
Chapter 5. Modelling the Utilisation of Manure and Effluent

Modelling is a method of summarising the understanding of the way a system works (EUNITA Working

Group H 1997). The use of models of an agro-ecosystem has evolved from a purely academic pursuit to

their practical application in land use planning, setting environmental standards (Watts & McKay 1986)

and estimating the actual and potential risk of agricultural activities (Ackermann & Schlauderer 1997;

Gaunt et al. 1997; Greenwood et al. 1998; Jorgensen 1997; Karm et al. 1995; Lewis et al. 1994a; Lewis et

al. 1994b; Parsons et al. 1995; Shaffer 1985; Thornley & Johnson 1990; Tiscareno-Lopez et al. 1994;

Watts & McKay 1986).

The need to balance production and environmental impacts is a common concern in all agro-ecosystems

(EUNITA Working Group H 1997). This balance can be obtained through an understanding of the

mechanisms and processes that can be manipulated to maximise production and minimise environmental

impacts. Experiments or a model of the system under study are two alternatives that can help develop an

understanding of the system. This chapter describes the Effluent and Manure Utilisation (EMU) model

that was developed to contribute to the current understanding of an agro-ecosystem utilising the nutrients

contained in effluent and manure.

Time, space and money are barriers to using real experiments to investigate the effects of agricultural

inputs on agro-ecosystems (Attonaty et al. 1997; Mirschel et al. 1997; Myers 1995). Simulation models

can be designed to encourage exploration of a system (Gaunt et al. 1997; Jorgensen 1997; Parsons et al.

1995; Stockle 1996b) and can be used to carry out virtual experiments of varying management strategies

(Attonaty et al. 1997; Cros et al. 1997; Mandian & Gallichand 1995; Mirschel et al. 1997; Stockle 1996b).

These virtual experiments can be carried out at lower costs and in shorter time frames than classical

experiments. Also complex environmental systems can be represented by the use of appropriate simulation

models to produce meaningful and reliable simulated data (Gaunt et al. 1997; Marinova-Garvanska &

Marinov 1997; Myers 1995; Wollin et al. 1982).

There are four key considerations when developing a model: the overall objectives of the modelling

exercise, access to expertise, available data and available resources (Grayson & Chiew 1994). The stages

of model development should incorporate these considerations and follow the sequence provided by

systems research: conception, evaluation and application of the model (Gaunt et al. 1997).

5.1 Conceptualising the Model

There is a need for agro-ecosystem models to become holistic and developed to answer complex questions

(Langensiepen 1998). Obtaining the answers to these complex questions using traditional experiments is

time consuming and there is usually a limit on the number of different treatments that can be investigated

simultaneously. Holistic models that consider the environment being investigated, such as the manure and

utilisation area, and also the external environment, can explore the effects of different management

practices. A holistic model should also deal with integrated production issues that are a combination of
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agriculture, environment and socio-economic considerations (Langensiepen 1998). However, this is not a

trivial exercise (Attonaty et al. 1997) and there is a lack of clear, readily available guidelines on

appropriate modelling strategies to employ in developing simulation models of agro-ecosystems (Gaunt et

al. 1997).

A literature review by this author (Appendix B) found some models simulate the utilisation of manure

(Schmitt et al. 1997; Thompson et al. 1997), some that look at the irrigation of effluent (Hu 1995, MEDLI

1997), while others are design tools (Hu 1995, MEDLI 1997; Watts & McKay 1986, Lott 1998). Very few

are focused on sustainable management of the utilisation of both manure and effluent (Lewis et al. 1997;

Sri Ranjan et al. 1995), which is a requirement of this study.

Crop growth simulation models, weather generators, geographical information systems, and risk

assessment economic models are now emerging as the tools able to assess the sustainability of a system

(Stockle 1996b). These tools are necessary for developing a predictive ability in relation to the

sustainability of an agricultural system (Syers & Craswell 1995). Given the heterogeneous nature of the

systems being investigated, especially the soil system, there is a need to base these tools on a stochastic

approach rather than a deterministic approach (Iskander 1981).

5.2 Study Purpose and Intended Use of the Model

One of the essential components to incorporate in the model is the ability to observe long term trends as a

function of the stochastic variables that drive the system. In a stochastic system, the future is distinguished

from the past through uncertainty (Hansen & Jones 1996). Therefore, models should not necessarily

attempt to provide a definitive answer to the questions posed, but rather produce probabilities of the likely

outcomes.

By evaluating the fate of nutrients within the utilisation area, decision-makers can observe the relative size

of nutrient pools at various points in the system (Eigenberg et al. 1995). A systems framework can be used

to provide the tool to evaluate the fate of nutrients and will further aid in the identification of gaps in the

existing knowledge base and establish the direction future research should take (Eigenberg et al. 1995;

Kruseman et al. 1996; Park & Seaton 1996).

An important requirement of the model developed in this study is to provide a practical tool for the

evaluation of sustainability by predicting nutrient output pathways using data collected as part of a routine

monitoring program (Maul & Koch 1996; Sriskandarajah & Dignam 1992). Part of evaluating

sustainability is tracking changes through time, which requires a reasonable baseline dataset.

5.3 Objectives of Modelling the Utilisation Area

There are three main objectives of the modelling phase of this project. The first objective of the model is

to develop an understanding of the nutrient fluxes in and surrounding an agro-ecosystem that is utilising
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manure and effluent as a production input, by investigating the output pathways of N, P, Na, K, Ca and Mg

(Fairweather et al. 1998). The model will then be used to investigate the manipulation of the various

system inputs and their effects on the system outputs. The aim of the first objective is to develop a model

that will provide a data analyses framework and a tool for testing hypotheses (Grayson & Chiew 1994).

The second objective is to provide a relatively simple representation of the fundamental variability in the

agro-ecosystem, rather than a precise representation of particular sub-components (Grayson & Chiew

1994). The final objective is to produce a robust, conceptually based model of the daily water and nutrient

balance fluxes in the utilisation area (Sivapalan et al. 1996). The aim of these last two objectives is to be

able to use the model to quantify the outputs from a system that utilises manure and effluent.

The process used to select sub-models and verify the final form of the model is as important as the data

used to formulate and test the model (Gaunt et al. 1997). Keeping the model as simple as possible is also

an important component in the development of the model, as there is not strong evidence that increasingly

complex models are required to answer the many agricultural questions that abound today (Bassett 1997).

The following sections outline the sub-models and the processes that are considered important for a model

simulating the utilisation of manure and effluent.

5.4 Model Assumptions

The discussion of the developed model includes only elements of the production and environmental

systems in the context of sustainability. The economic and social aspects of sustainability are not

considered. The products of weathering (Lee & Pankhurst 1992) are also ignored and it is assumed that the

tillage techniques used are those that control and create an environment for the optimum utilisation of soil

organisms (Lee & Pankhurst 1992). The effects of tillage and cultivation are not incorporated into the

EMU model, as the objective of the model is to investigate the effects of different timing and rates of

application of manure and effluent over a long period, and this omission is not thought to be significant.

That is, the cultivation practices are assumed to be constant for all the management practices investigated.

The effects of the manure additions on the moisture holding capacity of the soil are also not considered,

due to a lack of data at this time. When these data become available, this function should be incorporated

into the EMU model. However, its omission at this point is considered to have the effect of overestimating

the runoff.

Other assumptions include the form in which P and N are added to the system and the manner in which

they transfer from the adsorbed state to the soil solution. Inorganic forms of P additions are considered to

stay in solution on the day of application only, and therefore can only move through the system on that

day. There is no provision in the model for P to transfer back to the soil solution once it is in the adsorbed

state, regardless of the total P in the soil. It is also assumed that the plant can readily utilise P when

adsorbed and in solution. This approach is adopted to simplify the code, as it is believed that P is not a

limiting nutrient in the crop production system at Tullimba. The maximum P sorption capacity of the soil
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is also not considered in the current version of the EMU model. The cumulative effect of P in the soil is

covered in the MEDLI Model (MEDLI 1997).

The only N transformation included in the EMU model is the net mineralisation of organic N to an

inorganic form. In this form, N is available to the plant and is considered to remain in the soil solution.

Organic N is not available to the plant and is considered to be in an adsorbed state. These assumptions are

necessary to maintain simplicity in the model and still provide the tools necessary to partition each of the

nutrients into the appropriate pathways of leaching, runoff and plant uptake.

5.5 Important Processes to Include in the Model

Watts and McKay (1986) investigated the mechanism for the cause of feedlot pond overflows. In some

climates (e.g. Dalby and St George, Qld) overflows were correlated with floods and therefore they argued

the environmental consequences of these overflows would be insignificant. Results from other sites

demonstrated that "a series of chronic rainfall events" caused the pond to overflow and not a catastrophic

storm event (Lott & McKay 1990; Watts & McKay 1986). Therefore, it is important to characterise the

rainfall pattern of a climatic area where a system that is driven by the hydrological cycle is being

investigated.

5.5.1 Climate Generation

The most important variables in the simulation model of the manure and effluent utilisation area are the

hydrological variables, as these "drive" the system. The stochastic nature of these variables is captured in

the EMU model using a Monte Carlo simulation. The Monte Carlo generation of rainfall and evaporation

uses statistical distributions for the monthly rainfall and the number of continuous rainfall days (see

Section 6.1).

Productivity levels are likely to be affected by shifting climatic conditions (Engelen et al. 1995) and the

use of the stochastic rainfall variables will enable the effects of climate change on the system to be

investigated (Hamer et al. 1987). There is also a great deal of variability in the inputs, changes of state and

outputs in the system, most of which are driven by the climatic conditions and the uncertain and

unpredictable additions to, and losses from the "as excreted" manure (Eigenberg et al. 1995). As the

climate also impacts on crop growth and water uptake, and hence affects the cycling of nutrients in the soil

system (Sri Ranjan et al. 1995), the generated daily weather data should have similar statistical

characteristics to the actual weather data (Attonaty et al. 1997; Ndlovu 1996).

5.5.2 Crop Growth

Some crop production models reflect an out-of-date criterion of maximum production (Attonaty et al.

1997), without considering environmental impacts. The objective of the crop growth model developed in

this study is to provide a realistic representation of this nutrient output pathway. Crop growth rate as a

function of transpiration quantity and efficiency have been found to be robust and appropriate (Hamer et
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al. 1987). Johnson (1998) used crop growth as a function of transpiration in the WaterMod model and this

approach has been adopted in the construction of the EMU model.

The uptake rate of base cations and N from the soil by plant biomass is proportional to the rate of plant

growth (Sverdrup et al. 1995) and hence transpiration. Therefore, crop growth models rely on reasonable

simulations of the soil water content (Mandian & Gallichand 1995).

5.5.3 Soil water

Transport processes in most natural sciences are described by reliable empirical relationships, for example,

electrical resistivity, thermal conductivities, specific heat capacities, molecular diffusing coefficients etc.

All of these coefficients are relatively uniform, however, the hydraulic conductivity of a soil changes seven

orders of magnitude over the possible range of its water content (Iskander 1981) and therefore water flow

in the soil-water system is complex and difficult to model (Iskander 1981).

The concentration and distribution of solutes within the soil depends on the soil's hydraulic conductivity

and water-retention properties. The primary factor affecting the concentration and distribution of the

solutes is the amount and quality of the percolating water. As the water can exist in a solid, liquid and

gaseous state simultaneously in the soil profile, it adds to the difficulties in trying to model and predict the

soil-water-plant system utilising manure and effluent (Iskander 1981).

