Management for conservation of plant diversity in native grasslands of the Moree Plains, NSW

Tom Lewis BSc (Hons) University of Adelaide

Ecosystem Management, University of New England

Thesis submitted for the degree of Doctor of Philosophy of the University of New England

Originally submitted July 2005 Revised January 2006

ACKNOWLEDGEMENTS

Financial support that allowed this project to happen was received from: (1) The Grassy Ecosystems Grant Program (a joint initiative of the World Wide Fund for Nature Australia and the National Heritage Trust); (2) The NSW National Parks and Wildlife Service; and (3) The University of New England (postgraduate support allocation and Beadle Scholarship). I was able to carry out this research thanks to an Australian Postgraduate Award.

I am indebted to my supervisors, Nick Reid, Peter Clarke and Wal Whalley for their support and helpful advice. Nick, Peter and Wal read all chapter drafts, and Tim Curran and Mandy Mercuri thoroughly reviewed one chapter each. Richard Willis proofread the final thesis. I am grateful for the useful comments these people provided to improve the thesis.

Field work assistance was received from Nick Reid, Jodie Reseigh, Amy Rayner and Tricia Waters. Their company was certainly appreciated. I am very thankful to all the landholders that kindly let me onto their properties and for their interesting and insightful knowledge of the Moree Plains grasslands. I am indebted to Eric Carrigan and the Carrigan family for letting me stay in their quarters on numerous occasions whilst carrying out field work. Lizard (Liz Wollard) and Gordo (Gordon Adams) and other associated housemates also provided me with accommodation in Moree whilst conducting field work. I'm grateful to Gordo for providing the title page photo of this thesis.

Assistance from support staff at UNE needs to be acknowledged (i.e. Trevor Stace, Marion Costigan and Cate McGregor). Marion analysed many soil samples for which I am very grateful and help with creation of maps was received from Cate. I am appreciative of the support from staff of the NPWS (especially Tricia Waters and Catherine Watt), and of all those who assisted with the controlled burns. I hope that this work is of some use to NPWS! Ashleigh Pitman and Rodney O'Brien at DIPNR provided some early advise and along with Judy Earl assisted me in finding landholders to visit. Staff at the Moree RLPB office were also helpful in providing me access to permit records and with management information regarding stock routes and reserves.

I am grateful to Peter Clarke for providing data from previous surveys at Kirramingly Nature Reserve, and to John Hunter and Judy Earl for providing me with data from their vegetation survey on the Moree Plains. The Commonwealth Bureau of Meteorology also provided rainfall data on request. Wal Whalley, Lachlan Copeland and John Hunter assisted me with plant identification and I certainly appreciate the time they spent. Statistical guidance was received from Nam-Ky Nguyen, Ian Davies and my supervisors. Nam provided several useful suggestions for analysis of data in Chapter 5.

I received a huge amount of emotional support and advice throughout this PhD from many people. I am thankful for the support from my family back in SA, and from my friends here who have made my time in Armidale enjoyable. I'm indebted to Tash for loving me, putting up with me, and supporting me financially through the writing up stages and for reading a final draft of the thesis. I appreciate the friendship and support provided by all my housemates in my time at Armidale (Mike, Mandy, Kim, Ange, Jamie, Tux, Silte, Layla, Jack, Jaffa, Toby, Vook, Winnie, GB and Kel). I'm similarly grateful to all those who have provided me with 'spectacticle' inspiration and have discussed my thesis over a beer or two.

Sorry if I have forgotten anyone!

ABSTRACT

Over 50% of the alluvial plains of the Moree Shire are used for dryland and irrigated cropping, and most of the remaining land is grazed by livestock. The *Dichanthium sericeum* (Queensland Bluegrass) and *Astrebla* spp. (Mitchell Grass) tussock grasslands were once common on the fertile clay soils of the region, but have suffered large reductions in area through cultivation. These grassland communities are also poorly conserved and only occur within one reserve (Kirramingly Nature Reserve) in New South Wales. There has been little conservation-oriented research into these grasslands, and there is a need for research to determine the best management strategies to conserve their plant diversity.

