Molecular Factors Involved in Suppression of Pathogenic Vibrio owensii by

Potential Probiotic Bacteria

Balkeas Abd Ali Abd Aun Jwad

B. Sc. (University of Baghdad, Iraq)

M. Sc. (Babylon University)

A thesis submitted for the degree of

Doctor of Philosophy at the University of New England, Armidale, NSW, Australia

January 2015

Molecular and Cellular Biology School of Science and Technology University of New England Armidale, New South Wales, 2351,

Australia

Declaration of Originality

I declare that the substance of this thesis is my own work. I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree or qualification.

I certify that the best of my knowledge any help received in the preparation of this thesis, and all sources used, have been acknowledged in this thesis.

Balkeas Jwad

January 2015

Table of Contents

Abstract	. iv
Acknowledgments	vii
Abbreviations	. ix
List of figures	xii
List of tables	xiii
Chapetr 1 - Literature Review	1
1.1 Introduction	1
1.2 Impact of pathogens on the aquaculture industry	3
1.2.1 Importance of Aquaculture	3
1.2.2 Aquaculture and diseases	4
1.2.3 Vibrio spp.	5
1.2.4 Lobster and Disease	6
1.3 Biocontrol	8
1.3.1 Diseases Management and control Strategies	8
1.3.2 Traditional methods	9
1.3.3 Probiotic Bacteria	.10
1.3.4 In vitro screening	.20
1.4 Aims and objectives of this study	.22
Chapetr 2 - Isolation and identification of Vibrio owensii DY05 growth-suppressive bacteria	
from the marine environment	.23
2.1 Abstract	.23
2.2 Introduction	.24
2.3 Materials and methods	.26
2.3.1 Bacterial strains and culture conditions	.26
2.3.2 In vitro antagonism assays	.28
2.3.3 Identification of antagonistic isolates using 16S ribosomal DNA sequencing	.29
2.3.4 PCR amplification of 16S rRNA gene fragment	.30
2.3.5 Classification and identification	.30
2.4 Results	.31
2.4.1 Coral isolates showing antagonistic activity	.32
2.4.2 Identification of strains	.34
2.4.3 Phylogenetic relationships of isolates	.37
2.5 Discussion	.40
Chapetr 3 - Biochemical characterization of high and low molecular weight substances from antagonistic marine bacteria with potential antibacterial properties	.46

3.1	A	Abstract	46
3.2	I	ntroduction	47
3.3	Ν	Aaterial and Methods	49
3	8.3.1	Bacterial strains	49
3	8.3.2	Concentrated antimicrobial compounds	50
3	8.3.3	Antimicrobial related activities	51
3	8.3.4	Protease assay and effect of pH and temperature on activity of proteases	53
3	8.3.5	SDS-PAGE separation of protein extracts from bacterial supernatant	53
3	8.3.6	Determination of the antimicrobial protein pattern by Native PAGE	54
3	8.3.7	Extraction and identification of small molecular weight compounds	54
3.4	F	Results	56
3	8.4.1	Production, purification and characterisation of antimicrobial substances	56
3	8.4.2	SDS-PAGE and Native-PAGE gel electrophoresis	65
3	8.4.3	Liquid chromatography Mass spectrometry: Partial identification of active bands	65
3	8.4.4	Gas Chromatography Mass Spectrometry (GC-MS)	67
3.5	Ι	Discussion	69
3	8.5.1	Effects of temperature and pH on protease activity	70
3	8.5.2	Proteas and amylase activities	71
3	8.5.3	Hyrolytic enzyme production	73
3	8.5.4	Extracellular protein production	74
3	8.5.5	Identity of extracellular proteins	75
3	8.5.6	Small antimicrobial molecules	77
Chap	etr 4 ·essio	- Analysis of Pseudoalteromonas sp.strain 80 genes and traits involved in growth	80
4.1	A	Abstract	80
4.2	I	ntroduction	81
4.3	Ν	Aaterials and Methods	83
4	1.3.11	Bacterial strains, plasmids and culture media	83
4	1.3.2	Antibiotic sensitivity test	84
4	1.3.3	Generation of Tn10-induced mutants impaired in pathogen suppression	84
4	1.3.4	Mutant analysis using Southern blot hybridization	87
4	1.3.5	Analysis of the mutated gene using TAIL-PCR	90
4	1.3.6	Analysis of the mutated gene using plasmid rescue technique	93
4.4	F	Results	95
4	1.4.1	Rifampicin and streptomycin mutants	95
4	4.4.2	Generation of mutants affected in pathogen-suppression	96