Some mathematical formulations used in agro-ecosystem models have attempted to define soil water

characteristics using algorithms over a range of complexities (e.g. GLEAMS (Leonard et al. 1987) and

Gleams-SWAT (Reyes et al. 1994)). However, the simple monthly mass balance has been successful in

the CENTURY model (Natural Resource Ecology Laboratory 1998). CENTURY employs a simplified

monthly water budget of evaporation, transpiration, precipitation and flow of water between soil layers.

This simple mass balance approach is adopted, using a daily time step, to represent the important soil-

water system in the EMU model.

When a simple mass balance approach is adopted, it is important to define the soil layers. Dividing the soil

into compartments corresponding to the natural soil stratification would seem appropriate, as soil horizons

have similar chemical and physical properties throughout their depth (Sverdrup et al. 1995).

Hydrological simulations are better if the representation of the processes results in simple tools that can be

structured to a particular problem (Grayson & Chiew 1994), such as an elemental water-balance bucket of

finite storage (Grayson & Nathan 1993). This approach was used in the development of the soil water

module described in Section 5.7.9 and includes rainfall and irrigation inputs. Water movement is

downwards from gravitational forces, with upward movement of the water being possible only through

evapotranspiration. In the context of the approach adopted for the EMU model, little error is introduced

into the soil water balance by neglecting upward flow due to capillary action (Ritchie 1981).
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5.5.4 Nutrient Fluxes

There are number of methods to model nutrient fluxes. As in the treatment of soil water, they range from

simple mass balance principles that redistribute the nutrient in the profile as a function of water movement

(Hamer et al. 1987) to the use of algorithms that are functions of dispersion, temperature, soil moisture and

other variables. The method used to represent the fluxes of N, P, Na, K, Ca and Mg in the EMU model are

outlined in the following sections.

5.5.5 Nitrogen and Phosphorus

Transformation of N in the soil encompasses the whole spectrum of the N cycle (Gilmour et al. 1977). At

the field scale, the factors that control denitrification of N are the rate of nitrification, soil organic matter

decomposition (Gaunt et al. 1997) and moisture content (Saleh et al. 1994). However, the rate of

mineralisation is the limiting factor for all the subsequent changes (Gilmour et al. 1977).

A variety of models used to approximate net mineralisation of N have been developed using various

relationships between mineralisation rate and temperature and mineralisation rate and soil water content, or

relative available water content (Skjemstad et al. 1987). These relationships indicate several sources of

organic N may undergo mineralisation simultaneously at different rates and models have been developed

which incorporate two-pools. One pool mineralises rapidly and the other pool slowly.

There are fundamental questions about the fractions of organic matter that are labile or active and the

factors that control the rates of mineralisation (Edwards et al. 1993). Nitrate is the biggest concern from an

environmental point of view. For these reasons, only the net mineralisation of N is considered in the

model developed in this study.

When organic matter is first applied, net immobilisation generally occurs to satisfy the needs of the large

microbial population that arises in response to the addition of the organic material (Gilmour et al. 1977).

This condition is only temporary and in a few days or weeks there is a net mineralisation of N (Gilmour et

al. 1977).

A decay series is generally applied to the mineralisation of organic N (Kardos et al. 1977; Shaffer 1985;

Sri Ranjan et al. 1995; Stockle 1996a). This series can be used to determine the mineral N available for

plant use following a manure or effluent application. In terms of management this can be used to

investigate different application rates that will maintain a constant pool of plant available N. It can also be

used to assess the potential nitrate contamination of ground water (Kardos et al. 1977).
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It is generally assumed that the many P adsorption sites in most soils will mean that adverse ground water

effects are not likely to develop due to the immobility of P and leaching of this nutrient will be the

exception, not the rule (Geary & Gardner 1996; Klepper et al. 1998; Skilton et al. 1998). In the EMU

model, the majority of the P additions are assumed to be in an adsorbed state and therefore not susceptible

to leaching.

This assumption is supported by Figure 5.1, which graphs the time series of ortho-P in the ground water

from all the piezometers at the Tullimba research feedlot. The time series for each piezometer follows a

similar pattern and provides evidence that the fluctuations in the ortho-P in the ground water are caused by

some factor not associated with the utilisation of the manure and effluent. If the P added in the manure and

effluent were being leached to the ground water it would be expected that there would be pulses in the

piezometers in the irrigation area that are not parallelled by pulses in the piezometers up-gradient of the

feedlot. It would also be reasonable to assume that a lag of these pulses would also be apparent in the

piezometers below the irrigation area. Clearly these pulses are not evident in Figure 5.1 and it can be

confidently predicted that at this point in time there is minimal leaching to ground water of the P added in

the manure and effluent.

5.5.6 Cations

Most of the models investigated in Appendix B are concerned with the fate of N or P. This is

understandable, as the effects of these nutrients are usually obvious after a short time period (Gilmour et al.

1977). Only a few authors (Keeney & Wildung 1977; Stewart & Meek 1977; Sverdrup et al. 1995) have

addressed the long term effects on the soil from the imbalance of cations or other nutrients. Na, K, Ca and

Mg are the cations included in the EMU model.

In an agricultural system, leaching of salts from the root zone is considered "good practice" to prevent salt

accumulation in the root zone (Beke et al. 1993). However, this can cause large imbalances in the cation

balance and induce acidification of the soil system (MRC 1996; Sverdrup et al. 1995) and cause

deterioration in ground water quality (Beke et al. 1993). If acidification is allowed to proceed to a point

where the ion exchange reservoir is nearly empty, recovery of the system will be slow and the time for the

ecological damage to be repaired will be in the order of centuries (Sverdrup et al. 1995). "Thus any policy

that envisages waiting until damage is evident is bound to fail if ecosystem protection is an objective"

(Sverdrup et al. 1995).

Sverdrup et al. (1995) found that excessive leaching is a significantly larger pathway for the removal of

base cations from the system then tree growth. Cation exchange is recognised as one of the most important

processes responsible for the removal of cations from the soil (Iskander 1981). Therefore, the development

of a tool that is able to predict the management practices that are most likely to have adverse effects on the

cation exchange, in the context of the utilisation of manure and effluent, would seem paramount.
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5.6 Temporal and Spatial Scales

Deciding data, parameters, spatial and time scales that are appropriate for the modelling being undertaken,

and how best to evaluate the model are complex issues and are the focus of continuing research in the agro-

ecosystem modelling area (Gaunt et al. 1997). There is significant temporal and spatial variability

associated with the inputs, outputs and changes of state of an agro-ecosystem. Characterising this

variability is important in evaluating the sustainability of any system and requires long series (30 or more

years) of crop responses to these fluctuations (Stockle 1996b). However, degradation of an agro-

ecosystem is a response to changing and environmental and socioeconomic circumstances (as opposed to

an intrinsic property of a system) and therefore any predictions that are for more than 10-15 years would be

in the absence of incorporating these changes (Hansen 1996).

A daily time step is used in the EMU model, as drainage is one of the key pathways for nutrient loss.

Using a daily time step allows an investigation into the effects the timing of application of manure and

effluent have on the long-term sustainability of the system. Using a monthly time step and a percentage of

the nutrients in manure and effluent applied being lost to drainage every month would not allow these

effects to be studied with any degree of reliability.

Time is conventionally thought as linear, however, a cyclical view "allows for the better evaluation of the

role of positive and negative feed-back loops" (Hamblin 1991). This cyclic view incorporates the seasonal

and annual variations that are evident in hydrological data. This is important in terms of assessing the

equilibrium of the system (Hamblin 1991).

5.6.1 Data Requirements of the Ideal Model versus Data Reality

Data availability has been recognised as the single most important constraint to the functionality of a

modelling exercise (Grayson & Chiew 1994; Gaunt et al. 1997). Deciding whether a computer simulation

bears any relationship to reality is dependent on data availability for development and testing (Grayson &

Chiew 1994). Even though there are many models available, data is generally of poor quality for

environmental modelling exercises (Gaunt et al. 1997) and the availability of data has to be an important

consideration in the development of the EMU model.

5.7 Model Description

Models should be integrated into more general software frames (Mirschel et al. 1997). The Monte Carlo

simulation model (the EMU model) described in this section is built in the Microsoft Access environment.

This is to enable data that has been stored in the database to be used as input to the EMU model with little

or no manipulation. The Structured Query Language (SQL) is used to configure data for the rainfall and

evaporation distributions and other queries that are accessed throughout the program.
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There are several examples in the literature of models that have been built within the framework of a

Microsoft Access database (Lay 1997; Lewis et al. 1997). Figure 5.2 is a schematic of the modules

included in the EMU simulation model that has been built in the Microsoft Access environment for this

study. As no model can be considered perfect, the challenge in developing the model was to select sub-

models that are the least imperfect (Gaunt et al. 1997).

5.7.1 Data Input and Initialising Variables

There are several types of variables used in the code and several methods of assigning values. Some single

variables can be changed via the user interface while others are assigned a value as a result of a "Lookup"

operation. In the latter case, the tables in the database are used to look for a value, based on the value of

another variable. Some of these variables are also assigned on the basis of the number of records in a

particular table, for example, the number of manure applications.

Static variables initialised at the beginning of the program are the number of soil layers, the number of

cations, the number of crops and their planting and harvesting dates and the mineralisation coefficients for

organic N. The number of crop, manure and fertiliser applications are determined by using the Access

"Dmax" function to determine the highest number that is recorded in the manure and fertiliser table and the

crop cycle table, respectively.

Crop cycle and manure and fertiliser additions for the period of the simulation can be input via the

interface. This information is stored in tables and additions can also be made directly to these tables.

Actual crop cycles, manure additions and monitoring data can be used to evaluate the performance of the

model (see Chapter 7).
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Several variables, which store a single value that can be changed as the program runs, are given an initial

value (usually zero) at the beginning of the program. These are incremented as the program runs and

include the number of manure and effluent applications, drainage events, runoff and rainfall events. Other

single variables are included in different modules of the program and will be explained in their respective

sections.

A number of one and two-dimensional arrays store values such as the soil moisture and physical

characteristics and nutrient values for each soil layer. Other array variables store the gross amount of

nutrients added and lost through manure and irrigation additions, drainage, runoff and plant uptake. These

arrays are assigned dimensions at the beginning of the program. For example, the array to store the

amount of nutrient lost to drainage is declared a one-dimension array for each nutrient. The arrays that

store the nutrients in each layer are declared as two-dimensional with the number of layers and number of

nutrients determining each dimension.

A user interface has been built where the user enters the number of years for a particular simulation run.

There is also an option to repeat a simulation using rainfall and evaporation that have been generated in a

previous run. This can be used to observe the effects of changing the timings of manure and effluent

additions. Stored data collected as part of the monitoring program can also be used as a means of

evaluating the performance of the EMU model.

The structure of the program incorporates a main "engine", from which all other sub routines are called.

The first call is to the "initialize_ crops" module. This module stores the planting and harvesting dates for

each crop, which are entered through the user interface and stored in separate arrays for the day, month and

year. Potential crop yield, maximum growth and water use efficiency values are entered into variables by

looking up the respective tables and the user can alter these by changing the values in the tables. Crop

uptake values are obtained by looking up a table that averages crop yield data for each crop type.

The next call is to the "initiliaze_soil" module. In a similar way to the plant module, the soil physical

characteristics such as density and soil depth for each layer are read from the respective tables and stored

in array variables. The values for the initial nutrient status of the soil are also assigned at this point. The

cations are in mequiv/100gm and the N and P data are in mg/kg. Values for the adsorbed and soluble

cations and organic and inorganic N and P for each layer are stored in their respective arrays and these

values can be manipulated through the user interface.

