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ABSTRACT

The nutrition, digestive physiology and

metabolism of potoroine marsupials

THE nutrition, digestive physiology and metabolism of potoroine marsupials, the
smallest macropodoids, was studied in one species from each of the extant genera.
Those studied, all of which were captive, included Aepyprymnus rufescens (rufous rat-
kangaroo), Potorous tridactylus (long-nosed potoroo) and Bettongia penicillata (brush-
tailed bettong). Although several studies have been made of different aspects of
potoroine marsupials, this is the first pertaining to an integrated study of their nutrition,
metabolism and digestive physiology. It was, therefore, a general study. Its primary
aim was to provide a platform for future research on more specific subjects.

A discussion of herbivory, with particular emphasis on body size and
gastrointestinal function, suggested that potoroine marsupials are concentrate-selecting
herbivores. This thesis is supported by the few studies of potoroine feeding ecology,
which have identified hypogeous fungi, roots, tubers, seeds, gum and invertebrates as
important food items. Thus, a standard diet composed mainly of cereals supplemented
with oaten chaff was developed for maintenance of the animals. Potoroines selected
this diet in preference to a lower energy lucerne-based formulation.

Most experiments were conducted with maize-oat hull diets that contained about
1% nitrogen. This was enough to maintain positive nitrogen balance in animals with
average food intakes. These nitrogen requirements were determined with A. rufescens

fed diets containing three levels of nitrogen and two levels of plant-cell walls.
Nitrogen balance was not affected by the level of dietary fibre. Consequently, the data
were pooled to give a truly digestible nitrogen requirement of 200 mg.kg- 0.75 .d-1 for
animals fed diets with neutral-detergent fibre levels between 100 and 300 g per kg dry
matter. Nitrogen balance data from other experiments indicated that P. tridactylus and
B. penicillata have nitrogen requirements similar to those of A. rufescens. A
comparison of the present results with those published for eutherian and other
metatherian species showed that, as expected, the nitrogen requirements of potoroine
marsupials are markedly less than those of most eutherians. Less expected was the
finding that the maintenance nitrogen requirements of potoroine marsupials are similar
to those of some arid-zone macropodids, such as Macropus robustus erubescens (euro).
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The relationships between the various urea kinetic parameters suggested that urea
metabolism in potoroine marsupials is similar to that reported in other species. Because
the studies were conducted using diets that later proved detrimental to microbial
metabolism, it was concluded that urea recycling was probably of little nutritional
value. Thus, the low nitrogen requirements of potoroine marsupials reported in Chapter
5 are not necessarily linked to urea metabolism.

No differences in the kinetics of urea metabolism were found between A. rufescens

fed lucerne-based diets with differing levels of cereal. This was not surprising because
cellulolytic activity, as indicated by cell-wall digestibility, was similar in the two diets.

Severe water restriction significantly increased all urea kinetic parameters — for
example, the rates of synthesis and degradation. This reflects the link between urea
conservation and water conservation. In potoroine marsupials with high levels of
microbial metabolism, urea recycling is probably important for providing a continuous
supply of nitrogen to the gut, so that digestion continues during the resting phase.

The passage of digesta through the potoroine gut was investigated with the dual
marker system of 103Ru-Phenanthroline, which marks the particulate matter, and 51Cr-

EDTA, a solute marker. The similar mean retention times (MRT) (ca 25-30 hours) of
lo3Ru-P and 51Cr-EDTA in the gastrointestinal tracts of potoroine marsupials contrasts
with the marked separation of digesta phases in macropodids. The different patterns of
digesta flow, in the two groups, were explained by differences in foregut anatomy. No
significant differences were found between A. rufescens, P. tridactylus or B. penicillata

for any parameter of digesta passage. Because MRT were often between 24 and 30
hours, it was suggested that the nocturnal habit of potoroine marsupials might be an
important regulator of digesta flow. Digesta passage was not affected by the level of
dietary plant-cell wall constituents, or the level of gut fill when the markers were
administered. It is suggested that future studies examine the effects of particle size, the
transit of low-concentrate diets and the possibility that, although solutes and particles
have similar MRT, they flow through the gut independently.

