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Abstract

We consider two cases of the asymptotically flat scalar-flat Yamabe problem on

a non-compact manifold with inner boundary in dimension n ≥ 3. First, following

arguments of Cantor and Brill in the compact case, we show that given an asymptot-

ically flat metric g, there is a conformally equivalent asymptotically flat scalar-flat

metric that agrees with g on the boundary. We then replace the metric bound-

ary condition with a condition on the mean curvature: Given a function f on the

boundary that is not too large, we show that there is an asymptotically flat scalar-

flat metric, conformally equivalent to g whose boundary mean curvature is given by

f . The latter case involves solving an elliptic PDE with critical exponent using the

method of sub- and supersolutions. Both results require the usual assumption that

the Sobolev quotient is positive.

1 Introduction

The Yamabe problem, asked in its original form, for which compact Riemannian man-

ifolds (M, g) does there exist a metric conformal to g with constant scalar curvature
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Stephen McCormick 1 INTRODUCTION

[17, 18]. Since the problem was first posed, it has branched out into several related

problems; prescribed scalar curvature [11], the case where M has a boundary[9], or is

non-compact [7], non-compact with boundary [15], constant mean curvature boundary

[8], prescription of boundary mean curvature [10], and others (see [4, 12] and references

therein).

The non-compact case seems to have only recently been receiving an amount of

attention due to its relation to the Einstein constraint equations in general relativity.

The Yamabe problem on non-compact manifolds is intimately connected to the con-

formal method of solving the constraint equations (see, for example, [3, 13]; in the

time-symmetric case, the constraint equations simply reduce to the prescribed scalar

curvature equation. Indeed, we are also motivated to study the Yamabe problem on

an asymptotically flat manifold with boundary due to this connection to the constraint

equations; however, rather than seeking to parametrise the space of solutions, we are

motivated by the problem of quasilocal mass (see [16] for an in-depth review of the

problem). Bartnik’s quasilocal mass gives the mass of a bounded region as the infimum

of the ADM mass, over a space of admissible asymptotically flat extensions to the given

region [2]. It is expected that this infimum will be achieved by a static metric that is

continuous across the boundary and induces the same mean curvature of the boundary,

although it is not expected that this solution will be differentiable across the boundary.

For this reason, one is interested in finding scalar-flat asymptotically flat solutions with

boundary, such that the metric and mean curvature are both fixed on the boundary. In

the literature, this boundary data is often called Bartnik data, or Bartnik’s geometric

boundary data.

Unfortunately, the Yamabe problem with both of these boundary conditions imposed

is overdetermined, so we cannot expect to use this method to find vacuum solutions with

prescribed Bartnik boundary data. However, it does motivate the following two results.

We demonstrate the existence of scalar-flat metrics in a fixed conformal class satisfying

either of these boundary conditions separately, but not both simultaneously. In the

following two Propositions, we assume (M, g) is an asymptotically flat manifold with

inner boundary and positive Sobolev quotient.

Proposition (See Corollary 3.4 for formal statement). There exists an asymptotically

flat scalar-flat metric on M, conformal to g and agreeing with g on ∂M.

Proposition (See Corollary 4.3 for formal statement). There is a positive function ρ on

∂M, such that for any function f < ρ on ∂M, there exists an asymptotically flat scalar-

flat metric on M, conformal to g, such that f is the mean curvature of the boundary

with respect to the outer unit normal.
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Stephen McCormick 2 THE SETUP

We prove the first of these results following an argument of Cantor and Brill [7],

where they prove the analogous result in the compact case. The second of these results

uses the method of sub- and supersolutions, and relies heavily on excellent previous work

of Maxwell where asymptotically flat solutions to the Einstein constraint equations with

apparent horizon boundary conditions are constructed [13]. This second result is also

related to previous work by Schwartz [15], which considered the scalar-flat Yamabe

problem outside of a ball, however no assumptions about asymptotic flatness are made

in this case considered by Schwartz.