The "cation_init" module is called which converts the cation dimensions to mequiv/cm 3 of bulk soil and

calculates the cation exchange capacity (CEC) of the soil. The CEC is the sum of the adsorbed cations and

is calculated for each layer. Control is returned to the "initiliaze_soil" module where the valency and

atomic mass of each cation is looked up and used, along with the soil depth, to calculate the gross amount

of each cation in the soil in kilograms.
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Adsorbed and solution values for each cation (mequiv/cm 3) are passed to the "cation_ exchange constants"

module. This module calculates the exchange constants for the various cations (see Frissel & Reiniger

1974), used during the program to calculate the movement between the adsorbed and solution state for

each cation. The algorithms used to calculate the three exchange constants for four cations are shown in

Equation 5.1 to Equation 5.3 (Frissel & Reiniger 1974).

XN ,K 

K sol  x Na ads.	
	  Equation 5.1

a 

Na,o1 K ads

-Mg „ C a ath	 	 Equation 5.2
X -	 ' x

Cas„, Mg

Ca 	 (Na ads y so 2 x	 	 Equation 5.3

(Nasal) Cad
where

Nasob Ksob Casob Mgsol = amount of each cation in the soluble form (mequiv/cm3),

Naads, Kads, Caads, Mgads = amount of each cation in the adsorbed form (mequiv/cm 3 ), and

X Na,k X Na,Ca and X ca,mg are the exchange contstants.

These exchange constants do not change unless manure is added to the system. If the soluble or adsorbed

component of some cations is depleted to zero, an error will be returned in the calculation to obtain the

exchange constants. To prevent this error from occurring, an "IF...THEN" statement is used to assign a

small number to the soluble and adsorbed cations, if they have zero values.

The control is once again returned to the "initiliaze_soil" module where the gross values of organic and

inorganic N and P in the adsorbed and solution phases are calculated from the input initial concentrations,

soil density and depth for each layer. The initial carbon and aluminium values are also stored but are not

used in any of the subsequent modules. They have been included at this point so modules can be added to

the program at a later date, without the need for reprogramming the initial sub routines.

The control returns to the main "engine" and the "init_soil_water" module. This module assigns values to

the soil water variable arrays, such as field capacity, saturation, hydraulic conductivity, wilting point, refill

point and two growth limiting factor values for each soil layer (see Section 5.7.11). These values can be

manipulated through the user interface before running the program.

The next module to be called from the main "engine" is the "initialize" module. This module sets up the

tables that store the output from the program. These tables can then be used after the program is run to

view and summarise the output. In this "initialize" module, the visual basic function "Randomize" is

called to initialise the seed for the random number generator to create the values for the random variables

used in the Monte Carlo simulation. As the program is run, an index number is incremented for each day

and this is initialised to 1 in this module. The rain state is a variable that stores the number of days there
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has been continuous rain and this is set to zero at this point. Several modules are then called to initialise

values for the graphical interface.

5.7.2 Central Module of the Program

After the "initialise" modules are completed, the main program commences. The program consists of an

outer loop for the number of years and two inner loops. The first inner loop cycles twelve times, once for

each month of the year. Within this loop the "set_up_months " module is called to calculate the number of

days in the month, which is stored in a variable. There is also an IF statement to take account of leap years

for the month of February.

The first part of this module accesses the tables in the database that contain the probability distributions for

the monthly rainfall. These tables have the name "rain" and <month number>. For example, the table

storing the probability distribution for January is called "rainl". The number of records in this table is

stored in a variable and is used in a later module to obtain the rainfall based on a random number (see

Section 5.7.6). The generation of these probability distributions comes from the actual rainfall data stored

in the database and will be described in Chapter 6.

5.7.3 Fertiliser and Manure Additions

The first call in the daily loop is to the "fert_check" sub routine. This subroutine checks whether the

current day, month and year matches any of the dates for manure and fertiliser additions in the table called

"Manure and Fertiliser Additions". If this is true then the program determines whether the addition is

manure or fertiliser.

If the addition is manure, a variable is assigned the value "True"; and "False" if the addition is a fertiliser.

The first layer of soil is then incremented by the amount of nutrient added in the fertiliser, which is

calculated from the "fertiliser query". This query multiplies the application rate by the ratio of each

nutrient that is contained in the fertiliser addition.

The control then returns to the main module and if the manure addition variable is true, then the "manure"

subroutine is called. In the manure subroutine, the stochastic nature of the manure's physical and chemical

characteristics are captured by randomly sampling some of these values. Empirical relationships from

monitoring data are used for the rest of the variables. These relationships are detailed in Chapter 6.

The dry matter percentage of the manure is determined by sampling from the probability distribution of

this variable. The distribution of the manures' dry matter percentage is assumed to be normal and the

algorithm used to generate the value of the random variate is the polar method outlined by Law and Kelton

(1991).
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5.7.4 Generating a Normally Distributed Random Variable

The polar method of Law and Kelton (1991) was found to be from 9% to 3 1% faster then other methods of

generating normally distributed random variates, and is used in the EMU model to obtain the dry matter

percentage, and other random values. The method requires the generation of two uniformly distributed

random variates, U1 and U2. These uniformly distributed random variates are used to produce two

independent identically distributed normal random variates, X I and X2-

is used each time. The algorithm is outlined in steps 1 to 4 below.

1. Let V, = 2U, —1 for i =1, 2 and

2. Let W = 171 2 + V22

Repeat step 1 and 2 until W > 1

3. Let Y = V(-21n(W) / W

4.X 1 =	 X2 = V2Y

Only one of these random variates

The random number generator in Access is used to generate the required uniformly generated random

numbers, and a statistical test of the output of this random number generator is included in Chapter 6.

Another random number is generated to determine whether X 1 or X2 will be used to transform the standard

normal variable to a random variable from the distribution of interest. If the random number generated is

less than 0.5, then X 1 is used and if greater than or equal to 0.5, than X2 is used. The mean and standard

deviation of this distribution is used to return the required value by setting:

= 11+ 6'X 1 or 2

where

X is the random variable of interest.

The characteristics of the stockpiled manure are described in Chapter 6. Aluminium concentrations in the

stockpiled manure were found to be normally distributed and most of the other elements were shown to

have a reasonable to strong correlation with it (see Chapter 6). Therefore, to determine the concentrations

of each nutrient in each addition of manure, a concentration for aluminium is found by sampling its normal

distribution and the values for the other nutrients are then determined from the empirical relationships

found in the dataset.

Total nutrients (kgs) is found by multiplying the percentage of nutrient in the manure by the amount of

manure added and the dry matter percentage. The addition of manure increases the depth of the first

horizon and this depth is incremented with the depth of manure added, by dividing by the manure density.

Any compaction of manure is not considered in the calculation of the new depth. The new CEC for the top

horizon is also calculated, based on the exchangeable cations in the added manure and the original CEC for

that horizon.

New cation exchange constants are calculated by calling the subroutine "cation_exchange_constants". The

cation solutions that are present in the soil at this point in time are used to calculate these constants. A
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preferable value to use would be the amount in solution in the soil at equilibrium. However, these data are

not available at this time.

5.7.5 Planting and Harvest Dates

The control returns to the main program and the "plant_harvest_days" subroutine is called. This

subroutine determines where in the crop cycle the program is and reassigns values to the following

variables where necessary; number of days after planting, the crop weight and crop nutrient uptake, which

are reset to zero if it is a harvest day.

5.7.6 Rainfall and Evaporation

The control again returns to the main program, which calls the "rain_module" subroutine to generate the

rainfall. In this module another random number is generated and the "find_rain_prob" subroutine is called

to determine if rain occurs on a particular day. This is determined by looking up the first column of a

rainfall transition matrix that has been obtained from rainfall data stored in the database.

The rainfall transition matrix stores the probabilities of rain occurring on any day, given there was rain on

each of the preceding x number of days. If the random number that has been generated is less then the

probability of rain occurring for the particular state (number of continuous rain days) then the number of

continuous rain days is set to zero and no rain is generated for that day. If the random number is greater

than this probability, then the number of continuous rain days is incremented by 1. Chapter 6.1 outlines the

development of the transition matrix.

If rain occurs on any given day, another random number is generated, which is used to find the amount of

rainfall for that day. The subroutine to return the amount of rain for the day is called "find_prob" and is

also used to generate the amount of evaporation for the day. The arguments passed to this subroutine are:

• the month number and table name - used to determine which table of probability distributions to

access;

• number of records in this table - found previously in the "set_up_months" subroutine;

• the random number;

• cumulative probability;

• corresponding rainfall (or evaporation) value; and

• the probability for the interval.

The random number is used to determine the value of the random variate (in this case rainfall) by sampling

the piecewise distribution and was described in Rubinstein (1981). This method, rather than the polar

method, is used, as the probability distributions of monthly rainfall data are available. The piece-wise

constant probability distribution and the algorithms used to sample the distribution are given below

(Rubinstein 1981).

96



fx (x) =	
,	 x,_,	 x x	 i = 1,2,...., n where C,	 0

0,	 otherwise

Denote P1 = ffx (x)dx, i 1,...., n
xi-1

F, = EP;
=1

F0 = 0

Fx (x) =	 + JC 1 dx =	 + (x — x1_1)

J=1	 x,_,

where

i = max tj : x j_iSx}

Solving Fx (X) = U with respect to X :

U — F
X =	 + 	 1-1 , where F,_, U <

C,

The steps used to return the random variate (X) are:

1. Generate U from a uniform distribution between 0 and 1.

2. Find i from :	 Pi <U	 i= 1,...., n
1

j=1	 j=1

i-1

U

3. X = x1 + 	
j=1 

C,

The probability distributions are stored in tables for each month. Table 5.1 presents the probability of

rainfall for the month of January. The probability distributions of rainfall and evaporation for each month

are included in Appendix C and D respectively.
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102 0.032
153 0.011

4 0.00720
255 0.007

6 0.00130
357 0.001
408 0.003

9 0.00145
10 0.00150
11 055
12 60 0
13 0.00165
14 70 0

0.0017515

Probability
Density.

0.088
0.0381 5

Table 5.1. Piece-wise Probability Distribution for January Rainfall

The program loops through the appropriate table and calculates the cumulative probabilities for each

rainfall increment (5 mm). When the cumulative density is greater than the random number, the lower

rainfall bound (x column in Table 5.1) is stored. Control then returns to the rain module and the rainfall

for the day is found from the algorithm given in step 3 above. The rainfall value is stored in the simulation

data table, which updates various graphics for the user interface.

The evaporation subroutine is called next by the program. This subroutine uses the probability

distributions to select the evaporation from the data stored in the database in a similar way to the rainfall.

The major difference is that a value for evaporation is required daily. The same subroutine as used in

generating the rainfall ("findprob") is used to generate evaporation.

The next part of the program sums the rainfall for the previous 5 days. The sum of the rainfall on the 5

previous days is used to determine which distribution to sample from for the various effluent nutrient

concentrations (see Chapter 6.3). The summation is done within the main module and uses an Access

aggregate function (Dsum). The criteria of this function is the index number less than or equal to the

current index number and greater than the current index number — 5. There is an "IF" statement to sum the

first rainfall values when the index number is less than 5.

5.7.7 Irrigation Module

The "irrig_module" module is the next subroutine called. The first part of the irrigation module tests if the

program is using real data or is in Monte Carlo simulation mode. If it is using real data then the amount to

irrigate is read from the appropriate table. For the Monte Carlo simulation mode, another "IF" statement is

entered. If the number of days since planting is greater than 20, then the program determines if all the

layers are below the refill point. The refill point for each layer is determined at the beginning of the

program and is the point halfway between wilting point and field capacity for each layer. A loop is then
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entered for each layer of soil to determine if the soil moisture is above the field capacity for that layer. If

this is the case in any layer, then the amount to irrigate is set to zero and the subroutine is exited. If the

number of days since planting is less than 20 then the program determines whether the soil moisture in the

first layer only is above wilting point. If this is the case then the amount irrigated is set to zero and the

subroutine is exited. If the code progresses through to the next execution of code then irrigation is

required.

