic 90-day climate forecast to enhance 13 

sheep wellbeing and productivity. This approach can minimize the requirement for manual, auto 14 

and remote measurements, thus reducing labour requirements and complexity. In this article, the 15 

animal growth model provides an example of a biophysical model used to provide predictions. This 16 

is an energy-based model and the model parameterization is designed to be physiologically 17 

meaningful and able to be customized for the genetic merit of the animal using a growth coefficient 18 

that calibrates growth of body components and energy requirements. A key feature of the animal 19 

growth model is its forecast projections, which are based on an ensemble of simulations. The model 20 

can estimate supplementary feeding rates required to achieve target live weights and body condition 21 

scores and stocking rates required to achieve target pasture levels. The model can be customized for 22 

a farm and its livestock and is updated daily in response to climate data. This dynamic feature 23 

enables it to provide early-stage alerts to users when animal production targets are unlikely to be 24 

met. 25 

 26 
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Introduction 29 

The most economically important endemic diseases that impact on sheep wellbeing and productivity in the 30 

Australian sheep industry include neonatal mortality, internal parasites, dystocia, weaner ill thrift and 31 

mortality, and flystrike (Lane et al. 2015). These conditions can be the end result of a number of complex 32 

factors of which nutrition, body condition score, live weight and weather stress are of key importance. 33 

Combined, these diseases cost the sheep industry more than $1.5 billion per annum in 2015 as a result of 34 

production loss, costs of prevention and costs of treatment (Lane et al. 2015). 35 

Effective management of these conditions relies on prediction and early detection in order to 36 

implement preventative actions and timely treatment. When management tactics rely on the detection of 37 

visual symptoms, the effects of subclinical under nutrition and disease will already have had a negative 38 

impact on wellbeing and productivity. The alternative approach of using forecasts of pasture availability, 39 

animal performance and disease risks to implement management plans and take preventative action 40 

consistently results in benefits from better productivity and improved wellbeing. 41 

A key issue driving the need for a predictive approach to help sheep producers better manage their 42 

sheep production systems is the limitation of existing strategies for managing wellbeing and productivity. A 43 

review of the potential for new technologies to improve decision-making in southern livestock industries 44 

(Henry et al. 2012) identified 10 areas in which better information would benefit decision-making. Of these, 45 

information to aid with allocation of pasture feed and control of animal production were estimated to offer 46 

annual on-farm benefits of $81–$96/ha. Examples of better parasite management and improved ewe nutrition 47 

are as follows. 48 

• Kelly (2011) demonstrated that in summer rainfall regions, the annual cost of gastrointestinal 49 

nematode parasites under typical management was $11/ewe. Providing extra information in the 50 

form of drench efficacy, worm tests, live weight, condition score, sheep genetics and grazing 51 

management reduced this annual cost to $6/ewe. 52 

• The Lifetime Ewe Management program (http://www.lifetimewool.com.au/economics.aspx) has 53 

demonstrated the annual cost of not managing ewe condition score to meet recognised targets is 54 

$3−$5/ewe. Key to meeting these targets is the matching of pasture availability and supplements to 55 

changing animal requirements during the annual reproductive cycle. 56 

Prediction to improve management 57 
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Prediction to improve the management of sheep wellbeing and productivity requires information about the 58 

current (known) situation and the probability of future events. For example, susceptibility to flystrike is 59 

controlled by known animal factors such as mulesing status, breech and body wrinkle and dag score, known 60 

management factors such as dates of shearing, crutching and treatments, and climate forecasts of 61 

temperature, rainfall and humidity (Horton and Hogan 2010). Risks of future flystrike are influenced by 62 

these known factors and by future climatic events, many of which can be accurately forecast. 63 

Pasture provides the nutritional base for much of Australia’s sheep production, and its growth, 64 

although dependent on a range of factors, is highly dependent on the availability of moisture. When 65 

accounting for moisture in forecasts of pasture growth, data on current plant-available water stored in the soil 66 

profile and forecast climate elements such as daily rainfall are both important. 67 