2 The setup

Throughout, we use the framework of weighted Sobolev spaces to control the asymp-

totics. In this Section we recall some properties of the Laplace-Beltrami operator between

these weighted spaces on an asymptotically flat manifold with boundary. Let M be a

smooth manifold with boundary such that M minus a compact set K containing the

boundary ∂M, is diffeomorphic to Rn minus a closed ball. Denote this diffeomorphism

by φ : M \ K → Rn \ B1(0). On M, we fix some smooth background metric g̊ that

agrees with φ∗(δ), the pullback of the Euclidean metric, onM\K. We also fix a smooth

function r(x) on M such that r(x) ≥ 1 and r(x) = |φ(x)| on M\K. We now recall the

weighted Lebesgue and Sobolev norms:

‖u‖p,δ =


(∫
M |u|

p r−δp−ndµ0

)1/p
, p <∞,

ess sup(r−δ|u|), p =∞,
(2.1)

‖u‖k,p,δ =

k∑
j=0

‖∇̊ju‖p,δ−j , (2.2)

where ◦ refers to quantities defined by g̊. The spaces Lpδ(M) and W k,p
δ (M) are defined

as the completion of the smooth functions with bounded support on M with respect

to these norms, respectively. As usual, we use the notation Hk
δ = W k,2

δ . We follow the

convention of [1], where δ explicitly indicates the asymptotics; that is, if u ∈W k,p
δ then

u = o(rδ). Denote by W
k,p
δ (M), the completion of the compactly supported functions on

M\ ∂M with respect to the W k,p
δ norm. That is, W

k,p
δ (M) is a space of functions that

vanish on the the boundary in the trace sense, along with their first k−1 derivatives. We

will generally omit reference to M, and simply write W k,p
δ for the sake of presentation.

We say that (M, g) is an asymptotically flat manifold if (g− g̊) ∈ Hk
5/2−n with k > n/2,

which ensures g is Hölder continuous via the Sobolev-Morrey embedding. It is well-
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known that the usual Sobolev-type inequalities have weighted analogues, which we use

throughout – the reader is referred to Theorem 1.2 of [1] for an explicit statement of

many of these inequalities.

It is also well-known that the Laplace-Beltrami operator is an isomorphism between

these weighted spaces in the case where M has no boundary. This is also true in the

case considered here, when Dirichlet boundary conditions are imposed. In particular,

we make use of the following results (cf. [14]).

Lemma 2.1. Let M be an asymptotically flat manifold with a compact interior boundary.

For any δ ∈ (2− n, 0) and u ∈W 2,2
δ ∩W 1,2

δ , we have

‖u‖2,2,δ ≤ C‖∆gu‖2,δ−2. (2.3)

Furthermore, for any δ ∈ R and u ∈W 2,2
δ , we have

‖u‖2,2,δ ≤ C
(
‖∆gu‖2,δ−2 + ‖u‖2,δ

)
. (2.4)

Proposition 2.2. For any δ ∈ (2− n, 0), ∆g : W
1,2
δ ∩W

2,2
δ → L2

δ−2 is an isomorphism.

We now use Lemma 2.1 to establish the following straightforward corollary.

Corollary 2.3. Assume δ ∈ (2 − n, 0) and f ∈ Ln−2−ε, with ε > 0, then the operator

L = ∆g + f : W
1,2
δ ∩W

2,2
δ → L2

δ−2 has finite dimensional kernel and closed range.

Proof. Making use of (2.3), and the weighted Hölder, Sobolev and interpolation inequal-

ities, we have

‖u‖2,2,δ ≤ C‖Lu‖2,δ−2 + ‖fu‖2,δ−2
≤ C(‖Lu‖2,δ−2 + ‖f‖n,−2−ε‖u‖2n/(n−2),δ+ε)

≤ C(‖Lu‖2,δ−2 + ‖u‖1,2,δ+ε)

≤ C(‖Lu‖2,δ−2 + ‖u‖2,δ+ε) +
1

2
‖u‖2,2,δ+ε

≤ C(‖Lu‖2,δ−2 + ‖u‖2,δ+ε), (2.5)

where, here and throughout, we permit the constant C to change from line to line. It

then follows by a standard argument (see, for example, the proof of Theorem 1.10 in

[1]) that L has finite dimensional kernel and closed range. Let ui be a sequence in

ker(L) satisfying ‖ui‖2,2,δ ≤ 1; that is, a sequence in the closed unit ball in ker(L).