Two grassland vegetation surveys were carried out to determine the influence of management history, sampling time and other environmental variables on plant species composition and richness. A regional vegetation survey sampled different locations and land tenures (e.g. private property, travelling stock routes, nature reserves) throughout the Moree Plains. A second survey was carried out on a smaller scale at Kirramingly Nature Reserve and on the surrounding stock routes. Some sites in both surveys were sampled in different seasons and years. Experiments were also carried out at Kirramingly Nature Reserve to determine the influence of fire, kangaroo grazing, mowing and disc ploughing on native grassland composition, species richness, evenness (Smith and Wilson's Index).

A total of 364 plant taxa were recorded in the regional survey. Species richness varied considerably over time and corresponded with fluctuations in rainfall prior to sampling. Canonical Correspondence Analysis determined that environmental variables accounted for a greater proportion (19.4%) of the variance in species cover data than disturbance-related variables (10.5%). Soil type, sampling time and altitude had a strong influence on species composition. Of the disturbance-related variables, cultivation (number of consecutive cultivations) and stocking rate were the most influential. Type of grazing (not grazed, periodically grazed or continuously grazed) did not have a significant influence on native species richness, although native species richness was significantly higher at Kirramingly Nature Reserve than at grazed sites over the Moree Plains. Ordination suggested that cultivated sites were generally in poorer condition (defined by richness and cover of native and introduced species and the amount of bare ground) than

uncultivated sites. Total and native species richness were significantly higher at uncultivated sites. Lower native species richness was evident even for sites that were last cultivated at least 15 years prior to sampling. Flooding had a relatively small influence on species composition, although the frequencies of certain species were influenced (e.g. *Astrebla lappacea* was less frequent in flooded sites). Across all sites, flooding had no influence on native species richness, but total, introduced, forb, grass and graminoid species richness were significantly affected.

Some 173 taxa were recorded at Kirramingly Nature Reserve and surrounding stock routes. Species richness varied greatly between sampling periods, with variations between seasons and years. Sampling time and the occurrence of cultivation had the greatest influence on species composition in this data set. Previously cultivated areas within the Reserve were associated with higher introduced and annual species richness, although introduced species richness fluctuated at cultivated sites depending on seasonal conditions. Native species richness was significantly lower at previously cultivated sites, but was not significantly influenced by grazing exclusion at a quadrat scale of 0.1024 ha. Disturbance in the form of livestock grazing is not necessary to maintain plant species richness in Kirramingly Nature Reserve. In fact, at the 2-m² scale, richness was significantly greater at ungrazed sites than at grazed sites. The highly variable climate may play an important role in the coexistence of species by negating competitive exclusion and allowing interstitial species to persist.

Experiments at Kirramingly also demonstrated the strong influence of sampling time (season and year) on species richness and composition. Species richness and composition recovered more rapidly after spring burning than after autumn burning. This was expected given that most species in the area grow during warmer conditions and rainfall was below average in the winter following the autumn burn. Species richness and composition were similar to those of control sites within 12 months of both burns. Repeated fire (two fires separated by 3 years) and kangaroo grazing, post-fire, had no long-term influence on species richness, evenness or heterogeneity. Annual or short-lived species were generally more responsive to fire than perennials. Six species, including four annuals (*Eragrostis parviflora, Sporobolus caroli, Portulaca oleracea* and *Medicago truncatula*) and two perennials (*Panicum buncei* and *Boerhavia dominii*) increased in frequency in response to fire. Three annual forbs (*Vittadinia cuneata, Sonchus oleraceus* and *Hedypnois*

rhagadioloides) and one perennial (*Oxalis perennans*) were negatively affected by fire, but no species were completely eliminated from burnt areas. Most species were able to survive fire by resprouting vegetatively. Seed head production of three grass species (*Astrebla elymoides, A. lappacea* and *Dichanthium sericeum*) varied significantly over time, but not in response to fire.

Mowing had no sustained effect on species richness and evenness over time. Repeated mowing (twice in 1 year) and height of mowing (10 cm and 30 cm above the ground) also had no effect. Species frequencies did vary in response to mowing. Annual and short-statured species (e.g. *Chloris truncata, Vittadinia cuneata, Eclipta platyglossa* and *Portulaca oleracea*) were more frequent at mown sites. Disc ploughing resulted in significantly lower species evenness and heterogeneity and marginally lower total and native species richness. Some annual grasses were more frequent at ploughed sites (e.g. *Chloris truncata, Eragrostis parviflora* and *Sporobolus caroli*), while perennial grasses (e.g. *Astrebla elymoides, Aristida leptopoda* and *Enteropogon acicularis*) were less frequent at ploughed sites. These perennial species probably rely heavily on vegetative reproduction for persistence and may take some time to re-establish from seed in ploughed areas.