Current events 68 

The known information that contributes to the prediction of future events needs to be current, and this 69 

requires regular observation and measurements of animal, pasture and health status, which can be conducted 70 

manually or using auto- or remote-monitoring systems. Manual measurements of animal, pasture and health 71 

status such as the weighing of livestock, estimation of condition score and pasture availability and sampling 72 

to determine the status of major parasitic diseases have not been extensively adopted by sheep producers 73 

(Hooper 2007; Reeve and Walkden-Brown 2014), largely because of the labour-intensive nature of these 74 

activities and the complexities of data collection, storage and utilisation. Automatic and remote systems 75 

designed to monitor sheep and their health status are at various stages of development (Brown et al. 2015) 76 

and remain relatively expensive and complex. 77 

Biophysical models provide a means of simulating the current situation in a manner that minimizes 78 

the requirement for manual, automatic or remote measurements. A biophysical model is a mathematical 79 

description of a biological system constructed using experimentally derived, causative relationships to 80 

predict the influence of biotic and abiotic factors on complex systems. Examples relevant to Australia’s 81 

sheep production system include the SGS Pasture Model (Johnson et al. 2003), GrazFeed (Freer et al. 1997), 82 

Agricultural Production Systems Simulator (Holzworth et al. 2014) and WormWorld (Barnes et al. 1995). 83 

Future events 84 

Once current information has been recorded, climate becomes the most important predictor of the future 85 

status of sheep production and health. Future decisions including those about stocking rate, the type and level 86 

of supplemental feeds, the type and timing of animal health treatments and avoidance of extreme weather 87 
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events are informed by prediction of the future climate. The Bureau of Meteorology provides dynamical 88 

deterministic weather forecasts for lead-times of 1–7 days using the Australian Digital Forecast Database 89 

(ADFD) and for lead-times of 8–90 days using the Predictive Ocean Atmosphere Model for Australia 90 

(POAMA). 91 

Whereas ADFD forecasts are useful at a local level because the grid size has a resolution of 3–6 km, 92 

the local value of POAMA forecasts is reduced because of a resolution of 250 km. Nevertheless, POAMA 93 

forecasts have been demonstrated to provide greater accuracy in the prediction of growth rates of perennial 94 

ryegrass when compared with statistical forecasts that rely on historic climate data (Rawnsley et al. 2015). 95 

Predictions of intra-seasonal climate outlooks made by the Bureau of Meteorology are likely to become more 96 

useful at a local level with the implementation of Australian Community Climate and Earth-System 97 

Simulator Seasonal models (ACCESS-S), which have a resolution of 60 km (Anon 2017). Collaborative 98 

work between the Bureau of Meteorology and the Sheep Cooperative Research Centre has led to the planned 99 

release of a 5 km resolution output from ACCESS-S, which is likely to further improve the usefulness of the 100 

forecasts for agricultural applications. 101 

Incorporation of climate elements into biophysical models has facilitated integration of historic and 102 

forecast climate data. However, historic climate is by nature deterministic (i.e., a single value for each 103 

element) and climate forecasts are probabilistic. For example, ACCESS-S will provide an ensemble of 11 104 

forecasts for each day (members) from which both probability and magnitude can be calculated. Utilisation 105 

of this daily ensemble enables biophysical models to output a range of future scenarios that can be described 106 

using percentiles to indicate the likelihood of the output. 107 

ASKBILL: a tool to enhance sheep wellbeing and productivity 108 

ASKBILL is a web-based program that has been developed by the Sheep Cooperative Research Centre to 109 

provide accurate forecasts to help sheep producers better manage their sheep production systems. It 110 

represents a new approach that collates farm and industry data and information on climate and genetics to 111 

predict pasture growth, animal performance and the risks of flystrike, worm infection and weather stress 112 

(Fig. 1). 113 

ASKBILL models process data with a daily time-step in response to updated climate data or 114 

changes in user-defined inputs. Farm data such as live weight, condition score, pregnancy status, pasture 115 

availability, health treatments and livestock inventory are combined with historic and forecast climate data 116 