By the weighted Rellich compactness theorem, and passing to a subsequence, we have
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ui → u in L2
δ+ε. Then by the estimate above, we conclude ui also converges in W 2,2

δ ,

and it follows that ker(L) is finite dimensional. It follows that the domain splits as

W
1,2
δ ∩W

2,2
δ = ker(L)⊕K, where K is some closed complementary subspace. To prove

that ran(L) is closed, we require the following estimate for all u ∈ K,

‖u‖2,2,δ ≤ C‖Lu‖2,δ−2, (2.6)

which we prove by contradiction. If (2.6) were not true, there must exist a sequence ui

satisfying ‖ui‖2,2,δ = 1 while ‖Lui‖2,δ−2 → 0. But again, (2.5) and the weighted Rellich

compactness theorem imply ui → u in W 2,2
δ , passing to a subsequence if necessary.

Since K is closed, we have u ∈ K, and therefore u is a nonzero element of both K and

ker(L), which is a contradiction. It follows that (2.6) holds, and therefore for any Cauchy

sequence in the range vi = Lui, ui is also Cauchy and therefore converges in W 2,2
δ . By

continuity, vi converges and therefore ran(L) is closed.

Note that the regularity of f is almost certainly not optimal, however it suffices for

our purposes here.

3 Dirichlet boundary conditions

We are now ready to discuss the asymptotically flat scalar-flat Yamabe problem, with

Dirichlet boundary conditions on the metric. Given some fixed metric g, consider con-

formally related metrics of the form g̃ = φ4/(n−2)g. The problem of prescribing scalar

curvature R̃ := R(g̃) = f is equivalent to solving{
4(n−1)
n−2 ∆gφ−Rφ+ φ(n+2)/(n−2)f = 0

φ > 0
. (3.1)

The Yamabe problem is historically concerned with the case where f is constant, and

the case of particular interest here is the case where R̃ = f ≡ 0. Recall, asymptotically

flat scalar-flat 3-manifolds correspond to initial data for the vacuum Einstein equations.

Note that this case is significantly simpler than the general case as it removes the problem
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of the critical Sobolev exponent. The system under consideration in this Section is
4(n−1)
n−2 ∆gφ−Rφ = 0 on M

φ > 0

φ− 1 = o(r5/2−n)

φ ≡ 1 on ∂M

(3.2)

where g is assumed to be asymptotically flat. The argument we use here follows that

of Cantor and Brill [7] in the case where no boundary is present. It has been noted by

Maxwell [13] that the Cantor-Brill proof has a minor error, so we are careful avoid this

error here.

Recall now, the Sobolev quotient, given by

Q(M, g) = inf
f∈C∞c

∫
M |∇f |

2 + n−2
4(n−1)Rf

2dµ

‖f‖2
L
2n/(n−2)

, (3.3)

which is conformally invariant, and intimately connected with the solvability of the

Yamabe problem.

Lemma 3.1. Let (M, g) be an asymptotically flat manifold with Q(M, g) > 0. For each

λ ∈ [0, 1], the operator Aλ = 4(n−1)
n−2 ∆g − λR is injective on u ∈ H2

1−n
2
∩H1

1−n
2

.

Proof. Suppose u ∈ H2
1−n

2
∩ H1

1−n
2

satisfies Aλu = 0, and let um ∈ C
∞
c be a sequence

converging to u in H
1
1−n

2
. We have

∫
M

(
4(n− 1)

n− 2
un∆gu− λRumu)dµ = 0.

Integrating by parts,

−4(n− 1)

n− 2

∫
M
∇ium∇

iu dµ = λ

∫
M
Rumu dµ.