The amount to irrigate is found by summing the difference between field capacity and the soil moisture for

each layer. The irrigation sub routine is only called when there is a crop in the ground and when irrigation

does occur the soil profile is filled regardless of the rooting depth at that time. The "irrig_nutrients"

subroutine is then called to determine the concentration of each nutrient in the effluent used as the

irrigation source. The first line of code in the "irrig_nutrients" subroutine assigns a uniformly distributed

random number between 0 and 1 to the "rand_num" variable. The next part of the code uses this random

number to determine the EC of the effluent, which is then used to calculate the concentration of various

nutrients in the effluent.

5.7.8 Determining the Characteristics of Effluent

There are two distributions that are sampled to obtain the EC of the effluent, depending on the amount of

rain in the previous 5 days. These distributions are detailed in the Chapter 6.3 and are assumed to be

lognormal. Because the distribution is lognormal, the exponential of the random variate returned from

sampling a normal distribution is taken to obtain the EC of the effluent.

Linear relationships obtained from effluent data are used to find the concentrations of Na and Mg as a

function of EC. Ca and K are then found from the concentration of Mg. (see Chapter 6.3 for the statistical

analyses of these relationships).

There was no relationship found between the inorganic N concentration and any other element in the

effluent. Therefore, the inorganic N concentration is determined statistically by sampling from two

lognormal distributions. The first distribution is used when the rainfall for the previous 5 days is less than

20mm and the second when this value is greater than 20mm. The same subroutine is used to sample from

a normal distribution with the mean and standard deviation of the lognormal distribution sent as arguments.

The concentration of inorganic N in the effluent is found from the exponential of the random variate

returned from the "normal _dist" subroutine. The concentration of organic N is a function of inorganic N,

as found from data stored in the database (see Chapter 6.3).

The organic P is found in the same manner as the inorganic N using two distributions. The first for when

the rainfall for the previous 5 days is less than lOmm and the second for when the previous 5 days rainfall

is greater than lOmm. The ortho-P is found from its relationship with organic P (see Chapter 6.3). The
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rationale for using the different cumulative rainfall totals over the previous 5 days for N and P is detailed in

Chapter 6.3.

The control then returns to the main program. If the amount to irrigate is greater then zero, all the

irrigation is added to the soil moisture in the first soil layer and a module ("add_irrig") is called to

distribute the soil water and added nutrients.

5.7.9 Distribution of Moisture and Nutrients through the Soil Profile

The development of the EMU model assumed that runon banks divert "clean water" from the irrigation

area. Therefore, the only moisture input into the soil layer comes from direct rainfall and/or irrigation.

There is also no consideration given to overland or lateral flow originating up gradient.

Local variations in infiltration rate occur because of differences in soil structure, compaction, initial

moisture content and profile down the soil and in vegetation density (Morgan 1995). When soil profiles

have two or more layers with different hydraulic conductivities, the infiltration behaviour becomes

complex (Wild 1988). These variations are quite difficult to model.

The first line of code in the "add_irrig" subroutine declares several one and two dimensional arrays. The

one-dimensional arrays store the runoff and excess from each layer. The two-dimensional arrays are used

to store nutrient concentrations and the gross amount of nutrient in the soil solution for each nutrient in

each soil layer. The first loop of this subroutine initialises the runoff and excess moisture for each layer to

zero.

The next line of code calls the "total eff nut added" subroutine to calculate the total amount of each

nutrient added, by multiplying the concentration of the nutrient by the amount of irrigation applied. The

cumulative amount of each nutrient added is also stored in its respective array. The variable recording the

cumulative number of effluent applications is also incremented. This is used to re-dimension two dynamic

arrays, the first of which stores the day the application was made and the second stores the amount of

organic N that was applied. This information is used in a subroutine called later from the main program

that mineralises the organic N remaining from each application of manure and effluent. The control then

returns to the "add_irrig" module.

Temporary arrays that store the amount of each nutrient in the soil solution for the first soil layer, are

assigned the value present in the soil solution before the irrigation application and are incremented by the

amount added by the irrigation. These amounts are total kilograms per hectare per depth of soil layer. For

the remaining layers, the temporary soil solution arrays are assigned the amount present in the particular

soil layer before the irrigation application. In the case of both the organic forms of P and N, these arrays

are assigned zero. The program assumes that these forms stay in solution for only one day and are

therefore only able to be leached or lost in runoff on the day of application. The organic N can again be
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lost through these pathways once it has been mineralised to an inorganic form. The program then enters a

loop for each soil layer and calculates the amount of excess moisture and runoff from each layer.

The first "IF" statement in the loop determines if the soil moisture is above the saturated moisture of the

profile. When this is the case then the amount assigned to the excess array is the difference between the

current soil moisture and the saturated value. If this daily excess is greater than the saturated hydraulic

conductivity (mm/day), then the difference between the daily excess and the saturated hydraulic

conductivity is assigned to the runoff and the amount infiltrating to the next layer is the saturated hydraulic

conductivity. If the daily excess is less than the saturated hydraulic conductivity, then the runoff is zero for

that layer. If the soil moisture is less than the saturated moisture content then both runoff and excess are

assigned zero.

Excess soil moisture and soil nutrients are redistributed from the top layer through the profile, and the soil

moisture in each layer is incremented by the excess moisture from the previous layer. Excess and runoff

for the current layer is then subtracted from the corresponding soil moisture. The nutrient concentration

for each layer is then the total amount of nutrient in the layer divided by the soil moisture. The amount of

nutrient to be transferred is calculated from several "IF...THEN" statements that divide the nutrients up

into the runoff and excess components. Nutrient concentrations for each layer are then recalculated to

account for the amount lost to drainage and runoff. The soil solution arrays are then updated with the

values stored in the temporary arrays.

If there is a rainfall event, a similar module "add_rainfall" is called and the soil moisture and nutrients are

redistributed. The final part of the "add_irrig" module assigns the organic form of P added in the irrigation

and remaining in the soil (i.e. not lost to drainage or runoff) to the adsorbed store. Similarly any organic N

that was added in the effluent and still remaining in the soil solution is assigned to the organic store and is

therefore no longer available for leaching.

The next subroutine to be called from this module is the "drain and _redist cats" subroutine. The first loop

of this subroutine updates the array that stores the cumulative amount lost to drainage for each nutrient.

Two loops are then entered; the outer loop steps through each layer and the inner loop calculates the

amount of each cation in the soil and in solution, which is converted to mequiv/cm 3 . Two-dimensional

arrays storing these values are then sent to the subroutine "cation".

5.7.10 Cation Exchange

The "cation" subroutine is used to calculate the amount of each cation exchanged from adsorbed to the soil

solution, or visa versa. Exchange of cations from the soil solution to the soil matrix occurs with varying

degrees of difficulty. Rate of exchange is a function of the exchange complex characteristics and the

effective size and charge of the competing ions. For the most part, however, exchangeable cations are
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freely replaceable (Iskander 1981). The "cation" subroutine attempts to represent the important cation

exchange processes by using the Gapon exchange equations provided by Frissel & (Rein iger 1974).

The first calculation in this subroutine is the ratio of the soluble Na to the adsorbed (or exchangeable Na).

This ratio (x i ) is calculated for each layer and is used as the first estimate to solve for the actual value,

based on the exchange constants calculated in the "cation_exchange_constants" module in the initialisation

part of the program and when manure is introduced into the system.

The sum of the four adsorbed cations (in mequiv/cm3 ) is the cation exchange capacity (CEC). By using the

relationships given in Equation 5.1 to Equation 5.3 and knowing the total amount of each cation, a

Newton-Raphson iteration is used to solve for x 1 in Equation 5.4 in the "newton_raphson" subroutine

(adapted from Frissel & Reiniger 1974). Note Equation 7.5 in Frissel & Reiniger (1974) is incorrect.

Na tot  + 	 K tOt	 Ca tot	 Mg tot	 	 Equation 5.4CEC =
1 + X 1	 1 + X / X Na,k	 1 + X 1XNa,Ca	 1+ x lXNa,CaXCa,Mg

where

Natot = Naso t Naads

K o = Kso l + Kads

Catot = Casol + Caads

Mgtot Mgsol Mgads

Nasol, Ks01, Casot, Mgsot = amount of each cation in the soluble form

Naads, Kads, Caads, Mgads = amount of each cation in the adsorbed form

X Na,k X Na,ca and X ca mg are the exchange contstants, and

Na
x, = 	

Na ads

The main problem with the Newton-Raphson numerical method is that the root it converges to may not be

the one required (Gerald & Wheatley 1989, pp 15-17). Using a starting value close to the root should

alleviate this problem, hence using the ratio of the current Na in solution to that adsorbed. Frissel &

Reiniger 74) suggested that the iteration may not converge using Equation 5.4, but this problem has not

become apparent in any of the runs of the EMU model to date.

5.7.11 Crop Growth

Whisler (1978) recommended the use of algebraic type equations to account for the soil water balance

when modelling for the purpose of planning irrigation requirements, drainage system capacities, waste

water renovation systems and some plant growth models. In these cases, it is only necessary to know how

much water enters and leaves each soil profile (Whisler 1978). This is the approach used in the next

subroutine, the "crop_growth_rate" module, which is called if there is a crop in the ground. The

algorithms used for this module have been developed using the WaterMod help files (Johnson 1998).
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The crop growth rate module used in the EMU model calculates the potential growth rate as a function of

the current dry weight of the crop. The logistic equation that the EMU model uses is given in Equation 5.5

(Johnson 1998).

dW _ 	+a 	 Equation 5.5	   p
dt	 W. +a

Where

W is the crop dry weight (kg/m2),

t is the time in days,

W1 is the potential yield (kg/m2),

is a dimension coefficient and has the units of day I ' and

a (kg/m2) is a scaling parameter and is a function of the time of maximum growth rate:

a=W/exp(-pt*),

where

t* is the time of maximum growth.

The potential yield, period of maximum growth rate and water use efficiency for each crop is stored in a

table in the database. For Tullimba, the potential yields are obtained by averaging crop data collected over

the last 3 years for sorghum and oats. The period of maximum growth are those reported in Doorenbos

(1984). The water use efficiencies used as default values are 600 mm/kg crop dry weight for C3 plants and

300 mm/kg crop dry weight for C4 plants (Johnson 1998).

The potential yield and a are adjusted daily, and the growth rate, which is a function of the soil water

available for transpiration, is affected by water stress. Several other variables are also incremented on a

daily basis; the number of days after planting, potential yield, daily growth rate and two growth limiting

factors (Johnson 1998).

The daily growth limiting factor (glf) is the ratio of the actual transpiration rate to the potential

transpiration rate. The weighted mean growth limiting factor (GLFmean) is the sum of the daily growth

limiting factors divided by the number of days the plant has been growing. This is used to adjust the

scaling factor, a, daily, as shown in Equation 5.6 (Johnson 1998).

a=W f exp(-GLF [itmean r- *	 	 Equation 5.6

A table in the database stores the soil moisture content at which the growth limiting factor is 1 for each soil

layer. These are read into their respective variables at the beginning of the program and can be adjusted by

the user before the program is run. The first variable that is calculated is the transpiration demand, which

is simply the daily crop growth rate, multiplied by the water use efficiency.
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If the soil water is less than wilting point, the growth limiting factor is set to 0 and there is no crop growth.