A series of three experiments was conducted to investigate the relationships
between digestibility, the source of dietary plant-cell-wall constituents and the ratio of
grain to plant-cell-wall constituents in potoroine diets. Potoroine marsupials digested a
small proportion only (10-20%) of the structural carbohydrates in diets containing
maize and up to 50% oat hulls. Furthermore, this digestion was associated with much
variation, both within- and between-animals. Potoroines ate more in response to the
nutrient-diluting effect of the oat hulls, but this did not affect NDF digestibility. In
contrast to their performance on the maize-oat hull diets, potoroines digested 60% of the
NDF in a lucerne-based diet containing 50% NDF. However, the digestibility of NDF
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in a less fibrous (33% NDF) lucerne-based diet was only 30%. It was concluded that

the foregut environment of potoroine marsupials is extremely labile and that cellulolysis

is related inversely to the level of soluble carbohydrates in the diet. The inhibition of

cellulolysis by soluble carbohydrates was confirmed by low pH (4.3), low short-chain

fatty-acid concentrations, and low in vitro production rates of short-chain fatty-acids in

forestomach digesta taken from A. rufescens and P. tridactylus fed cereal-based diets.

By comparison, the values for these parameters in free-living A. rufescens were similar

to those reported in the literature for several foregut- and hindgut-fermenting

herbivores.

Water consumption was measured in all experiments. Also, flux was measured in

A. rufescens, P. tridactylus and B. penicillata housed in outdoor enclosures, and in free-

living A. rufescens. Potoroine marsupials drank more water when the levels of nitrogen

and cell-wall constituents in maize-oat hull diets were increased. However, potoroines

drank most water when fed lucerne-based diets. When measurements were made in

metabolism cages, P. tridactylus consistently drank more water per unit metabolic body

mass than did B. penicillata or A. rufescens. The smaller species had higher evaporative

water losses — attributed to their higher activity. In the outdoor enclosures the water-

turnover rates were similar between species and seasons. All three species, when

dehydrated, tolerated losses of body mass of about 20%. Under these conditions, their

constant PCV, their ability to concentrate urine and produce dry faeces, and their ability

to rehydrate rapidly, all suggest some drought tolerance. Lactating animals, captive or

wild, did not drink more than non-lactating animals. Free-living A. rufescens had

similar WTR in summer and winter. However WTR increased during periods of rain.

Daytime and night-time measurements of fasting heat production were made on A.

rufescens, P. tridactylus and B. penicillata starved for 6-54 hours. RQ was similar in all

species (0.75-0.80). The night-time activity of P. tridactylus and B. penicillata doubled

their FHP; that of A. rufescens was increased by only 25%. Starvation reduced RQ but

did not affect heat production. The minimum mean FHP for each species was 11-20%

lower than the mean value for eutherians.

The maintenance requirement for A. rufescens (340 kJ.kg-0.75 .d-1) was about 25%

lower than values reported normally for eutherian stock. The corresponding

maintenance requirements for P. tridactylus and B. penicillata were similar to the

energy needs of eutherians. The differences between potoroine species were again

explained by the higher activity of the smaller species.

The energy expenditure by female A. rufescens was measured before lactation and

at specific times during the development of pouch young. Simultaneous analyses of

milk composition were made also. In the week preceding pouch vacation, the combined



heat production of the female A. rufescens and her young were about 20% higher than

that of the barren female. The changes in milk composition were similar to those

reported in other metatherians. It was concluded that the long lactation of A. rufescens

serves to minimize nutrient output at any one time. Therefore, the lactational strategy is

ideally suited to an unpredictable environment.

The metabolic rate of free-living A. rufescens was found to be 650 kJ.kg-0.75 .d-1 or

2.9 times the lowest metabolic rate of fasting animals determined in Section 11.1. The

FMR was similar in winter and summer even though the difference in mean minimum

temperatures between the two seasons was 20°C. The DLW method did not detect any

differences in FMR between males and females. A poor understanding of the diet and

the behavioural ecology of Aepyprymnus makes it difficult to explain the similarities

between sexes and seasons.

The present study found very few differences in digestive physiology or

metabolism between A. rufescens, P. tridactylus or B. penicillata. It was concluded that

potoroine marsupials are extremely flexible. Although there are few potoroine species

and their variety has changed little since the Miocene era, the diversity of the group, as

indicated by the different habitats they once occupied, is remarkable.

Unfortunately, in view of the fact that Australia has one of the highest mammalian

extinction-rates in recent times, and that its unique fauna still holds a very low profile,

the future of free-living potoroine marsupials is very limited.

000OO000
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Scientific Names

In this thesis many mammals are mentioned that might have scientific names that

are unfamiliar to the reader. Therefore, the english common name is given when the

mammal is first mentioned but, thereafter, the scientific name only is used. Domesticated

species — for example, sheep, cow, goat — are referred to by their common names only.