6 
 

and Australian Sheep Breeding Values (through RamSelect) to provide long-term average values (i.e., based 117 

on climate data collected over the last 30 years) and 90-day forecasts for the following information: 118 

• The amount and quality of pasture across a whole farm or for specific areas of particular interest 119 

• Live weight and body condition score for each stock class within the sheep flock 120 

• The level of risk of worm and sheep blowfly infestations 121 

• The risk of extreme cold and heat 122 

Fig. 1 near here 123 

The models also provide estimates of 124 

• Stocking rates required to reach pasture availability targets 125 

• Pasture area required to support a desired number of animals 126 

• Supplementary feeding rates required to reach live weight and body condition score targets 127 

• Changes in the risk of worm infection and fly strike following treatment 128 

 129 

In this paper, the first that describes the components of ASKBILL, the animal growth model is discussed as 130 

an example of a biophysical model where forecast projections are based on an ensemble of simulations. 131 

 132 

Animal growth model 133 

The animal growth model as implemented in ASKBILL is based on Johnson et al. (2012), who described an 134 

energy-based model with body composition comprising fat, protein and water. A key underlying approach in 135 

the development of the model was to ensure that all parameters have a physiological interpretation. This 136 

enables model parameterization to be based on information about the genetic merit of the animal. The core 137 

parameters in the model are related to animal weight at birth and maturity (standard reference weight), as 138 

well as to the associated fat composition. There are additional parameters for the rate of protein degradation, 139 

heat maintenance, activity and, for situations in which intake is less than the requirement, fat catabolism. 140 

Simulations of body composition in response to energy supply as presented by Johnson et al. (2012) 141 

demonstrate close agreement with empirical curves. 142 

The model contains a growth coefficient that is readily adjusted in response to information about 143 

weight-for-age and calibrates growth of body components and energy requirements. For example, using the 144 

model defaults, the user can define the body weight at 12 weeks to be 20 kg or 30 kg. The model then adjusts 145 

the growth coefficient. The resulting growth curves are shown in Fig. 2a and the corresponding 146 
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metabolizable energy (ME) requirements (using 20 kg at 12 weeks as an example) are shown in Fig. 2b. Peak 147 

energy requirement for protein growth precedes that for fat, which is a later maturing component (Butterfield 148 

et al. 1983), but energy requirements to maintain protein account for a significant proportion of total energy 149 

requirements as animals mature. 150 

Fig. 2a and Fig. 2b 151 

The model can be used to assess the ME required for a target growth rate for animals at different 152 

live weights using the growth and energy dynamics as shown in Fig. 2. The growth rate underlying the 153 

growth curve (20 kg in Fig. 2a) is provided in Fig. 3a and ME requirements for growth as a function of 154 

animal weight are provided in Fig. 3b. Two aspects of Fig. 3b deserve special mention. Firstly, energy 155 

requirements for growth increase with weight as a consequence of a greater relative deposition of fat than 156 

protein (fat has a higher energy density than protein; Rattray and Joyce 1973). Secondly, as the target growth 157 

rate increases, the weight at which animals can achieve it declines and this is apparent in the slight curvature 158 

of the lines. This is due to the decline in growth rate as the animal approaches maturity. 159 

Fig. 3a and Fig. 3b 160 

Although these examples are for a growing sheep, the model also accommodates pregnant and 161 

lactating ewes, for which the framework was adapted from the lactating dairy cow model described by 162 

Johnson et al. (2016). The stock-class options in ASKBILL include mature dry wethers, weaners and 163 

reproductive ewes. 164 

 165 

Simulating pasture growth and utilization by grazing sheep 166 

As well as describing animal growth, the model also describes pasture growth and soil water 167 

dynamics in relation to daily climatic inputs for rainfall, maximum and minimum temperature, solar 168 

radiation, vapour pressure and wind speed. The focus is on analysis of historical pasture growth as it relates 169 

to animal production and projection of likely future growth. The beta release of ASKBILL (as described 170 

here) will use historical climate data to assess possible future management strategies (statistical model). 171 