4.4.	Biochemical traits of the Pseudoalteromonas sp.strain 80and mutants80-Rif2 and 7Km99	
4.4.	3 Confirmation of transformation using Southern Blot analysis101	
4.4.	4 Southern Blot Hybridization analysis101	
4.4.	5 Attempting to identify the mutated gene using Tail PCR104	
4.4.	6 Partial identification of the gene affected in the mutant 7Km105	
Chapetr	5 - Discussion	
5.1	General discussion	
5.2	Further study	
REFER	ENCES	
Appendi	x141	
6.1	Appendix 1 - Active band numbering on zymogram gels141	
6.2	Appendix 2 - Identity of tentative pathogen-suppressive bacterial proteins- the full list142	
6.3	Appendix 3 – CLUSTAL format alignment by MAFFT (v7.214)	

Abstract

In recent decades a rapid increase in the market demand for seafood has led to a significant decline in wild seafood populations. Therefore, the aquaculture industry now represents the best alternative seafood provider. In Australia, the spiny lobster *Panulirus ornatus* has the greatest market demand. However, production from the aquaculture hatcheries together with continuous use of antibiotics has led to an increase in the resistance of bacterial pathogens and the development of particularly resistant strains, thereby rendering antibiotic treatment ineffective. Alternative strategies to confine the spread and virulence of bacterial diseases are in demand due to the risk of further resistance development and the possibility of resistant pathogens evolving into human pathogens. Therefore, in recent years, the research focus has broadened to include probiotics, defined by Fulleret al. (1989) as a live microbial feed supplement that has beneficial affects to the host animals by improving intestinal microbial balance. The use of probiotics as a means of disease control and an alternative to antibiotics has shown to be promising in aquaculture, particularly in fish and shellfish larva-culture.

The current study aimed to identify probiotic bacteria that are antagonistic to the development of Vibriosis, which is a bacterial disease widely spread in Australian's lobster aquaculture industry, caused by members of the genus *Vibrio. Vibrio ownsii* is one of the most virulent pathogens, causing severe losses of lobster larva cultures in lobster hatcheries. In the current study we isolated and identified beneficial bacteria (potential probiotics) from a culture collection from corals and shrimps. These potential probiotic strains suppress the lobster pathogen *V. owensii* DY05, as determined in well diffusion assays.

In total, 400 isolates were tested from different species of the corals *Turbinaria* and *Acropora*. A total of 99 isolates were tested from stressed shrimp, both male and female and from the ambient seawater. Of all 499 isolates, 111 were identified as antagonistic to DY05, 80 of them from coral (20% of all isolates) and 31 from shrimp (31% of all isolates). Most of these antagonistic (potential probiotic) isolates produced at least 10 mm in diameter inhibition zone in well diffusion assays.

According to the 16S rRNA gene fragment sequences the coral isolates were assigned to nine genera in four classes. Most of the isolates belong to Gammaproteobacteria (89%), with the other three classesbeingBacilli, Actinobacteria and Alphproteobacteria. The isolates from shrimp that demonstrated antagonism against the pathogen were affiliated with three classes and six genera, with the Gammaproeobacteria predominating (81%) and the other classes beingBacilli and Actinibacteria.On the genes level *Vibrio* species were the dominant phyla, accounting for 62.5% of coral isolates and 74% of shrimp isolates. *Psychrobacter* spp.

were isolated from coral at only 23.7%. Other less common bacterial isolates included *Staphylococcus, Bacillus, Micrococcus, Pseudovirio, Pseudoalteromonas, Acinetobacter* sp., *Photobacterium* sp., *Pseudovibrio* sp.and *Brachybacterium* sp. Due to the high occurrence of isolates that are antagonistic against the lobster pathogen *V. owensii* DY05, it can be deduced that coral and shrimp marine environments represent promising sources for isolation of probiotic bacteria.