If the soil water content is between the moisture content where the growth limiting factor first becomes 1

and the field capacity for the soil, the growth limiting factor = 1. Between these two points the growth

limiting factor is a linear function of the soil moisture content. The algorithms for when the soil water

(sm) is between wilting point (wp) and the point where the growth limiting factor first becomes 1

(glf upper) is shown in Equation 5.7 and the algorithm for when the soil water is above field capacity (fc)

in Equation 5.8 (Johnson 1998).

glf = (sm – wp) / glf upper 	 Equation 5.7

glf = (sat - sm) (1 – glf sat) / (sat – fc) + glf sat 	 Equation 5.8

Where

sat is the saturated soil water content (mm),

sm is the soil water content (mm),

fc is the field capacity (mm),

wp is the wilting point (mm),

glf is the growth limiting factor,

glf sat is the value for the growth limiting factor at saturation, and

glf upper is soil water where growth limiting factor = 1.

The next line of code in the crop growth module looks up the crop's root distribution "froot" for each soil

layer where the root density function uses a stepped approach similar to that employed by Fitzpatrick and

Nix (1969) for their evapotranspiration functions. This information is stored in a table in the database and

can be changed by the user. The root distribution is a discrete function of days after planting and the

default values are from Doorenbos et al. (1979).

The preferential module from WaterMod (Johnson 1998) has been used to determine the actual

transpiration from each soil layer. Water uptake is determined by the growth limiting factor multiplied by

the root distribution, multiplied by the soil water above wilting point, with all these variable being different

for each layer.

The four cations in solution are summed for each layer and converted to EC (dS/m) using Equation 5.9

(Gardner et al. 1993). The average of the EC for each layer is then used to calculate the percentage yield

reduction (Yr) shown in Equation 5.10 (Maas 1996).

TDS 
EC –	 	 Equation 5.9

640

Where

TDS is the Total Dissolved Salt (mg/L).
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Yr=100-b(EC-a)	 	 Equation 5.10

Where

Yr = percentage yield reduction,

a = the salinity threshold expressed in (dS/m),

b = the slope expressed in (%/dS/m),

EC = the mean electrical conductivity of a saturated-soil extract taken from the root zone (dS/m),

For barley: a = 8.0 dS/m and b = 5 %/dS/m (during seeding stage 'a' should be < 5 dS/m), and

For sorghum: a = 6.8 dS/m, b = 16 %/dS/m.

Equation 5.9 is a saturation extract value and differs from the EC of the soil solution by a factor equal to

the ratio of the saturated moisture content to the current moisture content. This ratio is approximately 2 for

a soil that has a moisture content near to filed capacity (Smith, R. 1999, pers. comm., 6 Sep). Therefore

the effect of omitting this relationship in the model is to overestimate the predicted yields.

The nutrient uptake from each layer is then calculated and deficiencies are recorded in arrays for each

nutrient. Control returns to the main module from where the "soil_evap_module" subroutine is called.

5.7.12 Soil Evaporation

The soil evaporation module is adapted from the WaterMod Help Files (Johnson 1998). The potential soil

evaporation is a function of ground cover and the evaporation value calculated earlier. The ground cover

(g_cover) is a function of the crop dry weight (W) and the crop dry weight for 90% light interception

(W90) (Johnson 1998). The equations used are shown in Equation 5.11 and Equation 5.12. The actual soil

evaporation is limited to the top two layers (400 mm depth). If the soil moisture in the top two layers is

below field capacity, then the ratio of the soil moisture to field capacity is used to limit the amount of

actual evaporation from that layer (Johnson 1998).

g_cover = 1 - (Exp(-k W))	 	 Equation 5.11

where

g_cover = percentage ground cover,

W= crop dry weight (kg), and

log(10) 
k =	 	 Equation 5.12

W90

where

W90 = crop dry weight for 90% light interception (kg).

Control then returns to the main module and the "redistribute_sm" subroutine is called to redistribute the

soil moisture. Figure 5.3 is a schematic of the distribution of the soil moisture throughout the profile used

in the program. Rainfall or irrigation is added to the first layer, and depending on the antecedent moisture

conditions, the soil water is redistributed to the lower soil profiles, runoff or drainage. The nutrients are
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also redistributed as a function of the amount in solution and the cations are exchanged as outlined in

Section 5.7.10.

Figure 5.3. Soil Moisture Distribution

5.7.13 Mineralisation

The final module in the program calculates the amount of organic N mineralised to an inorganic form each

day. An important consideration when selecting a mineralisation model is the number of parameters

required as inputs to the model. A simple nitrification model provided by Chae and Tabatabai (1986) has

only two inputs: time since application (t) and a first-order rate constant (k), which is shown Equation 5.13.

This author is not aware of how the daily amounts were calculated.

N„,= N„[ 1 -exp(-kt)]	 	 Equation 5.13

where

N„, is the amount mineralised,

No is the amount of organic N available for mineralisation,

k is a first-order rate constant, and

t is time since application.

Scott et al. (in press) modified this equation to include three rate constants. These rate constants decrease

when 80% and 65% of the original organic N has been mineralised, corresponding to 188 and 218 days

after application respectively. The Excel solver function is used in the Chapter 6 to find appropriate rate

constants using these data as a guide. After the amount mineralised each day is calculated, it is transferred

from the organic to the inorganic N pool and is available for leaching and plant uptake.
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Chapter 6. Model Inputs

Assembling model inputs and investigating the relationships between input variables is the comprehensive

stage of model development. The objective of this stage is to focus on the relationships that are central to

the basic mechanisms within the system (Gaunt et al. 1997). The understanding of these relationships

leads to an improved understanding of the important processes that operate within the system. This

understanding can be developed through the investigation of collected datasets and using them to simulate

the system (Gaunt et al. 1997).

Model inputs should be simple, capable of being replicated, feasible in terms of financial and physical

constraints, have a broad applicability and be understandable (Park & Seaton 1996). A measure of the

resource base is also required for comparison of future trends (Kruseman et al. 1996). Therefore, a

simulation model should be intrinsically linked with the monitoring program that will provide input data.

6.1 Rainfall

Climatic variation has a large influence on any agro-ecosystem, hence it is important to capture the

characteristics of climatic variables that are used as inputs to the model (Holton 1996). Historical rainfall

records are not directly used as inputs, but provide the characteristics of seasonal rainfall patterns. These

patterns, such as several consecutive days of rainfall associated with the passing of a front, and summer

storms, which are short and intense, were obtained by using monthly rainfall distributions and probabilities

of consecutive rain days.

There were three options for obtaining data to provide the characteristics of the rainfall patterns. The first

was to use data from a continuously recording weather station, which was installed at the Tullimba feedlot

in June 1995. However, several lightning strikes disrupted data recording and the measurements are

incomplete. The second option was to use manual rainfall records, which have been recorded at Tullimba

since February 1994. Although this dataset is accurate and complete, it is of limited length in terms of

extracting the characteristics of the rainfall pattern. The final option was to use the rainfall records from

the Kingstown weather station, which span 15 years from 1981 to 1996.

The Kingstown weather station is located approximately seven kilometres to the south west of the feedlot.

Given the close proximity of the Kingstown weather station to Tullimba, the longer Kingstown dataset

should provide the essential characteristics of the rainfall. A longer dataset is preferential for use as input

to a stochastic model as it will include more extreme events and therefore increase the likelihood of these

occurring in the simulation. Figure 6.1 is a scatter graph of the relationship between the Tullimba manual

rainfall records and the Kingstown weather station records, which indicates the record sets differ most for

small rainfall events. This is likely to be a result of isolated summer storms and the relationship is

considered strong enough to indicate the preference for using the much longer Kingstown rainfall records.
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Figure 6.1. Comparison of Kingstown and Tullimba Manual Rainfall Records (mm)

A first-order two-state Markov chain model (see Shaik & Bate 1996) was investigated as a means of

characterising the rainfall pattern. The Markov chain model calculates probabilities for a wet day followed

by a wet, or dry day and a dry day followed by a wet, or dry day. The transition probability matrix of this

type of model has only four probabilities and traditionally is used for short-range weather forecasting

(Shaik & Bate 1996). However, the first-order two-state Markov chain model is not able to satisfy the

criterion of characterising the seasonal rainfall pattern and a transition matrix was developed to

characterise these rainfall patterns.

The quantities transition matrix method presented by Clarke (1984) was the first attempt at capturing

characteristics of rainfall sequences, using a 10 mm rainfall interval. Each interval defines a state variable,

which is used to determine the probability of "y" rainfall depth following "x" rainfall depth on two

consecutive days. Seven state variables are used and their ranges are shown in Table 6.1, with n u being the

number of times that state i is followed by state j. For example, n 01 is the number of times in the observed

rainfall sequence that 'no rain' is followed by daily rainfall 10 mm.

Table 6.1. Rainfall States and Corresponding Rainfall Intervals (r = Daily Rainfall Total (mm))

State Rainfall Range

0 r = 0

1 0<r<_10

2 10 <r � 20

3 20<r<_30

4 30<r<_40

5 40<r<_50

6 50 <r

0 1 2 3 4 5 6

0 noo no! n02 no3 no4 nos n06

1 n i o n11 n12 n13 n14 n15 n16

2 n20 n21 n22 n23 n24 n25 n26

3 n30 n31 n32 1133 n34 1135 n36

4 n40 1141 n42 n43 n44 1145 n46

5 n50 n51 n52 n53 n54 n55 n56

6 n60 n61 n62 n63 n64 n65 n66
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The average rainfall event for each month from the simulated data using the transition matrix method was

compared with the average rainfall event for each month from Kingstown. The average rainfall event from

the simulation was approximately twice the actual (see Figure 6.2). To obtain a better representation of the

average rainfall event for each month, this transition matrix was modified to calculate the probability of

rain occurring on "x" consecutive days.

The rainfall data were analysed to calculate probabilities that 0, 1 , 2 .... 9 or more days of rainfall are

followed by a fine day, which are shown in Table 6.2. The method requires the generation of a random

number, which is compared with the transition matrix probabilities to determine if rain occurs. If rain does

occur, than the piecewise rainfall probability distribution for the particular month is sampled and compared

to the random number, which returns the amount of rainfall (see Chapter 5.5.1).

Table 6.2. Probability of No Rain Following "x" Number of Continuous Rain Days

Figure 6.2 compares the averages of three, ten year simulations using the method of sampling the monthly

piecewise rainfall probability distribution and the probability of rain occurring on any given day, the

Kingstown averages and the average rainfall event of the Clarke's (1984) quantities transition matrix

outlined above. This graph indicates that the method using the quantities transition matrix for the

probability of "x" mm following "y" mm is far less successful than the method of using the probabilities of

a rain day following "x" rain days.