The following table gives a complete list of scientific and common names used in the

thesis. For ease of reference they are listed alphabetically within their classes or sub-

classes. The terms metatherian and marsupial are used interchangeably throughout the

thesis.

Table P1 Scientific and common names of mammals used in this thesis

Scientific name
	 Common name

Metatherians

Aepyprymnus rufescens
Antechinus swainsonii
Bettongia gaimardi
Bettongia leseur
Bettongia penicillata
Bettongia tropica
Caloprymnus campestris
Dasycercus cristicauda
Dasyuroides byrnei
Dasyurus maculatus
Dasyurus viverrinus
Gymnobelideus leadbeateri
Hypsipryrnnodon moschatus
Isoodon macrourus
Lagorchestes spp
Macropus agilis
Macropus eugenii
Macropus fuliginosus
Macropus giganteus
Macropus parma
Macropus robustus erubescens
Macropus robustus robustus
Macropus rufogriseus
Macropus rufus
Macrotis lagotis
Notomys spp
Odocoileus virginianus
Onychogalea spp
Perameles nasuta
Petauroides volans
Petaurus breviceps
Petrogale concinna
Petrogale inornata
Petrogale lateralis
Phascolarctos cinereus
Potorous long ip es
Potorous platyops

rufous rat-kangaroo
dusky antechinus
Tasmanian bettong
burrowing bettong
brush-tailed bettong
Queensland bettong
desert rat-kangaroo
mulgara
kowari
spotted-tailed quoll
eastern quoll
Leadbeater's possum
musky rat-kangaroo
northern brown bandicoot
hare-wallabies
agile wallaby
tammar wallaby
western grey kangaroo
eastern grey kangaroo
parma wallaby
euro
eastern wallaroo
red-necked wallaby
red kangaroo
bilby
hopping mice
Virginian opossum
nailtail wallabies
long-nosed bandicoot
greater glider
sugar glider
nabarlek
unadorned rock-wallaby
black-footed rock-wallaby
koala
long-footed potoroo
broad-faced potoroo



Potorous tridactylus
Pseudocheirus peregrinus
Sarcophilus harrisii
Setonix brachyurus
Sminthopsis crassicaudata
Thylogale stigmatica
Thylogale thetis
Vombatus spp
Wallabia bicolor

Eutherians

Aepycerus melampus
Ailuropoda melanoleuca
Alces alces
Alouatta palliata
Antidorcas marsupialis
Antilope cervicapra
Bison bonasus
Bradypus tridactylus
Bradypus variegatus
Camelus dromedarius
Canis familiaris dingo
Cervus elaphus
Choleopus didactylus
Connochaetes taurinus
Dasyprocta spp
Dendrohyrax spp
Dipodomys deserti
Equus asinus africanus
Gazella granti
Gazella spekei
Gazella thompsoni
Giraffa camelopardalis
Halichoerus grypus
Hippopotamus amphibius
Hydrochoerus hydrochaeris
Hydropotes inerncis
Kobus ellipsiprymnus
Lama guanicoe pacos
Lepus timidus
Litocranius walleri
Loxodonta africana
Madoqua kirki
Microtus pennsylvanicus
Muntiacus reevesi
Nesotragus moschatus
Oryctolagus cuniculus
Ourebia oribi
Procavia habessinica
Rangifer tarandus
Rattus rattus
Sciurus carolinensis
Sylvicapra grimmia
Taurotragus oryx

Ayes
Ninox strenua

long-nosed potoroo
common ringtail possum
Tasmanian devil
quokka
fat-tailed dunnart
red-legged pademelon
red-necked pademelon
wombats
swamp wallaby

impala antelope
giant panda
moose
howler monkey
springbok
blackbuck
European bison
three-toed sloth
three-toed sloth
dromedary
dingo
red deer
two-toed sloth
wildebeest
kongoni
tree hyrax
desert kangaroo-rat
African donkey
Grant's gazelle
Speke's gazelle
Thompson's gazelle
giraffe
grey seal
hippopotamus
capybara
Chinese water deer
waterbuck
alpaca
snowshoe hare
gerenuk
African elephant
Kirk's dikdik
meadow vole
Reeve's muntjac
suni
rabbit
oribi
rock hyrax
reindeer, caribou
black rat
grey squirrel
grey duiker
eland antelope

powerful owl

xv
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