Subsequent releases will use forecasts from the dynamical ACCESS-S model. 172 

As an example of simulating pasture growth and utilisation by grazing sheep, consider mature dry 173 

sheep grazing at 10 wethers/hectare on a typical long-term improved pasture at Armidale, NSW (30.5016° S, 174 

151.6662° E) containing a mixture of native and introduced species.  The focus of this simulation is to run 175 
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the model to 1 September 2015 and then assess feeding strategies for the next 3 months, as if today were 1 176 

September 2015. Such hindcast analyses enable comparison of simulated and actual data. In this example, 177 

the model runs to 1 September 2015 and then continues an ensemble of simulations from that date, using 178 

historical climate data, for all the three-month periods starting on 1 September from 1986 to 2014. These 179 

simulation results are used to inform future management decisions. 180 

Live weight (Fig. 4a) and body condition score (Fig. 4b) are modelled, with known climate 181 

informing pasture growth, for the 9 months preceding 1 September 2015. From July to September, there was 182 

a steady decline in live weight, which is reflected in a noticeable drop in condition score. Although not 183 

shown here, this change is due to a decline in pasture availability to approximately 0.5 t/ha. Following that 184 

date, the projections are based on the ensemble of simulations with the 25th, 50th (median) and 75th percentile 185 

ranges providing a spread of future outcomes. 186 

Fig. 4a and Fig. 4b 187 

On 1 September, the condition score was estimated to be 2.6 and the simulations suggest there was 188 

a 50% chance of it being in the range of 2.0–2.2 by November; the actual (based on climate data for that 189 

year) condition score was 2.1, although this would not have been known at the time. Outside of this range, 190 

there remained a 25% chance that the condition score would fall below 2.0. It can also be seen that there was 191 

little variation in the expected change in condition score during the first 3 weeks after 1 September, 192 

suggesting limited expected pasture growth, and hence feed availability, during that time. This, in itself, is 193 

valuable predictive information from the model. To explore the effect of providing supplemental feed, the 194 

model was then run with different levels of a daily supplement, starting on the projection date of 1 195 

September, to evaluate the likely response of condition score. Fig. 5 shows the condition score corresponding 196 

to Fig. 4b, but with either 100 g/d or 200 g/d of an 80% digestible supplement being fed. 197 

Rather than iterate to find the level of supplemental feed that will achieve the target condition score, 198 

the user has the option to use the model to estimate the level of feed required to achieve the target. For 199 

example, if the target condition score by the end of the 90-day projection period were 2.8, the median level 200 

of supplement required would have been 170 g/d. Although not presented here, similar analyses can be done 201 

to estimate risk associated with achievement of a target body condition score in ewes or a target sale weight 202 

in weaners. 203 

These analyses show how the pasture and animal simulation model in ASKBILL can be used to 204 

assess likely risk in relation to possible future climate scenarios and management decisions. Working with 205 
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the 25th to 75th percentile range does not give the full risk profile but it is likely to be a useful indicator for 206 

producers. An important feature is the model’s daily time-step with the next day’s simulation informed by 207 

the previous day’s weather. In this manner, the 90-day projection extends out from 2 September, followed by 208 

3 September and so forth with the breadth of historic data extending at the same time. With the example 209 

discussed above, this time-step facilitates continual re-evaluation of feeding levels in response to known 210 

changes in pasture and animal condition. 211 

Other functions are provided for each stock class. Feed budgets are a recognised approach to 212 

managing animal and pasture condition and are a useful component for forecasting seasonal stocking rates. 213 

Automatic calculation, and daily updates, of the feed budget are likely to assist planning. The animal growth 214 

model is able to link with the pasture model in ASKBILL to calculate stocking rates over a 90-day projection 215 

period (Fig. 6). In this example, sheep are grazed at 10 dry sheep units per hectare on a typical long-term 216 

improved pasture at Armidale, NSW as described earlier. From July to April, there was a decline in pasture 217 

availability. The projections commencing on 1 April 2014 indicate pasture availability in the range 0.9–1.1 t 218 