From the weighted Hölder and Sobolev inequalities, we have

|
∫
M
∇iv∇

iu dµ| ≤ C‖v‖1,2,1−n/2‖u‖1,2,1−n/2
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and

|
∫
M
Rvudµ| ≤ C‖R‖n/2,−2‖v‖2n/(n−2),1−n/2‖u‖2n/(n−2),1−n/2

≤ C‖R‖n/2,−2‖v‖1,2,1−n/2‖u‖1,2,1−n/2,

noting that ‖R‖n/2,−2 is finite by assumption of asymptotic flatness. It follows that the

maps, v 7→
∫
M∇i(v)∇i(u) dµ and v 7→

∫
MRuv dµ are continuous. Passing to the limit

we conclude

−4(n− 1)

n− 2

∫
M
|∇u|2 dµ = λ

∫
M
Ru2 dµ.

We have already that A0 is an isomorphism, so we may assume λ ∈ (0, 1]. If u 6= 0, we

have
4(n− 1)

λ(n− 2)

∫
M
|∇u|2 dµ = −

∫
M
Ru2 dµ <

4(n− 1)

n− 2

∫
M
|∇u|2 dµ

from the assumption that Q(M, g) > 0. This cannot hold for λ ≤ 1 so we therefore

conclude u ≡ 0 and therefore Aλ is an injection.

We next make use of the following well-known lemma (cf. [6, 7]).

Lemma 3.2. Let E,F be Banach spaces and suppose for λ ∈ [0, 1], Lλ : E → F is a

continuous family of bounded linear operators. If L0 is an isomorphism and each Lλ is

an injection with closed range, then each Lλ is in fact an isomorphism.

From this, we establish:

Proposition 3.3. Assume (g− g̊) ∈ Hk
5/2−n for some k > n+2, and Q(M, g) > 0, then

there exists φ with (φ− 1) ∈ H2
5/2−n ∩H

1
5/2−n satisfying (3.2).

Proof. By assumption, R ∈ Ln1/2−n, so Aλ is an injection and by Corollary 2.3, it has

closed range; that is, by Lemma 3.2 we have that A1, in particular, is an isomorphism.

Now let v = φ− 1 and note that (3.2) requires

4(n− 1)

n− 2
∆gv −Rv = R. (3.4)

Since A1 is an isomorphism, we have a unique solution v ∈ (H2
5/2−n ∩H

1
5/2−n). Further-

more, standard elliptic theory implies that v is C1,α.

It remains to be shown that φ is positive, which follows identically from the Cantor-

Brill argument, and essentially is as follows. For each λ ∈ [0, 1], there exists a unique φλ

with (φλ−1) ∈ (H2
5/2−n∩H

1
5/2−n∩C

1,α
loc ) such that Aλφλ = 0. Furthermore, φλ depends

7
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continuously on λ in the C0 topology. Since φ0 ≡ 1, if there is any φλ that is not strictly

positive, then there must be a φλ0 ≥ 0 and x0 ∈ M \ ∂M such that φλ0(x0) = 0. This

then implies ∇φλ0(x0) = 0, and from (3.4) we have ∆gφλ0(x0) = 0; however, a standard

result implies this is impossible (cf. [5], Theorem 1.7 and the proof of Theorem 2.3).

From which we have the following immediate Corollary.

Corollary 3.4. Assume (g − g̊) ∈ Hk
5/2−n for some k > n+ 2, and Q(M, g) > 0, then

there exists an asymptotically flat scalat-flat metric, conformal to g, that agrees with g

on ∂M.

Remark 3.5. The assumption k > n+2 is certainly not sharp here, however this allows

us to avoid complications by simply quoting standard elliptic theory.

4 Prescribed boundary mean curvature

In this Section, we give conditions under which a function on ∂M can be realised as

the mean curvature of an asymptotically flat scalar-flat metric in a prescribed confor-

mal class. While the scalar curvature transforms according to (3.1) under a conformal

transformation g̃ = u4/(n−2)g, the mean curvature of ∂M transforms according to

H̃ = u−n/(n−2)
(

2

n− 2

∂u

∂η
+Hu

)
; (4.1)

where η is the outward unit normal, pointing away from infinity, and H is the mean

curvature with respect to η. This problem can be simplified greatly by recalling work

of Maxwell [13] where asymptotically flat solutions to the Einstein constraints with

apparent horizon boundary conditions are constructed. In particular, it is shown that

the positivity of the Yamabe constant is a sufficient and necessary condition to ensure

the existence of a scalar-flat, asymptotically flat metric with minimal surface boundary

in a given conformal class. That is, without loss of generality we can assume both R

and H vanish. The problem of finding a scalar-flat asymptotically flat metric conformal

to g, with boundary mean curvature given by some f , then reduces to the following:
∆gu = 0 on M

