ATTITUDES AND MINDSETS OF PRESERVICE TEACHERS IN MATHEMATICS EDUCATION

Martin James Schmude

B.Sc., Grad. Dip. Ed (Secondary)

A thesis submitted for the degree of Doctor of Philosophy of the

University of New England.

School of Education University of New England Armidale, NSW 2351

June 2016

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my two supervisors, Professor Steve Tobias and Dr Brenda Wolodko. Their willingness to support and guide me through this process was invaluable and demonstrated immense care, for which I am extremely grateful. This experience has been as much a personal journey as an academic one, and I thank them for keeping perspective, humour and belief in me, especially when I had lost mine.

There were many people who played a role in this research study. Thanks to the preservice teachers who volunteered their time, thoughts and experiences to this study. Without their involvement, honesty and willingness to participate, this study could not have taken place. I would also like to thank Associate Professor Pep Serow for her assistance in the early stages of this research project and encouraging me to pursue the use the problem-based learning in mathematics teacher education. To colleagues in the School of Medicine and School of Education at University of New England, who provided guidance and wisdom throughout the time. To my colleagues and friends, thanks for their ongoing support and interest.

Finally, but not lastly, I would like to thank my family. To my parents, Karl and Virginia, for their unwavering support and help. My children, Leo, Joe and Tess, receive my thanks for the flexibility and love they showed over the years. And to my wonderful wife, Jane, who knew better than anyone the experience of this endeavour. This thesis has been a mammoth undertaking and a significant sacrifice by all in order to see it to the end. I am grateful to have had them all with me, to share this experience.

i

ABSTRACT

This research study focused on understanding the impact preservice teachers' attitudes and mindsets had on their approach to learning mathematics and how this influenced their potential as mathematics teachers. Many students entering primary teacher education courses do so with negative attitudes towards learning mathematics and a belief that a person's intelligence is fixed and cannot be changed.

The study took place within a semester-long, first-year mathematics education unit, which utilised a social constructivist, problem-based learning (PBL) approach, as part of a Bachelor of Education (Primary), four-year university course. The lecturer's goals of the unit were, first, for students to experience a student-centred learning environment that focussed on developing content and procedural knowledge, and the pedagogies associated with teaching mathematics. Secondly, engage students in shifting their disposition towards a positive and open attitude towards learning mathematics along with a growth mindset.

Research evidence was collected at the beginning and end of the semesterlong teaching period through a combination of quantitative and qualitative instruments. Based on initial survey results collected during a pre-study phase, clusters were formed from different combinations of attitude and mindset. These clusters then served as case studies for further investigation, which sought to understand more deeply (a) their views of learning and teaching mathematics, (b) their responses to student-centred learning and (c) changes to their dispositions towards mathematics that may have occurred over the duration of the unit. The

ii

qualitative research data was gathered through methods such as interviews, task observations and questionnaires.

The findings suggested that both attitude and mindset intertwine in a complex manner to influence a preservice teachers' views of learning and teaching mathematics, and that these views are related to their past experiences as learners. The study also found that many participants felt the student-centred experiences were a meaningful approach to engaging learners and as a means to influence and change dispositions and mindsets. It was clear that students with fixed mindsets were more reluctant to accept a student-centred approach to learning and teaching mathematics. By comparison, students with a growth mindset were more reflective and open to student-centred approaches, such as developing student autonomy and recognising the teacher as facilitator. The findings also indicated that it is possible to influence student dispositions to learning, and consequently, their teaching of mathematics. It appears vital that mathematics teacher educators provide support to assist preservice teachers' development of their dispositions, mindsets and adoption of student-centre practices in mathematics.

CERTIFICATION OF DISSERTATION

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree or qualification.

30 June 2016

Signature of Candidate

Date

TABLE OF CONTENTS

List of Appendices	viii
List of Figures	ix
List of Tables	X
Introduction	1
Background of the study	1
Teacher quality	2
Student-centred reforms	3
Beliefs and attitudes	5
Problem-based learning	7
Statement of the problem	8
Purpose of the study	
Thesis overview	11
Conclusion	13
Literature Review	15
Introduction	
Affective domain	15
Attitudes	20
Beliefs	
Beliefs of intelligence	
Conclusion	104
Methodology	107
Introduction	
Research design	
Research questions	
Case study	
Mixed methods	114
Triangulation	
Context	