Some important features of these grasslands in their response to disturbance (or lack of disturbance) are: (1) the resilience of most native species to livestock grazing, kangaroo grazing and mowing; (2) the lack of decline in diversity when livestock grazing is removed for several years; (3) their capacity to recover after fire without major changes in composition; (4) the resilience of most native species to flooding; (5) the ability of most native species to recover after once-off disc ploughing; and (6) their ability to recover after Despite their resilience, some forms of disturbance (i.e. cultivation and drought. over-grazing) can result in removal of the dominant perennial grasses (e.g. Astrebla spp. and Dichanthium sericeum) and an increase in disturbance specialists, including species that are undesirable from a grazing and conservation perspective (e.g. Urochloa panicoides, Tribulus terrestris, Sclerolaena muricata var. muricata, S. birchii and Rapistrum rugosum). The need to conserve native grasslands on the Moree Plains without a history of cultivation is particularly important. Given the varied responses of native species to different types of disturbance, a range of disturbance regimes over the landscape will be beneficial to plant diversity. There appear to be few ungrazed remnants on the

Moree Plains, but such areas are important in the landscape to prevent the loss of grazingsensitive species.

-

Certification

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree or qualification.

I certify that any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

CONTENTS

Title page	
ACKNOWLEDGMENTS	
ABSTRACT	
Certification	
CHAPTER ONE: Introduction and literature review	1
1.1 Introduction	1
1.2 Literature review	4
1.2.1 Terminology	4
1.2.2 Disturbance and succession	4
1.2.3 Fire and grasslands	7
General effects of fire on grasslands	7
Season and frequency of burning	9
Fire and grazing interactions	11
Fire and invasion of woody species	12
Fire in Mitchell grasslands	13
1.2.4 Grazing and mowing	14
Grazing	14
Mowing	19
1.2.5 Cultivation	20
1.2.6 Flooding	23
1.2.7 Temporal variation	24
1.2.8 Grassland fauna	26
1.3 Thesis aims, objectives and structure	27
CHAPTER TWO: Study region	30
2.1 Introduction	30
2.2 Location	30
2.3 Climate	31
2.4 Landform	34
2.5 Soils and geology	35
2.6 Aboriginal history and land-use	35
2.7 European history and land-use	36
2.8 Botanical exploration	38
2.9 Major plant communities	39
CHAPTER THREE: The regional vegetation survey: The effect of management,	43
environmental variables and sampling time on grassland composition and	
richness	40
3.1 Introduction	43 46
3.2 Methods	40 46
3.2.1 Site selection and sampling methods	40 50
3.2.2 Site stratification 3.2.3 Disturbance-related variables	52
Grazing variables	52
Cultivation variables	55
Flooding variables	56
Fire variables	56
3.2.4 Environmental variables	57
Rainfall	57
Sampling time	57
Soil variables	57
Other environmental variables	59
3.2.5 Grassland condition index	60

3.2.6 Taxonomy	60
3.2.7 Statistical analysis	61
Multivariate	61
Univariate	65
3.3 Results	68
3.3.1 General floristics	68
3.3.2 Variation in composition and richness over time	72
3.3.3 General ordination output	76
3.3.4 Disturbance-related determinants of composition and richness	78
Grazing	78
Cultivation	89
General impacts of management disturbances	97
Flooding	98
Fire	103
3.3.5 Environmental determinants of composition	103
Rainfall and location	104
Soil	104
Other variables	107
	108
3.4 Discussion	109
3.4.1 The effects of drought and seasonal variations in composition and richness	
3.4.2 Comparisons with previous surveys	111
Variations in species composition	111
Fluctuations in Dichanthium sericeum and Astrebla abundance	112
3.4.3 The relative importance of disturbance-related and environmental variables	113
3.4.4 Environmental variables	113
3.4.5 Disturbance-related variables	115
Grazing	115
Cultivation	121
General impacts of management disturbances	127
Flooding	128
Fire	130
3.4.6 Grassland condition and taxa of conservation significance	130
3.4.7 Conclusions	132
CHAPTER FOUR: The influences of grazing, cultivation and time of sampling on	134
native grassland composition and richness at Kirramingly Nature Reserve	
4.1 Introduction	134
4.2 Methods	136
4.2.1 Background and sampling methods	136
4.2.2 Sampling times	138
4.2.3 Site stratification and management history	138
4.2.4 Rainfall	140
4.2.5 Statistical analysis	141
4.3 Results	144
4.3.1 Changes in composition and richness over time	144
4.3.2 Ordination output	148
4.3.3 The effects of livestock grazing exclusion	152
4.3.4 The effects of past cultivation	159
4.3.5 The effects of past cultivation 4.3.5 The influence of tree canopy and proximity to dams on composition and richness	164
4.3.6 Abundance of Acacia farnesiana and its influence on composition	166
4.4 Discussion	167
4.4 Discussion 4.4.1 Seasonal variations in composition and richness	167
F	167
4.4.2 Grazing and canopy cover	
4.4.3 Cultivation and proximity to dams 4.4.4 The influence of Acacia farnesiana on composition	174 177
α α α την πητανής του αρχοια ταπήθεια τα τροπηροτική	

