Managing and Using Feedlot Environmental Monitoring Data to Understand and Simulate the Utilisation of Manure and Effluent

Helen Fairweather, Bachelor of Engineering (1st Class Honours) University of Southern Queensland, Toowoomba, Qld, 1996

A thesis submitted for the degree of Doctor of Philosophy of the University of New England April, 1999

CERTIFICATE

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree or qualification.

I certify that any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

Signature

Acknowledgments

This PhD journey has probably been like most others: spending the first month wondering where to hell to start, and muddling along during the first year, not knowing where I was heading. By the end of the second year, I was starting to get a clear idea of what was going on, and now at the end of the third year I know exactly what I should have done – and of course haven't! But I have been assured that this is research, which now I can look back with hindsight has proved to be a particularly enriching experience, despite the occasional frustration (OK, more than occasional!). There are many people who have made this experience enriching and it is appropriate that these people should be acknowledged at the beginning.

The first vote of thanks goes to the CRC for the Beef and Cattle Industry for their scholarship and the opportunity to undertake this research. I hope this project contributes to an enhanced understanding of the environmental aspects of the important lotfeeding industry. Many thanks also for the support received from CRC staff, in particular, Faye Hughes. A special thanks to the guys at "Tullimba", Reid Geddes, Stuart Murphy, Chris Smith, Chris Weber and Colin. Your help when I ran into frequent(!) difficulties was very much appreciated. Dave Sauer, Trevor Stace, Bruce Whan and Priscilla Piper, the technical and administrative staff at Environmental Engineering, were also supportive throughout the duration of the project. Special thanks to Bruce for printing the graphs for the PhD. There were many people involved in data collection and analyses, including the technical staff, undergraduate and postgraduate students. To these people, thank you for providing these data.

To Simon Murray, my principal supervisor, thank you for the freedom to make the research project mine, without constraints. Simon, I have also appreciated your encouragement to challenge my thinking patterns. Without Simon Lott, this particular project would not have been possible, so thank you Simon for your drive and commitment to get it off the ground and support and feedback throughout the project. I also appreciate the friendship extended to me by both Simons. To John Duggin, thank you also for your feedback and assistance.

Particular thanks to Paul Southcott and Richard Faulkner for their advice when I was building the model. Your patience with my endless questions, when my supervisors were unavailable is very much appreciated. Thanks also to Ian Johnson for his modelling advice and explanations about the WaterMod model, parts of which are included in the model developed in this PhD.

The bulk of chapter 4 is taken from an internal CRC report "Environmental Monitoring for Feedlots. Report to June 30 1998" (Fairweather & Lott 1998). I was responsible for the database section and had approximately 15% input into the sample collection section, which appears as Appendix A.

Austin College has been my home for the past 3 years and the students and staff, especially the wonderful people in the kitchen, have made it a very happy home. A special thanks to Alan McKenzie for his support and advice and the opportunities to learn many people skills. To all the Tutors and Seniors that I have worked with, also a big thanks for your support and I hope you all stay in touch.

I have especially enjoyed sharing my home and role at Austin College with Jason Ford these past 5 months, and I will miss you a lot, Jason. Thank you also to the support from my family, especially my parents. To Christine and Paul, thank you for your support, the proof reading and traipsing around UQ in the rain chasing journal articles for me! Best of luck to you Kaara for your PhD and thanks for your friendship over these past 2 years. I look forward to you all visiting me in Canada!

iii

Abstract

Data from long-term monitoring of a feedlot and its environment is used in this study to investigate the sustainable utilisation of feedlot manure and effluent in a crop production system. The sustainable utilisation of the nutrients in manure and effluent and the partitioning of these nutrients into output pathways, as opposed to the disposal of the waste by-products from a beef cattle feedlot, is an important focus of the study.

As a means of achieving the objectives of this study, the relevant literature was investigated to develop a broad understanding of the issues associated with the utilisation of manure and effluent from a feedlot. Development of an Environmental Monitoring Database (EMD) is the first objective of the study. This database stores data that has been collected from the University of New England's feedlot research facility, "Tullimba" and data from other feedlots. The primary aim of the EMD is to provide safe, efficient storage of data. Another important aim of the EMD is to have the ability to manipulate the datasets to investigate the relationships in monitoring data.