DM/ha by 1 July. Here, the user has indicated a pasture target of 1.3 t DM/ha by 1 July, which the model 219 

calculates can be achieved if the stocking rate is reduced to 7.5 dry sheep units per hectare. 220 

Fig. 5 and Fig 6 221 

Conclusion 222 

Automated downloads of climatic data and daily recalculation of actual and forecast production information 223 

are designed to make it easier for producers and their advisors to use the power of the predictive biophysical 224 

models. This predictive functionality, combined with the comprehensive biophysical and physiological 225 

nature of the ASKBILL models, is expected to be particularly useful in managing risks and production 226 

opportunities that involve the interaction of nutritional status and climatic or parasite events. 227 

Nutritional intervention often involves a considerable lead-time in order to have an impact on a 228 

production variable related to live weight or body condition score. Even short-term supplementary feeding 229 

requires gradual introduction and there is often a delay of several weeks before a feeding regimen has an 230 

impact on live weight change. For these reasons the long-range forecasting and predictions available through 231 

ASKBILL are expected to have a positive impact on sheep wellbeing and productivity. 232 
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Captions for Figures 287 

Fig. 1. Schematic of the flow of data and information through predictive biophysical models that underpin 288 

the ASKBILL program to provide alerts and ‘what-if’ options to assist management decisions. 289 

 290 

Fig. 2a. Calibrated growth curve for total (solid), protein (dashes) and fat (dots) mass of a sheep with birth 291 

weight 4 kg and mature standard reference weight 60 kg at 20 kg (grey) or 30 kg (black) at 12 weeks of age. 292 

Note: protein includes the water component. 293 

 294 

Fig. 2b. Metabolizable energy requirements;total (black solid), maintenance (black dashes) and growth 295 

(black dots) with components for protein maintenance (grey dash) and growth (grey dot), fat (black long 296 

dash dot) and heat (black long dash dot dot) also provided. Note: requirements were calculated for the 20 kg 297 

example shown in Fig 2a. 298 

 299 

Fig. 3a. Growth rate corresponding to Fig 2a for an animal weighing 20 kg at 12 weeks of age. 300 

 301 

Fig. 3b. Metabolizable energy required to achieve daily growth rates (g/d) of 200 (solid), 150 (dash), 100 302 

(dot), 50 (long dash dot) and 0 (long dash dot dot) in relation to animal live weight. Note that 0 g/d 303 

corresponds to maintenance. 304 

 305 

Fig. 4a. Simulated live weight of mature dry sheep grazing pasture. Live weight values prior to 1 September 306 

2015 were simulated using known climate data to inform the model. After that date, an ensemble of 307 

simulations provided a range of 90-day projections and 75th (upper grey solid), 50th (black dots) and 25th 308 

(lower grey solid) percentiles. 309 

 310 

Fig. 4b. Simulated body condition score of mature dry sheep grazing pasture. Condition score values prior to 311 

1 September 2015 were simulated using known climate data to inform the model. After that date, an 312 

ensemble of simulations provided a range of 90-day projections and 75th (upper grey solid), 50th (black dots) 313 

and 25th (lower grey solid) percentiles. 314 

 315 
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Fig. 5. Simulated body condition score of mature dry sheep grazing pasture (as in Fig. 4b). Ninety-day 316 

projections of condition score when an 80% digestible supplement was fed at a level of 0 g/d (A), 100 g/d 317 

(B) or 200 g/d (C) and associated 75th (upper grey solid), 50th (black dots) and 25th (lower grey solid) 318 

percentiles. 319 

 320 

Fig. 6. Simulated pasture availability of a typical long-term improved pasture at Armidale, NSW in response 321 

to a stocking rate of 10 dry stock unit/ha. From 1 April 2014, an ensemble of simulations provided a range of 322 

90-day projections and 75th (upper grey solid), 50th (black dots) and 25th (lower grey solid) percentiles. The 323 

50th percentile projection is shown for a stocking rate of 7.5 dry stock units /ha (black dashes). 324 

  325 
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