Gil/en the better performance of the method using probabilities of a rain day following "x" rain days, this

method was incorporated into the Effluent and Manure Utilisation (EMU) model and the monthly

distributions of the simulated and Kingstown rainfall were compared. Figure 6.3 provides the histograms

of the monthly data for the simulated and Kingstown rainfall and also the histogram for all rainfall data

(top histogram in Figure 6.3). Table 6.3 presents the p-values for the Wilcoxon rank-sum test (Millard

1998), which tests significant differences between the means of the samples. This test does not rely on

data being normally distributed. All p-values are greater than 0.05 and therefore at the 5 % significance

level, the distributions are similar.
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Table 6.3. p-values for Comparison of Simulated and Acutal Rainfall Distributions

p-value
Wilcoxon
rank-sum

test
All Data 0.34
January 0.15
February 0.81
March 0.17
April 0.39
May 0.90
June 0.90
July 0.31
August 0.68
September 0.08
October 0.44
November 0.96
December 0.15

6.2 Evaporation

The only evaporation records available are those collected from the Tullimba weather station from 10th

June 1995 to the 24 th May 1998, totalling 769 records, with 310 missing. Evaporation was simulated using

piecewise monthly distributions of evaporation data and as indicated in Figure 6.4, the time series of the

simulated data compares closely to the data collected from the weather station. The seasonal trend, as

characterised by a wandering mean and a non-stationary variance is evident for both the simulated and

measured data, with the variance being higher for the higher evaporation values. Figure 6.5, a comparison

of the averages and standard deviations of the simulated and measured data, demonstrates that the

simulation has replicated the seasonal characteristics of the evaporation.
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6.3 Effluent Characteristics

To prevent soil salinity problems through the improper application of effluent and to predict chemical and

biological transformations and transport of nutrients within the soil profile, a thorough understanding of the

changes that take place in stored effluent is required (Iskander 1981; Linderman & Ellis 1978). The main

characteristic of stored effluent is the variation in the nutrient concentrations over time, which is a result of

many factors.

6.3.1 Sampling the Effluent

Feedlot runoff quality is a function of stocking density, ration, rainfall intensity and duration and efficiency

of the settling ponds (Eigenberg et al. 1995; Linderman & Ellis 1978). This runoff is collected and stored

in holding ponds where further biological and chemical changes take place due to the settling of solids,

microbial activity, evaporation, and dilution by direct rainfall (Linderman & Ellis 1978). During the

course of this study, samples were taken from the holding ponds on a monthly basis over several years.

The EC and pH of these effluent samples were measured and further analyses measured the concentrations

of the cations, N and P, along with other elements.

Due to the large variability of effluent quality, the EC and soluble salt concentration should be checked

regularly when the effluent is used as an irrigation source (Linderman & Ellis 1978). Without this

sampling it would not be possible to accurately account for the amount of each nutrient being added to the

soil. Hence, environmental degradation could occur through the application of excess nutrients that could

escape to the wider environment.

Another important reason for sampling is to understand the composition of the effluent compared to that of

the soil solution to which it is being applied. Stored effluent from a beef cattle feedlot in the Unites States

has been reported to contain between 240 to 1850 ug/g of K compared with the 5 to 20 ug/g K

concentration of most soil solutions (Olsen & Barber 1977). This has implications for the cation exchange

complex in the soil and can cause soil stability problems. The amount of K adsorbed in an exchangeable

form is a function of the proportion of Na to Ca and Mg, (i.e. SAR) in the applied water (Stewart & Meek

1977). The higher the SAR, the higher the soil exchangeable Na will become (Stewart & Meek 1977) and

excess Na in the effluent can cause soil dispersion (Linderman & Ellis 1978).

Table 6.4 is the effluent quality data from the two holding ponds at the "Tullimba" feedlot and also

provided are the values from various sites in the Unites States. Included in the table are surface runoff data

from feedlot pens reported by Stewart and Meek (1997).
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Table 6.4. Comparison of Effluent from Tullimba Feedlot Holding Ponds and Various Sites in the
United States (Linderman & Ellis 1978; Stewart & Meek 1997

Tullimba Feedlot Linderman &
Ellis (1978)

Stewart & Meek (1997)

Chemical Analyses Holding
Pond 1

Holding
Pond 2

Site 1 Site 2 Texas Nebraska Kansas

Total solids 967 690 2420 4587
Volatile solids 227 307 1149 2107
Total N 9.4 5.7 73 113
NH4-N a 2.2 1.4 32 38
Total P -a, 3.2 6.0 28 56
K 45 61 825 1329 2542 704
Ca 18 21 31 441 802 261
Mg 16 19 55 207 498 97
Na 51 51 212 598 851 299
SAR 2.3 2.1 5.3
EC dS/m 0.48 0.53 1.38 3.05
pH 8.8 8.7 8.5 7.8

In Table 6.4, the differences in the Tullimba effluent data to the values reported from sites in the United

States, are likely to be a result of the feedlot rations and climatic influences. While the average data shown

in Table 6.4 varies significantly between geographical locations, Linderman and Ellis (1978) found that EC

varied greatly and erratically within a dataset. The averages reported by Linderman and Ellis (1978) in

Table 6.4 were from a dataset that ranged from 0.29 to 2.75 dS/m. Stored effluent EC from Tullimba

ranged from 0.18 to 1.42 dS/m for the measurement period. Some of the variability in the measurements

can be attributed to evaporation, which tends to concentrate the soluble salts in the pond and on the feedlot

surface, from where they are transported via runoff to the pond. EC levels in the pond will vary according

to evaporation, but can also be associated with the solids content of the runoff (Linderman & Ellis 1978).

Effluent pH averages reported in Table 6.4 do not show great variation between the locations, however

there is large variation within the included datasets. The pH in the "Tullimba" dataset ranges from 7.12 to

9.77 and in the Linderman and Ellis (1978) dataset, from 7 to 9.5. These changes in pH are a function of

the concentrations of other elements in the effluent. For example, increasing pH decreases microbial

activity and P solubility and increases NH4-N loss (Linderman & Ellis 1978).

6.3.2 Electrical Conductivity (EC) of Effluent

The EC of the effluent is related to the concentration of ions in solution and is an easily measured

parameter. Therefore, data form the Tullimba dataset were investigated in an attempt to extract simple

relationships between the EC and the other parameters, such as concentrations of Na, K, Ca, Mg, N and P

that could be used as inputs to the EMU model. Before undertaking the investigation between EC and the

concentration of various ions in solution, EC data were graphed to obtain an understanding of their

distribution. At the Tullimba feedlot facility, the effluent is stored in two holding ponds and differences in

the distributions of the EC of the effluent from the two holding ponds were investigated. Figure 6.6 shows
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the density histograms of the EC from the two holding ponds, and indicates a greater variation in Holding

Pond 1 with a few extreme outliers and a lower average than Holding Pond 2.

Figure 6.6. Density Histograms of EC of Effluent from the two Tullimba Holding Ponds

These differences in the distribution of the effluent EC from the two holding ponds may be a result of the

occasional transfer of effluent from holding pond 2 to holding pond 1 and recycling of effluent from the

terminal pond to holding pond 1. To increase the size of the dataset and capture the greatest variation, data

from both holding ponds were combined and used in the statistical analyses of the relationships between

EC and the parameters of interest.

When there are several days of no rainfall and high evaporation, the stable ions in solution will become

more concentrated, while the volatile ions such as ammonia, will be lost from the system. In contrast,

rainfall producing runoff will introduce a flush of ions into the holding ponds. The quantity of rainfall

producing runoff is dependent on the antecedent conditions of the catchment. Therefore, the EC of the

effluent should be a function of the amount of rainfall in some previous time period. Investigations of the

data did not reveal any significant relationship between EC and rainfall and/or evaporation.

Even though there is no significant relationship evident between EC and rainfall or evaporation, it was

important to incorporate the effects of the rainfall on the EC of the stored effluent into the EMU model. To

achieve this, data were investigated to observe the effects of rainfall and evaporation on the distribution of

the EC. Two distinct distributions of the effluent EC were observed as a function of the amount of rainfall

in the previous 5 days. This being when the total rainfall was less than or greater than 15 mm. The results

of the goodness-of-fit tests for these distributions are shown in Figure 6.7 and Figure 6.8. These results

show that the lognormal distribution is an adequate fit for these data, given the limited data set of 30 EC

values for total rainfall in the previous 5 days < 15 mm and 17 EC values for total rainfall in the previous 5

days > 15 mm.
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Figure 6.8. Goodness-of-fit tests for Effluent EC when Total Rainfall for the Previous 5 days < 15mm
(less.15)
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As outlined in the model development section (Section 5.7.4), a module is included in the EMU model to

randomly sample from the normal distribution. This module requires only the mean and standard deviation

of the distribution as input to return the value of the random variate required. Even though the module is

designed to sample from a normal distribution, a lognormal distribution can also be sampled by

transforming the returned normal variate using the exponential function.

To randomly sample the effluent EC distributions, a random number is generated and sent to the sub

routine to sample from a normal distribution. The value returned from sampling the normal distribution is

transformed to a lognormal variate. In this way the EC of the effluent used for irrigation on any given day

is stochastic in that the value is randomly selected, but also incorporates some effects of rainfall by the use

of the two distributions.

6.3.3 Concentrations of Cations in Effluent

If significant relationships exist between the EC of the effluent and the concentrations of the parameters of

interest then this should be used in the model. In this way the EC can be used as the stochastic "seed" for

the characteristics of the effluent. It was in this context that data were investigated for simple linear

relationships between EC and the nutrients of interest and relationships between the nutrients themselves.

The EMD was used to investigate relationships of the various nutrients with the EC of the effluent using

the 47 samples from both holding ponds. The relationships found are shown in Figure 6.9 and show that

Mg and Na have reasonably linear relationships with the EC of the effluent and Ca and K with Mg.

Figure 6.9. Relationships Between Effluent EC and Na, Mg, Ca and K
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6.3.4 Nitrogen and Phosphorus Concentrations in Effluent

Several forms of N in the effluent are quite volatile and therefore it is difficult to extract any relationships

with the other variables in the dataset. Linderman and Ellis (1978) found that the proportion of N as NH4

varied with time, which is important in the context of using effluent as an irrigation source, as NH4

constitutes most of the N readily available to plants. A factor which adds to the difficulty involved in

predicting the concentration of NH4-N in effluent, is its increased volatility when it is aerated, as is the case

when applied through a travelling irrigator, particularly if the effluent is alkaline.

Given the unpredictable nature of inorganic N concentrations in effluent, and assuming that rainfall

producing runoff will produce a flush of N into the holding ponds, an investigation of the distributions of

inorganic N as a function of total rainfall in the preceding days was carried out in a similar manner as for

EC. Distributions of N as a function of rainfall totals for the previous 5 days were investigated, as the

rainfall total for this period is already calculated in the EMU model. This investigation revealed two

distinct distributions of inorganic N (NO3 + NH4) as a function of the total rainfall in the previous 5 days,

being greater or less than 20 mm.

The movement of P from the feedlot pad to the storage facility occurs primarily in proportion to the solids

transported (Eigenberg et al. 1995). Therefore P should be positively correlated with the total solids in

effluent. This was confirmed by some data presented by Linderman and Ellis (1978) who found that

concentrations of P in the effluent ranged from 12 mg/L to 90 mg/L. However, this relationship was not

found in data collected from Tullimba, and even though most of the P produced in faeces ends up in the

manure stockpile, there is a proportion in solution, which is found in the effluent. The same approach used

for the generating a value of EC and inorganic N in effluent is used for P.

Total P was used and two distributions as a function of rainfall in the preceding two days were extracted

from the dataset. The total rainfall greater than, and total rainfall less than 10 mm for the preceding 5 days

was found to produce two distinct lognormal distributions. Goodness-of-fit tests for these variables were

performed, indicating that at the 5% significant level, a lognormal distribution does not fit these data very

well, particularly for rainfall in the previous 5 days less than 10 mm. However, given the limited number

of data points, the difficulties in sampling another distribution and in an attempt to decrease the complexity

of the model, the lognormal distribution was used. This will require further verification as more data is

collected as part of the monitoring program. The averages and standard deviations used to sample the

distributions to return the random values for N and P concentrations in the effluent are shown in Table 6.5.
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Table 6.5. Averages and Standard Deviations for Nitrogen and Phosphorus as a Function of Total
Rainfall in the Preceeding 5 Days

Lognormal Parameters
Mean Standard

Deviation
Mean Standard

Deviation

Total Rainfall Previous 5 days
< 20 mm >20 mm

Inorganic nitrogen -0.027 0.893 0.113 1.43
< 10 mm >10 mm

Total phosphorus 1.80 1.00 2.05 0.621

Only four effluent samples have had both inorganic and total N analyses performed. These four data

points are used to obtain a linear relationship between total N and inorganic N, which is used in the EMU

model to return the amount added to the organic N pool. Similarly for total P and ortho-P, a linear

relationship is used to divide the P between the organic and inorganic pools. The relationships used for N

arid P are shown in Figure 6.10.