The final objective of the overall study is to develop a stochastic Effluent and Manure Utilisation (EMU) model to investigate the output pathways of N, P, Na, K, Ca and Mg, within and from the utilisation area. Two important aims of the EMU model are the use of data from the EMD as input, and the use of the model to run 'virtual experiments'. The final stage of the modelling phase of this study is the evaluation of the results of the simulation and a demonstration of the usefulness of the model output in defining sustainability and adjusting management practices to optimise the likelihood of system sustainability.

The EMU model is management-oriented and developed to observe the response of the system to different application rates and times of application of manure and effluent. It is a simple conceptual model, which includes the stochastic characteristics of the system through the use of Monte Carlo techniques to sample input variables randomly. The model has potential as a tool for formulating and evaluating guidelines for best management practices.

Nutrient and water movement through the soil profile in the manure and effluent utilisation area is modelled by the use of a simple daily mass balance of water and nutrients. Cation exchange is modelled by using the Gapon exchange equations and a daily nitrogen mineralisation function is also included in the model.

Microsoft Access was used to construct the database and the EMU model, using the visual basic programming language. This application was used to allow seamless integration of the input data from the EMD to the EMU. The use of the Access environment for model output allows data manipulation to be built into the modelling package.

Using data from the Tullimba feedlot, the EMU model predicts that losses of nitrogen and phosphorus in leachate and runoff increase with increasing manure application rates, which creates a detrimental effect on the environment. However, because the cation exchange capacity in the soil increases with manure additions, the EMU model predicts that losses of cations in runoff decrease with increasing application rates, which has important ramifications for the availability of these nutrients, especially potassium.

TABLE OF CONTENTS

1

Acknowle	dgments	iii
Abstract.		iv
CHAPTE	R 1. INTRODUCTION	1
1.1	The Feedlot System	1
1.2 1	Monitoring the System	2
1.3	Thesis Aim and Objectives	3
1.4	The Research Approach	3
CHAPTE	R 2. SUSTAINABILITY AND BACKGROUND STUDIES	5
2.1 I	Defining Sustainability	5
2.2 I	Defining an Agro-ecosystem	6
2.2.1	The Feedlot Agro-ecosystem	7
2.3 H	Background to the Elements of Sustainability of Agro-ecosystems Relevant to this Study	7
2.4 (Quantifying Sustainable Agro-ecosystems	10
2.4.1	The Predictive Components of Sustainability	11
2.5 0	Comprehensive Nutrient Management Plans (CNMPs)	13
2.6 A	Aspects of Sustainable Design and Management of an Intensive Confined Animal Feeding	
Operatio	n	15
2.7 U	Jtilisation and Losses of the Nutrients and Salts in Manure and Effluent	17
CHAPTE	R 3. CHARACTERISTICS OF THE AGRO-ECOSYSTEM	20
3.1 A	A Systems Framework	20
3.1.1	The Soil System	24
3.1.2	The Crop System	25
3.1.3	The Ground Water System	27
3.1.4	The Surface Water System	27
3.2 F	Processes that Affect the Transfer of Nutrients and Salts in the Agro-ecosystem	28
3.2.1	Hydrological Cycle	29
3.2.2	The Nutrient Cycle	31
3.2.3	The Organic Component	32
3.2.4	Carbon	35
3.2.5	Nitrogen	35
3.2.6	Carbon:Nitrogen Ratio	38
3.2.7	Phosphorous	39
3.2.8	Salts	40
3.2.9	Cation Exchange	40
3.2.10	Soil Erosion as a Vector of Nutrient and Salt Transfer	42