In carrying the study further, the three bacterial isolatesthat expressed strong and fast antagonistic activity against DY05 were chosen for preliminary characterisation of the observed antagonistic activity. These bacteria were identified to the genus level as Pseudoalteromonas sp. strain 80, Psychrobacter sp. strain 62 and Vibrio sp. strain 34. Preliminary characterisation of antagonistic activity involvedproteolysis assays, which indicated that the three isolates demonstrated activities consistent with gelatinase, caseinase and amylase enzymatic breakdown. Such proteases and small molecules may be responsible of antimicrobial activity. Several methods were used to concentrate and fractionate filtered supernatants to identify or characterise the active molecules. In addition, zymography was used to identify the active fractions of culture supernatants. These fractions were subject to analysis by liquid chromatography / mass spectrometry (LC/MS) to partly identify active antimicrobial proteins. The studied strainswere found to producenumerous protein compounds, some of which were specifically proteolytic enzymes. Vibrio sp. strain 34 was found to produce VtpA metalloprotease. Pseudoalteromonas sp. strain 80 was found to produce several proteases include metallopeptidase, prolyloligopeptidase, zinc metallopeptidase, iron superoxide dismutase and serine endoprotease. Lastly, Psychrobacter sp. strain 62 was found to produce superoxide dismutase and inorganic pyrophosphatase. Cultures were also examined for small active molecules using gas chromatography / mass spectrometry (GC-MS). Several alkenes volatiles were identified; however these volatile alkenes were also present in non-active strains. Therefore, it was concluded that these volatiles were not related to the antimicrobial activity.

Transposon mutagenesis was undertaken in an attempt to identify the genesrelated to biosynthesis of metabolites responsible for pathogen suppression. Successful mutagenesis of *Pseudoalteromonas* sp. strain 80 yielded a mutant, named 7Km, which lacked inhibitory activity against the pathogen and also lost pigmentation. Southern blot analysis confirmed an insertion of the mini-Tn10 transposon in one location in the genome. The gene affected in the mutant was recovered using plasmid rescue and was found to share 100% homology with a

membrane bound transporter protein of the resistance-nodulation-division (RND) family. The closest homology was to RND protein of *Pseudoalteromonas flavipulchra* JG1, a marine antagonistic bacterium with abundant antimicrobial metabolites. RND proteins were implicated in drug resistance of important pathogens and in the transport of substances from the cell, suggesting that a mutationin such a transporter probably abolished the excretion of pathogen-suppressive substances from *Psedoalteromonas* sp. strain 80 cells.

The current study confirms that the shrimp and coral microbial community represent good sources for the isolation of beneficial bacteria, which may be promising candidates for application as probiotics in aquaculture hatcheries, in particular *Psedoalteromonas* sp. strain 80, *Psychrobacter* sp. strain 62 and *Vibrio* sp. strain 34. The use of a diversity of probiotics theoretically proves advantageous as they have different mechanisms of pathogen inhibition.

Acknowledgments

This research project would not have been possible without the support and assistance of many people. I would like to take this opportunity to express my gratitude to everyone who supported me throughout my PhD project.

First and foremost, I would like I offer my sincerest gratitude to my PhD supervisor, Associate Professor Dr Lily Pereg for the valuable guidance, advice, enthusiasm, patience and immense knowledge she has shown me during my study. She was a great inspiration to me during my research project. Her willingness to motivate me contributed tremendously to the success of my studies. When I needed support she supported me, when I needed motivation she motivated me, and when I needed a friend she was my best friend. Without here knowledge and assistace this study would not have been successful.

I wish to express my sincere thanks to Associate Professor Dr Graham Lloyd Jones who was very helpful and offered valuable assistance, support and guidance during the protein component of my project.

I would like to thank Professor Aron Murphy head of the school of Science and Technology for providing support and the facilities to complete this project. Also I would like to thank the school administrative staff members, Deb, Helen and Melody. Furthermore many thanks to all technical stuff in particular Mrs Jenny Druitt, Mr Jonathon Clay, Ms Alison Pankhurst and Mr Brian Cross. I am forever grateful to my English language centre teachers and international office for their help, Len Meles, Jenny Home, Mark Cooper Ashleigh, and Samantha.

A special thanks to Dr Nicholas Sadgrove for his support and patience when assisting with editing my PhD and helping with volatile experiment and to Dr. Mary McMillan for her assistance in grammar correction and in PCR work.

A big thankyou must go out to my laboratory work colleagues, Getacho Mohamad Ali, Willem Beyen, Gianoroberto Gentile, Professor Virginia Walker; I have been blessed to have you to work with and to provide helpful assistance to me.