	4.4.5 Conclusions	178
	CHAPTER FIVE: Short-term impacts of burning grassland at Kirramingly Nature	180
	Reserve	
	5.1 Introduction	180
	5.2 Methods	183
	5.2.1 Experimental design and site establishment	183
	Fire experiment	183
	Kangaroo grazing post-fire	185
	5.2.2 Vegetation sampling	186
	5.2.3 Assessing kangaroo grazing habitat preference post-fire	186
	5.2.4 Tagged individuals	187
	5.2.5 Controlled burning, pre-fire conditions and fire intensity	188
	5.2.6 Statistical analysis	192
	5.3 Results	1 97
	5.3.1 General survey findings	197
	5.3.2 Influence of burning season and kangaroo grazing post-fire	197
	5.3.3 Influence of repeated burning	205
	5.3.4 Controls distant from the experiment	212
•	5.3.5 Ordination output	220
	5.3.6 Seasonal changes in composition and richness	222
	5.3.7 Responses of tagged plants to fire	225
	5.4 Discussion	228
	5.4.1 Variation due to sampling time	228
	5.4.2 The influence of burning in autumn and spring	229
	5.4.3 The influence of repeated burning	233
	5.4.4 The influence of kangaroo grazing post-fire	235
	5.4.5 Controls distant from the experiment	235
	5.4.6 Individual species survival and seed production after fire	237
	5.4.7 Conclusions	239
	CHAPTER SIX: Short-term impacts of mowing (artificial grazing) and disc	240
	ploughing grassland at Kirramingly Nature Reserve	
	6.1 Introduction	240
	6.2 Methods	242
	6.2.1 Experimental design and site establishment	242
	Mowing experiment	242
	Disc ploughing experiment	243
	6.2.2 Vegetation sampling	246
	6.2.3 Statistical analysis	246
	6.3 Results	247
	6.3.1 The influence of mowing and sampling time	247
	6.3.2 The influence of disc ploughing	252
	6.4 Discussion	263
	6.4.1 The influence of mowing	263
	6.4.2 The influence of disc ploughing	267
	6.4.3 Conclusions	270
	CHAPTER SEVEN: General discussion and synthesis	272
	7.1 Introduction	272
	7.2 Ecological relevance of findings	273
	7.2.1 Comparisons of Moree Plains grasslands to other grasslands	273
	7.2.2 Disturbance	276
	7.2.3 Transitional stages model	283
	7.3 Management of native grasslands to encourage diversity	289

7.3.1 Management of the Moree Plains grasslands	289
7.3.2 Management of Kirramingly Nature Reserve	293
7.4 Future research and monitoring	294
7.4.1 Further research	294
7.4.2 Further monitoring of established sites	297
REFERENCES	299
APPENDIX 3.1	327
APPENDIX 3.2	330
APPENDIX 3.3	343
APPENDIX 3.4	344
APPENDIX 3.5	346
APPENDIX 4.1	347
APPENDIX 4.2	354
APPENDIX 4.3	361
APPENDIX 5.1	368
APPENDIX 5.2	372
APPENDIX 5.3	376
APPENDIX 5.4	377
APPENDIX 5.5	379
APPENDIX 6.1	382
APPENDIX 6.2	383
APPENDIX 6.3	387
APPENDIX 7.1	390

.