Figure 6.10. Relatioships Between the Inorganic Forms of Nitrogen and Phosphorus and the Totals
for Each of the Nutrients in Effluent

6.4 Manure Characteristics

Nutrient concentrations in manure are a function of animal species, ration type, method of manure

collection and time in storage (Eigenberg et al. 1995; Gilmour et al. 1977; Kardos et al. 1977; Sri Ranjan

et al. 1995; Sweeten 1991). There is also a wide variation in manure analyses from similar livestock

operations (Schmitt et al. 1997).

Table 6.6 gives the averages and standard deviations from 10 manure samples collected in November 1996

during a manure spreading operation at the Tullimba irrigation area. In Table 6.6, these manure data are

compared with various averages and standard deviations gleaned from the US literature (Shapiro 1996;
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Stewart & Meek 1977). The average from the Tullimba data is generally less than the US values, however

the standard deviations are much greater. This could be an indication that the uniformity of the Tullimba

manure is far less than the US manure.

Table 6.6. Manure Characteristics from Tullimba and the Literature

Shapiro (1996) Stewart & Meek (1977)
Tullimba
10 Spread

manure samples
Nov 96

Nebraska
12 feedlot
stockpile
samples

Nebraska
Book

Values

Nebraska Kansas Texas Arid
South
West

Nutrient Ave Std Dev Ave Std Dev Ave Ave Ave Ave Ave
Total
nitrogen

0.84 0.57 3.14 0.35 4.5

Ammonium
nitrogen

..+.'
b.0•,..

`)

9
°i

0.93 0.14 1.5

Total
Phosphorus

0 48• 0.21 3.74 0.34 3.0

Potassium 0.60 0.30 2.75 0.31 5.0 0.46 1.09 2.29 2.3
Sulphur 0.23 0.11 1.23 0.26
Sodium 0.14 0.06 0.28 0.03 0.1 0.23 1.13 1.12
Aluminium 0.08 0.03
Calcium 1.2 0.5 0.26 0.78 1.98 2.8
Magnesium 0.60 0.06 0.17 0.39 0.76 1.53
p1-I 7.1 0.37

Manure characteristics vary as manure moves from the animal system though the storage system to the soil

system. There is also a large variation in the characteristics of the manure within each of these systems.

This variation is shown in Figure 6.11, which is based on 26 pen manure, 25 fresh faeces, 10 spread

manure and 9 harvest manure samples. The fresh faeces referred to in the box and whisker plots shown in

Figure 6.11, are analyses of samples obtained from fresh deposits on the pen surface. The pen manure is

analyses of samples from older manure. In Figure 6.11, harvested manure refers to analyses of samples

taken when the pen is cleaned out and spread manure is analyses of samples taken when the manure is

applied to the irrigation area.

The volatile nature of some elements and stable nature of others is shown in Figure 6.11. The volatile

nature of N is evident, with up to half being lost from the fresh faeces to the pen or harvested manure. By

the time the manure is spread after stockpiling, there have been further losses. Ca and P exhibit similar

characteristics to N, possibly due to losses in the soluble form. The lower concentration of K, Al and Mg

in the fresh faeces compared to pen or harvested manure types suggests that these elements are in an

absorbed form and as moisture is lost from the manure they become more concentrated.

120



3.0	 0.4 0.5 1.51.0
K%

0.6	 0.8
Mg %

0.5	 1.0	 1.5	 2.0	 2.5
Ca %

Pen Manure

Fresh Faeces

Spread Manure

Harvested Manure

Figure 6.11. Variation in Manure Characteristics

0.120.5	 1.0	 1.5	 0.0	 0.04	 0.08
P%	 Al %

Pen Manure

Fresh Faeces

Spread Manure

Harvested Manure



The characteristics of the stockpiled manure should not be a function of rainfall, as a properly constructed

stockpile should shed water with minimal infiltration of moisture into the stockpile. The elements in an

absorbed form should have a relationship with the ration characteristics, however given the limited dataset

available at the present time and the volatile nature of some of the elements, the 10 spread manure data are

used to extract relationship in a similar way to the liquid effluent.

The statistical package, "S-plus" was used to investigate relationships between nutrients in the manure.

Given the limited dataset, it was important to base the relationships on a variable that had a statistically

significant normal or lognormal distribution. Aluminium data displayed the most normal distribution

characteristics, as indicated by the diagnostics of a Shapiro-Wilk goodness-of-fit test for the 10 Al data,

shown in Figure 6.12.

Aluminium is a relatively stable element in the manure, and therefore, a reasonable relationship with other

stable elements should be evident in the dataset. The trellis function in "S-plus" was used to investigate

the relationship of Al with the other nutrients in the manure required as input to the EMU model. Figure

6.13 is the scatter matrix that is the graphical output of the trellis function and indicates the strength of

linear relationships by fitting a local regression model. The variables in Figure 6.13 are indicated in the

white boxes down the diagonal of the figure. Each graph in the same row and column as a variable

indicate the relationships that variable has with the other variables included in the analyses. Therefore,

each graph has a mirror image rotated 90 degrees, with one above and one below the diagonal. The

straighter the line of the local regression model, the stronger the linear relationship, for example, the first

graph on the second row indicates a reasonably linear relationship between the concentration of total P and

Al in manure.

"S-plus" was then used to test the significance of the strongest linear relationships. The graphs of the

relationships with the linear regression and r 2 values are shown in Figure 6.14. These relationships are

used in the EMU model to determine the characteristics of the manure each time it is added to the soil

system.

The density of the manure and its dry matter percentage are also required as an input to the EMU model.

These variables are functions of the position of the manure in the stockpile and the length of time the

manure has been stockpiled. An average of 70 % dry matter and a standard deviation of 20 % is used to

sample the assumed normal distribution (Powell 1997; Watts et al. 1994).
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Figure 6.12. Goodness-of-fit Test for Al % in Spread Manure
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Figure 6.14. Linear Relationships of Manure Characteristics Used in EMU Model

6.5 Crop Data

The potential yields used in the crop growth module of the EMU model are obtained from the average

yields for each crop grown over the three previous years at the Tullimba feedlot facility. Forage sorghum

and oaten silage are the two crop types that have been grown and included in the model at this point. The

yield averages, used as potential yields in the model, for forage sorghum and oaten silage are shown in

Table 6.7. Also included in Table 6.7 are the period of maximum growth for each crop (Doorenbos 1984)

and the water use efficiency values (Johnson 1998) used in the EMU model.
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Table 6.7. Potential Yield for Sorghum and Oats

Crop
Potential Yield

(kg/m2)
Period of max
growth (days)

Water Use (mm)

Oats 0.81 40 600
Forage Sorghum 0.53 45 300

Table 6.8 presents the average percentage of selected nutrients removed in the oats and sorghum crops

grown at Tullimba over the last three years. The sorghum samples are from two crops, with four samples

taken from the first crop 14 days prior to harvest in March 1997. Seven samples were taken four days prior

to the first harvest of the second crop in January 1998 and five samples were taken 7 days prior to the

second harvest of the same crop in March 1998. There were only three samples from which to take the

average of the uptake from the oats crop just prior to harvest. All other samples were from the crop at

varying times through the growing season and were not used to obtain the average crop uptake.

Data presented in Table 6.8 are compatible with those reported in the literature for crops fertilised with

manure and effluent. Kardos et al. (1977) reported N contents ranging from 1.2% to 2.3%, and P ranging

from 0.3% to 0.5% for most crops. However, the K contents measured in the Tullimba crop are at the top

end of the 0.2% to 2.4% range reported by Kardos et al. (1977).

Table 6.8. Average of Selected Nutrient Removed in Oats and Sorghum over Three Year Period at
Tullimba (% of crop weight)

Nutrient

Oats Forage Sorghum
Average Standard

Deviation
Average Standard

Deviation
P .... 0.274 0.004 0.252 0.081
K .5'

<3)

2.446 0.178 2.470 0.577
Ca n.. 0.247 0.095 0.405 0.097
Mg F.). 0.160 0.030 0.362 0.123
Na ("8 0.180 0.074 0.056 0.109
N ° 1.142 0.206 1.690 0.370

6.6 Initial Values

The variables that require an initial value or some form of input data are shown in Table 6.9. The units for

the input variables and the units used internally within the model are included, as is the name of the table

storing the information in the database. Some of these variables have a sensitivity analysis performed on

them in Chapter 7.4.

126



Table 6.9. Variables Requiring Initialisation

Initial Value Required Data Source Database Table Name Input Units Units Converted
to in Model

Mineralisation	 coefficients	 for
manure and effluent

Literature and calibrated using
Excel Solver

Input	 N	 mineralisation
coefficients

1/day

Crop	 uptake	 of each	 of the
nutrients

Average of "Tullimba" plant
analyses for each crop

Crop uptake % kg/ha

Yield	 Reduction	 slope	 and
intercept (function of EC)

Literature Crop uptake

Potential Yield Average of "Tullimba" plant
analyses for each crop 
Literature

Potential Yields

Potential Yields

kg/m2

days

kg/ha

Period of maximum growth
Water use efficiency WaterMod help files Potential Yields mm
Soil Depth Average of collected data Initial soil nutrients m
Cations in solution Collected data — Jan93/Sep95 Initial soil nutrients mequiv/100gm kg/ha/soil layer
Adsorbed cations Initial soil nutrients mequiv/100gm

mg/kg
kg/ha/soil layer
kg/ha/soil layerP & N in solution and adsorbed Average "Tullimba" Data —

Sep95
Initial soil nutrients

Initial Soil Moisture Estimated Soil moisture mm/layer
Field Capacity SOILPAR/	 Hydraulic

Properties Calculator
Soil moisture mm/layer

Saturated Hydraulic
Conductivity

SOILPAR/	 Hydraulic
Properties Calculator

Soil moisture mm/layer

Saturated Soil Moisture SOILPAR/	 Hydraulic
Properties Calculator

Soil moisture mm/layer

Wilting Point SOILPAR/	 Hydraulic
Properties Calculator

Soil moisture mm/layer

Irrigation Refill Point Midway	 between	 wilting
point and field capacity

Soil moisture mm

Soil Moisture where the growth
limiting function = 1

Estimated Soil moisture mm/layer

Value of Growth limiting
function at saturated moisture
content

Estimated Soil moisture °A)

Nutrient concentrations of
various commercial fertiliser

Manufacturers Fertiliser Compositions Ratios kg/ha/top layer

Manure density Literature User input 
User inputCrop growth rate (mu) WaterMod	 help	 files	 —

Sensitivity Analyses
Root distribution Function	 of	 days	 after

planting — literature
Root distribution Ratios

Soil evaporation ground cover
function (w90)

WaterMod	 help	 files	 —
Sensitivity Analyses

User input

6.6.1 Initial Soil Moisture Characteristics

Recent research suggests that modellers in the United States are moving away from soil testing and

towards the use of soil morphology to assess the hydraulic capacity of a soil that is being irrigated with

effluent (Geary & Gardner 1996). Given the heterogeneous nature of the soil and the limited data collected

for some parameters compared with a lot of data collected for other parameters, this approach seems

attractive.