I would like to express my gratitude to my colleague and friend Sarah Cooper, for her invaluable correction of my pronunciation, sharing ideas, using the autoclave and traveling together on field trips and for leisure.

I am especially grateful to Polly Wong for the support and help she showed me from the first day I arrived in Armidale, also to the Congregation of St Peters in particular Steven, John sue book, Marly Sinden, Jenifer Part, Meganand Cliff Ainsoworth, Ruth Thomas, Roth and Rick shnider for all the language, culture and emotional support they showed me.

Finally I would like to express my deepest gratitude to my lovely family in particular to my father in Iraq for their support and their patience while I was studying in Australia.

Abbreviations

bp	base pairs				
DNA	deoxyribonucleic acid				
Kb	kilobase				
MA	marine agar				
MB	marine broth				
LB10	Luria Broth 10 (marine)				
μL	microlitre				
μg	microgram				
mg	milligram				
mL	millilitre				
hr	hour				
rpm	revolution per minunte				
NMSC	National Marine Science Centre				
NSW	New South Wales				
NSWMPA	New South Wales Marine Parks Authority				
PCR	polymerase chain reaction				
rRNA	ribosomal ribonucleic acid				
SIMP	Solitary Islands Marine Park				
SWST	South-West Solitary Island				
HL-ASWS	healthy-looking tissue				
M-ASWS	disease margin				
D-ASWS	disease tissue				
BLAST	basic local alignment search tool				
MS	male stressed				
FS	female stressed				
sp.	specie				
spp.	species				
SUPA	Sydney University Prince Alfred Macromolecular Analyses Centre				
SW	seawater				
UV	ultraviolate				
Amp	ampicillin				
Sm	streptomycin				
Тс	tetracyclin				
Cm	chloramphenicol				

Km	kanamycin
Rif	rifampicin
TLC	thin layer chromatography
X-gal	5-bromo-4-chloro-3-indoyl β-D-galactopyranoside
GC-MS	gas chromatography mass spectrometry
LC-MS	liquid chromatography mass spectrometry
TCBS	thiosulfate-citrate-bile salts-sucrose agar
SDS	sodium dodecyl sulphate
SDS- PAGE	sodium dodecyl sulphate-polyacrilamide gel electrophoresis
gDNA	genomic DNA
М	molar
V	volts

List of figures

Fig 1.1 Main specie	es clusters aquacu	ulture production we	orldwide in 2008		3
Fig 1.2 Lobster life	cycle shows the	larval stages			7
Fig 1.3. Scheme for	selection of bac	teria as biocontrol a	gents in aquaculture.		21
Figure 2.1 T. meser	<i>terina</i> colony dis	splaying typical sign	ns of ASWS		27
Figure 2.2. Extracti	on of Haemolym	ph from Ghost shri	mps		27
Figure 2.3 Typical	V. owensii DY05	pathogen-suppress	ion tests:		31
Figure 2.4Percenta	ge of bacterial i	solates showing w	eak, moderate or str	ong antagonistic ac	tivity
against	V.		owensii	I	OY05
Figure 2.5. Distribu	ition of <i>V. owens</i>	<i>ii</i> DY05-antagonisti	ic isolates originated f	32 from coral species	
Figure 2.6. Distrib	ution of V. owe	nsii DY05-antagon	istic isolates originat	ed from shrimp Tr	vnaea
australiensis					34
Figure 2.7. Coral Is	olates having ant	agonistic activity a	gainst V. owensii DO	Y5	35
Figure 2.8. Shrimp	isolates showing	antagonistic activit	y against V. owensii I	OY05	36
Figure 3.1. Protease	e activities by wl	nole cultures of thre	ee antagonistic strains	on MA plates skim	milk
					57
Figure 3.2 Milk cas	ein hydrolysiszo	ne produced by who	ole cultures over time		58
Figure 3.3. Hydrol	ysis clearing zon	es of skim milk ag	ar by cell-free filtere	d supernatants over	time.
Figure 3.4. Amylas	e- and gelatinase	-like protease activi	ties from whole cultu	res of three pathoge	n-
suppressive bacteria	a			1 0	60
Figure 3.5. Zymogr	am electrophore	tic analyses of vario	us purification steps	of proteases produce	d by
pathogen-suppressi	ve bacteria				61
Figure 3.6 The influ	uence of bacteria	l culture age on extr	acellular protease act	ivity	62
Figure 3.7 Effect of	of pH on protease	e activity of Pseud	oalteromonas sp. stra	in 80, <i>Psychrobacte</i>	er sp.
strain	62	and	Vibrio	sp.	strain
34			65		
Figure 3.8. Extrace	llular proteins see	creted by pathogen-	suppressive bacteria		67