Geographical location	121
The University of New England	
Methods	
Research instruments	
Researcher's perspective	
The researcher's world view	
Ethical considerations	
Mathematics education unit EDME145	
Goals	
Background	
Development of EDME145	
Conclusion	

Results

163

	Introduction	163
	Quantitative results	164
	Attitude Toward Mathematics Inventory (ATMI)	164
	Implicit Theories of Intelligence (ITI) survey	169
	Wilcoxon signed-rank test	170
	Quantitative conclusion	171
	Qualitative results	172
	Introduction	172
	Clusters and key informants	172
	Research question 1: View of learning and teaching mathematics.	178
	Research question 2: Response to student-centred learning	215
	Research question 3: Change in attitude and mindset	245
	Summary	257
Disc	cussion	259
	Introduction	259
	Views of teaching and learning mathematics	260

Cluster 2 – Positive attitude toward mathematics and fixed view of	
intelligence	
Cluster 3 – Negative attitude toward mathematics and emergent view	
of intelligence	
Cluster 4 – Positive attitude toward mathematics and emergent view	
of intelligence	
Summary and implications	
Response to student-centred learning	
Cluster 1 – Negative attitude toward mathematics and fixed view of	
intelligence	
Cluster 2 – Positive attitude toward mathematics and fixed view of	
intelligence	
Cluster 3 – Negative attitude toward mathematics and emergent view	
of intelligence	
Cluster 4 – Positive attitude toward mathematics and emergent view	
of intelligence	
Summary and implications	
Changes in attitude and mindset	
Cluster 1 – Negative attitude toward mathematics and fixed view of	
intelligence	
Cluster 2 – Positive attitude toward mathematics and fixed view of	
intelligence	
Cluster 3 – Negative attitude toward mathematics and emergent view	
of intelligence	
Cluster 4 – Positive attitude toward mathematics and emergent view	
of intelligence	
Summary and implications	
Limitations of the research	
Conclusion	
References	
Appendices	

LIST OF APPENDICES

- 1. ATMI and ITI surveys
- 2. KenKen puzzles
- 3. Critical Moments questionnaire
- 4. PBL Experience questionnaire
- 5. Unit evaluation (Internal)
- 6. Unit evaluation (External)
- 7. Ethics information to participants
- 8. Ethics approval
- 9. Pre-study interview questions
- 10. Post-study interview questions
- 11. Interview transcriptions (sample)
- 12. Pre-study survey data (on-disk)
- 13. Post-study survey data (on-disk)

LIST OF FIGURES

Figure 2.1 – Adapted from a model of conceptions of the affective domain (Leder
& Grootenboer, 2005)18
Figure 2.2 – People's views of intelligence lie on a continuum
Figure 2.3 – An escapable shuttle box http://www.flyfishingdevon.co.uk/ salmon/year2/psy221depression/psy221depression.htm
Figure 2.4 – Zone of proximal development (Leder & Grootenboer, 2005)85
Figure 2.5 – Problem-based learning as an educational tool (Eng, 2000, p. 4)98
Figure 2.6 – Domains of knowledge required for effective teaching103
Figure 3.1 – Sequential explanatory design
Figure 3.2 – Implicit theories of intelligence vs Attitude toward mathematics inventory
Figure 3.3 – Key informants' selection region
Figure 4.1– ATMI vs ITI pre-study scores (on- and off-campus, n = 176)173
Figure 4.2 – ATMI vs ITI Pre-study scores with medians (on- and off-campus)174
Figure 4.3 – Selective corners within the clusters (on- and off-campus)175
Figure 4.4 – Actual key informant locations (on- and off-campus)176

LIST OF TABLES

Table 2.1 – Summary of mastery goals and performance goals in achievement
situation
Table 2.2 – Teacher-centred characteristics and assumptions about learning70
Table 2.3 – Social constructivist framework compared to positivist framework88
Table 2.4 – Characteristics of student-centred learning compared to teacher- centred learning
Table 3.1 – Definitions of clusters 123
Table 3.2 – Participants involved in the data collection throughout the study128
Table 3.3 – Framework of behaviours based on Diener and Dweck (1978) response types 135
Table 4.1 – Pre-study and post-study ATMI results (n=176 and n=158 respectively) 165
Table 4.2 – Four factors in the ATMI by items 168
Table 4.3 – Preservice teachers' responses to the Views of Intelligencequestionnaire (pre-study and post-study)
Table 4.4 – Description and naming of clusters 174
Table 4.5 – Key informants survey results for pre- and post-study (off-campus and *on-campus)