3.2.	11 Nutrient Pathways in Land Areas Receiving Manure and Effluent	42
3.3	Managing the Utilisation of Effluent and Manure	
3.4	Monitoring Requirements	
СНАРТ	ER 4. ENVIRONMENTAL MONITORING DATABASE	
4.1	Introduction	
4.2	Development of the Environmental Monitoring Database (EMD)	53
4.2.	Purpose and Objectives of the Environmental Monitoring Database	53
4.2.	2 Structure of the Environmental Monitoring Database	53
4.3	Querying the Database	57
4.4	Data Management	61
4.4.	1 Keeping Track of the Sample	61
4.5	Exploring the Datasets	61
4.5.	1 Soils	62
4.5.	2 Ground Waters	62
4.5.	3 Surface Waters	62
4.5.4	4 Effluent	63
4.5.	5 Interrelationships	63
4.6	Applying Preliminary Statistical Models	71
4.7	Dynamic Mass Balance of Nutrients in the Utilisation Area	76
4.7.	1 Gathering Data	76
4.7.2	2 Structure of the Dynamic Mass Balance	77
4.8	Running the Dynamic Mass Balance	78
CHAPT	ER 5. MODELLING THE UTILISATION OF MANURE AND EFFLUENT	81
5.1	Conceptualising the Model	81
5.2	Study Purpose and Intended Use of the Model	82
5.3	Objectives of Modelling the Utilisation Area	82
5.4	Model Assumptions	83
5.5	Important Processes to Include in the Model	
5.5.	1 Climate Generation	84
5.5.2	2 Crop Growth	84
5.5.3	3 Soil water	
5.5.4	4 Nutrient Fluxes	86
5.5.5	5 Nitrogen and Phosphorus	86
5.5.6	6 Cations	87
5.6	Temporal and Spatial Scales	89
5.6.1	Data Requirements of the Ideal Model versus Data Reality	89

5.7	Model Description	89
5.7	1 Data Input and Initialising Variables	90
5.7	2 Central Module of the Program	94
5.7	3 Fertiliser and Manure Additions	94
5.7.	4 Generating a Normally Distributed Random Variable	95
5.7.	5 Planting and Harvest Dates	96
5.7.	6 Rainfall and Evaporation	96
5.7.	7 Irrigation Module	98
5.7.	8 Determining the Characteristics of Effluent	99
5.7.	9 Distribution of Moisture and Nutrients through the Soil Profile	100
5.7.	10 Cation Exchange	101
5.7.	11 Crop Growth	102
5.7.	12 Soil Evaporation	105
5.7.	13 Mineralisation	106
СНАРТ	ER 6. MODEL INPUTS	
6.1	Rainfall	107
6.2	Evaporation	
6.3	Effluent Characteristics	113
6.3.	1 Sampling the Effluent	
6.3.	2 Electrical Conductivity (EC) of Effluent	114
6.3.	3 Concentrations of Cations in Effluent	117
6.3.	4 Nitrogen and Phosphorus Concentrations in Effluent	
6.4	Manure Characteristics	119
6.5	Crop Data	
6.6	Initial Values	126
6.6.	1 Initial Soil Moisture Characteristics	127
6.6.	2 Initial Soil Nutrients	133
6.7	Nitrification Model	134
6.8	Summary	135
СНАРТ	ER 7. EVALUATING THE PERFORMANCE OF THE EMU MODEL	137
7.1	Adjustment of the Model Parameters	138
7.1.	1 Comparison of Simulated Drainage EC With Measured Ground Water EC	140
7.1.	2 Comparison of Simulated and Measured Runoff Quality	141
7.2	Further Evaluation and Testing of Model Output	142
7.2.	1 Comparison of Simulated and Measured Nutrients in the Soil	142
7.2.	2 Comparison of Simulated and Measured Crop Uptake	144
7.2.	3 Test of Random Number Generator	144
7.3	Check of Model Mass Balance	145

1

7.4 Sensitivity Analyses	145
CHAPTER 8. MODELLING THE TULLIMBA IRRIGATION AREA	148
8.1 Fifteen Year Simulation of Tullimba Irrigation Area	148
8.1.1 Simulation Output	148
8.2 Six Year Simulations to Study Various Rates and Timing of Manure Applications	161
8.2.1 Runoff	168
8.2.2 Drainage	185
8.3 Summary	199
CHAPTER 9. CONCLUSIONS AND RECOMMENDATIONS	201
9.1 Conclusions	201
9.2 Recommendations	203