The programs SOILPAR (Donatelli et al. 1996) and the Soil Texture Triangle Hydraulic Properties

Calculator (Saxton 1997) were used to estimate the saturated hydraulic, field capacity and wilting point of

each layer of the soil within the utilisation area at Tullimba. The inputs into the SOILPAR model varies

depending on the method used and include texture, organic carbon, pH and CEC.
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For the purpose of this exercise, the Baumer method was used to determine the soil water properties as it

requires only the percentage of sand, silt and clay as input, as does the Hydraulic Properties Calculator.

These texture data were obtained from the Environmental Impact Statement (EIS) prepared for the

development of the Tullimba Feedlot (Aquila Agribusiness Pty Limited 1993). The results from the two

programs are given in Table 6.10 and the average of these values is used as input to the model.

Table 6.10. Estimating the Soil Moisture Characteristics (SOILPAR – is the Soils Parameter
Estimate Program and Web Site is the Hydraulic Properties Calculator (URL:
http://www.bsyse.wsu.eduk-saxton/soilwatri); Sa- Sand; Si-Silt; C-Clay)

Soil Layer --■ Al A2 B
Sa Si C Sa Si C Sa Si C

%> 40 40 10 40 30 30 20 20 60

Parameter
SOIL
PAR

Web
Site

SOIL
PAR

Web
Site

SOIL
PAR

Web
Site

Wilting point (m/m) 0.15 0.09 0.21 0.17 0.36 0.35
Field Capacity (m/m) 0.3 0.25 0.34 0.30 0.45 0.48
Sat Hydraulic
Conductivity (cm/hr)

2.71 0.34 0.19

The depth of each horizon is required to determine the wilting point and field capacity in units of mm/layer

and the saturated hydraulic conductivity in mm/layer/day. Again, the heterogenous nature of the soil

makes this determination difficult. Figure 6.15 highlights this heterogeneity by superimposing the

measured depths on a schematic view of the irrigation area and shows the average depth measurements

taken over a period of time for each horizon in each irrigation bay. This figure indicates the considerable

gaps in the data. Bay 5 is at the top of the slope and Bay 1 is at the toe of the slope for both the South (S)

and North (N) blocks.

128



---- 4 - A1

Block Average

6

Northern
Irrigation Block

Block Average
Southern
Irrigation Block

Horizon Depth (mm)	 N

Figure 6.15. Soil Depth Measurements in the Tullimba Irrigation Area



Figure 6.16 averages the depth data shown in Figure 6.15. The depths were recorded when the soil was

sampled from each horizon. The slope of the irrigation area is approximately 3% and Figure 6.16 shows

that generally the depth of each horizon increases going down the slope. There were 18 samples taken on

the 11 th March 1996 and 27 samples taken on the 18 th June 1996. The depths were recorded as averages

only and are shown as S and N block averages in Figure 6.16. The S block average data also includes

depths that were recorded in the 1993 EIS (Aquila Agribusiness Pty Limited 1993). The average for S1 is

calculated from 3 replicates for each horizon on two dates — 4 th March 97 and 11 th September 97. S5

averages are taken from three sampling dates and S2 from 4 sampling dates.

Soil depth data used in the model for the Al horizon is interpolated between the average of the finish depth

of Al and the average of the start depth of A2, similarly for the finish depth of A2. The depth to the

bottom of the B horizon is obtained from EIS data and the average of 700mm (Aquila Agribusiness Pty

Limited 1993) is used for the entire block. This is assumed to be the maximum depth from where the

plants will be extracting nutrients.

The important characteristic required in the EMU model is the relative concentrations of each nutrient

within each horizon. Some nutrients increase in concentration with increasing soil depth and other nutrient

concentrations decrease down the profile. The nutrients that decrease in concentration down the profile are

C. P, Mn, K and N and are shown in Figure 6.17. Even though, on average, the inorganic forms of N

(nitrate and ammonium) decrease in concentration with increasing soil depth, Figure 6.18 shows when N

data is viewed as a time series, this nutrient is quite mobile and the lower profiles increase in concentration

as N moves through the profile.

Figure 6.19 shows that Na, CI, Mg and Ca all increase in concentration with increasing depth of soil. As

the soil is a duplex soil with a sodic B horizon this pattern is expected, particularly the increase in Na. The

model is likely to be sensitive to the depth of each soil horizon that is used in the model as, for a daily mass

balance, a 1% concentration over a depth of 100mm is equivalent to 17,700 kg of that particular nutrient

per hectare. S1 and N1, S2 and N2 etc are on the same contour and for this reason data is pooled to obtain

an average for the depth of each horizon. This is shown in Figure 6.20.
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Figure 6.17. Nutrient Concentrations that Decrease with Increasing Soil Depth
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Figure 6.20. Average Depths over each Irrigation Bay (Pooled North and South Data)



The evaluation runs of the EMU model (Chapter 7) use data from the bay at the top of the southern

irrigation block (bay 5), with the average depth for each horizon in bay 5, shown in Figure 6.20, used as

input. For these runs the wilting point and field capacity were found from the average values in Table

6.10. Because there have been no measurements made on the saturated moisture content of the soil, an

estimate of double the field capacity moisture content for each horizon is used (Brady 1984). The values

used as initial input to the model are shown in Table 6.11.

Table 6.11. Soil Moisture Characteristics used in Initial Model Run

Al A2 B
Wilting point (mm) 20 31 59
Field Capacity (mm) 45 53 77
Saturated Water Content (mm) 91 106 153
Saturated Hydraulic Conductivity (mm/day) 650 82 46

6.6.2 Initial Soil Nutrients

Soil soluble cation concentration data were collected for the EIS in January 1993 (Aquila Agribusiness Pty

Limited 1993) and subsequent soil analyses only considered the exchangeable component, of which the

soluble component is part. Because of this lack of data for the soluble component, another avenue of

estimating the soil solution concentration was investigated. As the terminal pond is suspected to capture

some lateral flow above the top of the B-horizon, the concentration of the nutrients in this solution could

also reflect the relative concentration of the nutrients in solution in the top layer of the soil in the irrigation

area.

Irrigation did not commence at the feedlot until 19 th September 1995. Three water samples were taken

from the terminal pond before this date on the 15 th August 1995, 4 th and 12th of September 1995. These

samples are used to provide an estimate of cation concentrations in the soil solution, before the

commencement of irrigating with the effluent. The averages of the three samples are used as the initial soil

solution values.

The adsorbed cation concentrations were found from soil samples analysed for the exchangeable cations on

the 12th September 1995. Three samples from each horizon in bays 1, 2 and 3 in the North block were

averaged and used as the initial values in the model.

The soil samples collected on the 12 September 1995 were also used to determine the starting values for

the soluble and adsorbed forms of N and P. Organic N and P are modelled as the adsorbed form and

inorganic as the soluble form. Soluble P values are determined from Bay 1 test data and the adsorbed P is

the difference between the total and the soluble P. There were no samples taken from the A2 horizon on

the 12 September 1995, and Al horizon data was used for the initial A2 horizon values. The starting

values obtained from the database are shown in Table 6.12.
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Table 6.12. Starting Values for Adsorbed and Soluble Nutrients

Adsorbed
Horizon Na K Ca Mg N 1	 P

mequiv/100 gm mg/kg
Al 0.16 0.61 5.34 0.99 1828 1194
A2 0.16 0.61 5.34 0.99 1828 1194
B 0.31 0.17 4.70 2.07 461 452

Soluble

Horizon Na r	 K 1	 Ca Mg N I	 P
mequiv/100 gm mg/kg

Al 0.244 0.004 0.015 0.021 78.6 12.9
A2 0.244 0.004 0.015 0.021 78.6 12.9
B 0.457 0.001 0.013 0.045 15.3 1.3

Other input data required for the soil is the soil bulk density. Values used are taken from the EIS (Aquila

Agribusiness Pty Limited 1993) and are 1.58, 1.75 and 1.81 Mg/m 3 for the Al, A2 and B horizons

respectively.

6.7 Nitrification Model

Mineralisation of manure N is a function of both manure and soil type (Chae & Tabatabai 1986), and

several authors have presented decay series for the mineralisation of manure as a function of time.

Gardner et al. (1994) reported several series based on the N content of the manure. For manure with 1.5%

N, Gardner et al. 94) estimated that 35% of organic N will be mineralised to inorganic forms in the first

year, with 15%, 10% and 5% being mineralised in the subsequent three years. For manure having 1.0% N,

the estimate is 20% in the first year, with 10% and 5% of the residual N in years 2 and 3 respectively

(Gardner et al. 1994). For manure with a higher N content (2.5%) the decay series given by Gardner et al.

(1994) is 40%, 25% and 6%. Powell (1997) however, estimated mineralisation ranges from 30 to 70% in

the first year, 10 to 15% in the second year, followed by slow release of the residual organic N in

subsequent years. Another study by Gilmour et al. (1977) found 41% of N in dry steer manure was

mineralised in the first year and 25 % in the second year.

In the EMU model, a first-order exponential equation is used to describe the mineralisation process (Chae

& Tabatabai 1986; Scott et al. in press). Various first-order rate constants are reported by Scott et al. (in

press) based on the amount of residual organic N, the temperature and moisture content. At present the

EMU model includes mineralisation as a function of time since application only and the first-order rate

constant used in the model is a function of the N mineralised as a percentage of the original addition. The

Excel Solver function was used to determine which constants gave the required mineralisation on an

annual basis. The First-order rate constants that mineralised 37% of organic N in the first year, then 15%,

24% and 32% of the residual in subsequent years are shown in Table 6.13 and the rate of mineralisation is

shown in Figure 6.21. These constants are used in the EMU model.
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Table 6.13. First-Order Rate Constant used in Nitrogen Mineralisation Function

Percentage of
nitrogen

mineralised

First-order
rate constant

80 0.0000124
65 0.0000364
0 0.0000008

Figure 6.21. Mineralisation of Manure Organic Nitrogen

6.8 Summary

The majority of input data to the model developed in this chapter are empirical. They are derived from

sampling statistical distributions, or from relationships observed in collected data. Table 6.14 to Table

6.17 summarise the methods for determining these data values.

Table 6.14. Statistically Derived Manure and Effluent Variables

Dependent
Variable

Independent
variable

Intercept slope Unit

(I)
=u..

P Al 1.0 -0.7
c„

g.,,'

K Al 1.6 -0.9
Na Al 0.3 -0 2'
N Nik -1.1 2.5
Ca Al 2.6 -1.8
Mg Log(P) 0.7 1.0

0.)
=(4-,
r4

Na EC -5.4 111.4

.-4

Mg EC 5.6 23.7
Ca Mg 1.2 1.0
K Mg -10.2 3.5

Organic N Inorganic N -0.1 1.4
ortho-p Organic P 0.4 0.9
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Table 6.15. Statistically Sampled Effluent Variables Sampled from Lognormal Distributions

Variable Average Standard
Deviation

Units Total Rain
Previous 5
Days (mm)

Effluent EC -0.68 0.37 dS/m < 15
-0.95 0.46 dS/m > 15

Effluent Inorganic N -0.03 0.89 mg/L < 20
0.11 1.43 mg/L > 20

Effluent Organic P 1.80 1.00 mg/L < 10
2.05 0.62 mg/L >10

Table 6.16. Statistically Sampled Manure Variables Sampled from Normal Distributions

Variable Average Standard

Deviation

Units

Dry Matter 0.70 0.20 0/0

Aluminium Concentration 0.80 0.27 %

Table 6.17. Variables Determined from the Generation of a Random Number

Variable Source Units

Probability of Rain Probability of x continuous rain days
Rainfall Amount Monthly rainfall distributions mm

Evaporation Amount Monthly evaporation distributions mm
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