∂u
∂η −

n−2
2 fun/(n−2) = 0 on ∂M
u > 0

. (4.2)

We absorb the constant n−2
2 into f , and consider the more general problem

8



Stephen McCormick 4 PRESCRIBED BOUNDARY MEAN CURVATURE


∆gu = 0 on M

∂u
∂η − fu

β = 0 on ∂M
u > 0

, (4.3)

for any β ∈ R.

The method of sub- and supersolutions has been particularly fruitful in considering

the Yamabe problem on non-compact domains [13, 15], and it once again finds use here.

The particular theorem regarding sub- and supersolutions that we use here is again due

to Maxwell; we state a special case of this result below, which suffices for our purposes.

Proposition 4.1 (Proposition 21 of [13]). Suppose (g − g̊) ∈W k,p
ρ with k ≥ 2, p > n/k

and ρ < 0. Further suppose that f ∈ W
k−1− 1

p
,p

(∂M). Then if u−, u+ ∈ W k,p
δ , for

δ ∈ (2 − n, 0), are a subsolution and a supersolution of (4.3) respectively, there is a

solution u to (4.3) satisfying u− ≤ u ≤ u+.

As usual, a subsolution is taken to be u− satisfying{
∆gu ≥ 0 on M

∂u
∂η − fu

β ≤ 0 on ∂M
,

while supersolution refers to the case where the inequalities are reversed.

We establish the following.

Proposition 4.2. Let (M, g) be an asymptotically flat manifold, where (g− g̊) ∈ Hk
5/2−n

with k > n, and let f ∈ Hk− 3
2 (∂M) satisfy f ≤ 0. Then the problem (4.3) has a

solution. Furthermore, if β > 1 then there exists a positive function, ρ, on ∂M such

that the problem (4.3) has a solution for any f < ρ.

Proof. It follows from Proposition 2.2 that there exists v satisfying ∆gv = 0, that is

identically equal to 1 on ∂M, and v ∈ H2
δ for all δ ∈ (2 − n, 0). Standard elliptic

theory again implies v is C1,α and furthermore, note that we have v = O(r2−n). By the

maximum principle and the Hopf lemma, 0 < v ≤ 1 onM and 0 < ∂v
∂η on ∂M. We now

let u− = 1− v + αv for some α > 0, noting that ∆gu− = 0 and we have

∂u−
∂η
− fuβ− = −∂v

∂η
+ α

∂v

∂η
− fαβ =

∂v

∂η
(α− 1)− fαβ (4.4)

on ∂M. Since ∂v
∂η > 0, we have

∂u−
∂η − fu

β
− < 0 on ∂M for sufficiently small α. Further-

more, we have u− → 1 at infinity, and the maximum principle gives α ≤ u− < 1. That

1
Proposition 3.5 of arXiv version, which uses a different numbering convention.
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is, u− is a subsolution to 4.3.

To find a supersolution, we let u+ be of the same form as u− above, however we

will choose a different α. It is clear from (4.4) that we have a supersolution if there

exists an α satisfying f < ∂v
∂η (α − 1)α−β. This is certainly true if f < 0 as we may

simply choose α > 1. If we now impose the condition β > 1, we find the maximum

occurs when α = β
β−1 ; that is, for β > 1 a supersolution exists provided that f < ρ :=

∂v
∂η ( 1

β−1)1−ββ−β. Once more by the maximum principle, we have 1 < u+ ≤ α, and

therefore 0 < u− ≤ u+.

From this, we have the following immediate corollary.

Corollary 4.3. Let (M, g) satisfy the conditions of Proposition 4.2, then there exists a

positive function ρ on ∂M such that for any f ∈ Hk− 3
2 (∂M) satisfying f < ρ, there is a

scalar-flat, asymptotically flat metric g̃, conformal to g, whose boundary mean curvature

is f .
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