Figure 3.9(a) TLC plates dyed with potassium permanganates and (b) bioautography plate......69

Figure 4.1	. Restricti	on enzyme r	nap of pLC	OF/Km plasmic	1				86
Figure 4.2	. Primers	used for the	rmal asym	metric interlac	ed PCR (T.	AIL-PCR)		91
Figure 4.3 Antimicro	(1) Morj bial activi	phological clity against th	naracteristi e V. owens	cs on MA after <i>ii a</i> fter 24 hr in	24 hr incuncubation	bation pe	riod and (2	2)	98
Figure 4.	4. (a) C	ClustalW2 a	lignment	of nucleotide	e sequence	es of th	e 16SrR1	NA gei	nes of
Peudoalte	romonas	sp. stra	uin 80,	WT, and	the n	nutants	80-Rif2	and	7Km
Figure 4.5	Protease	and amylase	activity of	f inclusive cult	ure				100
Figure	4.6.	Separation	of	non-volatile	small	mol	ecules	on	TLC
plate			101						
Figure 4.7	. Gel anal	ysis of (a) ex	stracted ge	nomic DNA fr	om WT, an	d 80-Rif2	and 7Km	mutant	S
(lanes 2-4	respective	ely) (b) Line	earized pL	OF/KM plasmi	d digested	with restr	iction enz	yme	
BglII									102
Figure 4.8	. (a) Gel	analysis prio	or to Southe	ern blot					103
Figure	4.9.	(a)	Gel	analysis 104	prior	to	South	ern	blot.
Figure 4.1	0. (a) Gel	analysis of o	ligested ge	enomic DNA p	rior to Sout	hern blot.			105
Figure 4.1 mutant	1. Result	s of TAIL-P	CR used to	amplify the fl	anking regi	ions of the	e Tn10 in ′	7km	106
Figure 4.1 Tn10 from	2. Gel ana 1 the muta	alysis of pTZ nt 7Km	C19R candi	dates carrying	the 5.5 kb	SphI frag	ment conta	aining th	ne 106
Figure 4.1	3. Physica	al map show	ing the loc	ation of the Tn	10 inside g	enomic se	equences o	of the m	utant
strain 7Kn	n								107

List of tables

Table 1.1 Different quorum sensing pathways in Gram-positive and Gram-negative bacteria15
Table 1.2 bacterial probionts employed in the larval culture of the aquatic organisms
Table 2.1. The distribution of antagonistic isolates from coral collection identified on the bases of 16S
rRNA gene sequencing
Table 2.2. Antagonistic isolates originated from stressed shrimps
Table 2.3. Isolates from corals exhibiting antimicrobial activity against lobster phyllosoma pathogen
V. owensii DY05
Table 2.4. Isolates from the shrimp (male and female) <i>Trypaea australiensis</i> exhibiting antimicrobial
activity against the lobster phyllosoma pathogen <i>V. owensii</i> DY05
Table 2.5. The isolates selected for future work and their new names following 16S rRNA gene
sequencing
Table 3.1. Identity of tentative pathogen-suppressive bacterial proteins
Table 3.2 Alkene volatiles extracted from filtered supernatant of three studied strains
1 able 4.1 Bacterial strains and plasmids used in this study
Table 4.2 Restriction enzymes used to digest genomic DNA and plasmids 87
Table 4.3. Sequences of specific and arbitrary degenerate primers used for TAIL-PCR
Table 4.4 Reaction parameters for the primary, secondary and tertiary TAIL-PCR
Table 4.5. Alkene volatiles extracted from filtered supernatant of the <i>Pseudoalteromonas</i> sp. strain 80
and the mutants 80-Rif2 and
7Km101
Table 4.6. Proteins with high homology to sequences interrupted by Tn10 and rescued from

Pseudoalteromonas mutant 7Km......107