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ABSTRACT 

The Permo-Carboniferous New England Batholith, which is composed of a 

large number of individual plutons, stocks, dykes and complexes, exemplifies 

the type of complex intrusive activity manifest in Pacific-type orogenic 

belts. Granitoids and related rocks predominate, and together their study 

constitutes the major part of this thesis. The mafic intrusives of this 

batholith are volumetrically minor, but because they display a close spatial 

and temporal relationship to these granitoids, and have not been documented 

previously, they have also been studied in detail. 

The Carboniferous Hi1lgrove Suite comprises a comagmatic series of 

stressed, corundum-normative granitoids which typically contain graphite, 

coexisting reddish-brown and green biotite, two generations of plagioclase 

feldspar, highly ordered microc1ine, ilmenite as the sole iron-titanium oxide, 

coexisting blue and colourless quartz, Fe-Mg and calciferous amphiboles, 

almandine-rich garnet, pyrrhotite, and, more rarely, ferrohypersthene. These 

data, combined with comparative' experimental phase relations, collectively 

provide compelling evidence for an origin by partial melting, of predominantly 

volcanogenic greywackes. This hypothesis is supported by Sr isotope data 

which indicate that the country rock greywackes possessed essentially the 

same 87Sr /8 5Sr ratios at - 320 m.y. as the initial 87SrJ86Sr ratio of the 

granitoids. However, REE data provide an important constraint on this 

proposal, suggesting that a derivation of these granitoids from the greywackes 

presently exposed is unlikely, but that a sedimentary sequence containing 

some greywackes with less fractionated and lower REE abundances, such as those· 

from the Tamworth Trough, would provide ideal source characteristics. Flood 

and Shaw (1975) and Chappell (1978) divided granitoids from this batholith 

into S- and I-type suites according to the type of inferred source material. 

However, on the basis of detailed mineralogical, chemical and isotopic studies 

it is concluded that this distinction is artificial and that the source rocks 

for the S-type suites, particularly the Hi1lgrove Suite, and for the so-called 

I-type New England Suite were essentially the same. 

Spatially associated with the Hillgrove Suite and originally included 

as part of it, are a number of complexes comprising mainly mafic rocks of 

either tholeiitic or calc-alkaline affinity. Dominating the tholeiitic 

complexes are ·cumulate olivine gabbros containing coexisting Ca-poor and 



Ca-rich pyroxenes (including inverted pigeonite in some of the 10w-MGtgabbros), 

moderately calcic plagioclase (An 5S-7S), olivines (F052-77) with reaction 

coronas, ubiquitous ilmenite and a complex assemblage of coexisting primary 

and secondary amphiboles and micas. The compositions of the coexisting 

primary ferromagnesian phases and th~ order of their crystallization 

(olivine -- clinopyroxene -- orthopyroxene) are not consistent with the host 

rock compositions (MG - 75). A model is offered where precipitation of 

magnetite ± ilmenite in a rising magma column results in the enrichment of 

the remaining intercumulus liquid in Mg. Subsequent post-cumulate re­

equilibration with small « 5%) amounts of intercumulus liquid further 

modified original mineral compositions. 

The olivine gabbros are characterized by low Ti02, FeO, MnO, Na20, P20S, 

K20 and related incompatible elements, Nb and Li, high A1203, CaO, MgO, Cr and 

Ni and very high MG numbers. In addition to low REE abundances (- 2-4x 

chondrite), the olivine gabbros display slight to moderate LREE depletion 

(LaN/S~ = 0.25 - 0.50), small but pronounced positive Eu anomalies 

(Eu/Eu* = 1.3 - 2.2), near-chondritic ratios for Al203/Ti02and CaO/Ti02 , and 

the lowest 87Sr /85Sr ratios (0.7025 - 0.7028) so far recognized from the fold 

belts of eastern Australia. Collectively, these data strongly suggest that 

the New England tholeiitic gabbros are derived by crystal accumulation from a 

basaltic parental melt very similar in composition to young mid-ocean ridge 

tholeiites. Despite their emplacement through presumably thick continental 

crust, the 'primitive' characteristics of the gabbros have been preserved, 

facilitated by (a) deeply-tapping faults generated by uprise of the Hillgrove 

Suite plutons, and (b) a protective 'outer shell' of cumulate diorite which 

generally prevented reaction between the gabbros and the country rocks. 

Low pressure fractionation of tholeiitic magma which has been slightly 

contaminated by crustal material, or which has reacted with deep-seated wall­

rock fluids, produced a range of derivatives displaying a trend of absolute 

iron-enrichment, in addition to other compositional changes. These changes 

are reflected predominantly by the systematic variation in the compositions of 

the amphiboles and biotites, phases which are typically absent from tholeiitic 

rocks. compared to experimentally determined phase equilibria the compositions 

of these hydrous phases suggest crystallization at low and decreasing [02. 

Other felsic derivatives of tholeiitic gabbros exhibit extreme }fg- and Na-

'enrichment and have crystallized clinopyroxene which is highly calcic (26% CaO) 

and magnesian (mg t 88). 

t MG throughout this thesis is 100 Mg/}fg+Fe2+; distinguishing it from mg 
which is 100 Mg/Mg+EFe expressed as FeO. 



Gabbros which appear truly tholeiitic but which are intimately 

associated in the field with apparently cogenetic calc-alkaline rocks provide 

a sound basis for the interpretation that the calc-alkaline complexes 

associated with the Hillgrov€ Suite have resulted from contamination of 

primitive tholeiitic magma by crustal material. Rb/Sr ages on these 

complexes, combined with textural data and field relationships, indicate 

that their emplacement was almost synchronous with, or only slightly later 

than, the emplacement of the Hillgrove Suite. 

During the early-to mid-Permian a zone of crustal weakness again 

developed in New England, extending north-south for several hundred kilometers, 

and heat was once more channelled from the upper mantle into the thick 

sequences of downbuckled volcanogenic sediments •. A complex sequence of 

progressive fractional melting events followed and produced the compositionally 

diverse New England Suite. The majority of plutons are mixtures of minimum 

or relatively low-temperature non-minimum melt and refractory crystalline 

residue (restite); however, the formation of microtonalites involved the 

breakdown of biotite in the source rocks. The high concentration of volatiles 

in the 'granitic' melt fraction resulted in their rapid intrusion to sub­

volcanic levels. Geothermometry on coexisting pyroxenes in the monzonites 

suggest that the maximum temperatures attained during this melting sequence 

exceeded 900°C. Hence, the formation of these intermediate rocks may have 

involved the breakdown of amphibole, in addition to biotite. Very high 

concentrations of incompatible elements in the monzonites strongly imply that 

the degree of melting at this stage was very small. The collective data on 

these plutons suggest that they were derived from mainly Devonian volcanogenic 

sedimentary material of essentially the same composition as that which 

generated the Hillgrove Suite. The possibility that New England is underlain 

by Precambrian crust is dismissed on the basis of Sr isotopes. 

Evidence for plate subduction as a mechanism for magma generation in the 

development of the New England Batholith is limited to a group of isolated 

granitoids associated with the Peel Fault. Low contents of K20 (- 2%) and 

related incompatible elements, very low initial 87S r /86Sr ratios (0.7035 -

0.7045), and textures which indicate direct and rapid crystallization from a 

total melt, are characteristic of these granitoids. Their derivation by partial 

melting of amphibolitized ocean-floor basalts is consistent with the presence 

of high-pressure metamorphic assemblages along the present and possibly 

original line of the Peel Fault. 