TABLE OF FIGURES

Figure 1.1. An Example of a Feedlot Layout and Nutrient Pathways (Assuming a Closed System)	2
Figure 2.1. Sustainable Pathways and Viability Space as a Function of Time	9
Figure 2.2. Sustainable Index	10
Figure 3.1. Pictorial Representation of Systems Involved in Land Utilisation of Resources Produced	1 by a
Feedlot	22
Figure 3.2. The Interactions and Pathways of a Manure/Effluent Utilisation System	23
Figure 3.3. Some of the Pathways in the Hydrological Cycle	30
Figure 3.4. Structure of Amino Acids - Building Blocks of all Proteins	36
Figure 3.5. Factors Influencing Cation Adsorption Preference	41
Figure 4.1. Excel Interface for Tullimba Ground Water	55
Figure 4.2. Relationships Central to the Database	57
Figure 4.3. Design View of the "Analyses - Fresh Faeces" Query	58
Figure 4.4. Sample Time Line Form	60
Figure 4.5. Soil Colwell P Across all Feedlots	64
Figure 4.6. Colwell P versus Organic Carbon in Various Soil Horizons at Feedlot I (Tullimba)	65
Figure 4.7. Nitrogen and Phosphorus Relationships in Ground Water at Feedlot I (Tullimba)	66
Figure 4.8. Changes in EC Through Time in Feedlot I (Tullimba) at Headstation Creek with Rainfall	Data
	67
Figure 4.9. Changes in the Chemical Characteristics of Irrigation Water at Feedlot I (Tullimba)	68
Figure 4.10. Average Colwell P in Soil versus Total P in the Plant at Feedlot I (Tullimba)	69
Figure 4.11. Variability of Nitrate in Irrigation Area Ground Water Compared with a Site Below	w the
Irrigation Area at Feedlot I (Tullimba)	70
Figure 4.12. Schematic of Surface Water Sampling Points	72
Figure 4.13. Scatter Plot of Surface Water EC versus Piezometer SWL	72
Figure 4.14. EC at T1 and T3 as a Function of the SWL in P9	73
Figure 4.15. Plot of Residuals from T1 Model	75
Figure 4.16. Histogram of T1 Model Residuals	75
Figure 4.17. Screen Capture Beginning of Simulation	79
Figure 4.18. Screen Capture End of Simulation	79
Figure 5.1. Ortho-P in Ground Water at Tullimba Feedlot	88
Figure 5.2. Schematic of Simulation Model	91
Figure 5.3. Soil Moisture Distribution	106
Figure 6.1. Comparison of Kingstown and Tullimba Manual Rainfall Records (mm)	108
Figure 6.2. Average Rainfall Event For each Month of Historical and Simulated Rainfall Data	110
Figure 6.3. Comparison of Histograms of Simulated and Actual Rainfall Data	110
Figure 6.4. Simulation and Actual Time Series of Evaporation Data	112
Figure 6.5. Simulation and Evaporation Data Averages and Standard Deviations	112
Figure 6.6. Density Histograms of EC of Effluent from the two Tullimba Holding Ponds	115

Figure 6.7. Goodness-of-fit tests for Effluent EC when Total Rainfall for the Previous 5 days > 15m	m .116
Figure 6.8. Goodness-of-fit tests for Effluent EC when Total Rainfall for the Previous 5 days < 15m	m .116
Figure 6.9. Relationships Between Effluent EC and Na, Mg, Ca and K	117
Figure 6.10. Relatioships Between the Inorganic Forms of Nitrogen and Phosphorus and the To	tals for
Each of the Nutrients in Effluent	119
Figure 6.11. Variation in Manure Characteristics	121
Figure 6.12. Goodness-of-fit Test for Al % in Spread Manure	123
Figure 6.13. Scatter Matrix of Manure Characteristics (%)	124
Figure 6.14. Linear Relationships of Manure Characteristics Used in EMU Model	125
Figure 6.15. Soil Depth Measurements in the Tullimba Irrigation Area	129
Figure 6.16. Average Soil Depths	131
Figure 6.17. Nutrient Concentrations that Decrease with Increasing Soil Depth	131
Figure 6.18. Time Series of Inorganic Nitrogen in the 3 Tullimba Soil Profiles	132
Figure 6.19 Nutrient Concentrations that Increase with Increasing Soil Depth	132
Figure 6.20. Average Depths Over Each Irrigation Bay (Pooled North and South Data)	132
Figure 6.21. Mineralisation of Manure Organic Nitrogen	135
Figure 7.1. Comparison of Cumulative Runoff Produced by the Runoff Curve Number Method a	und the
Simulation Model	139
Figure 7.2. Comparison of Measured EC in P27 and P25 and Simulated Drainage	140
Figure 7.3. Comparison of Simulated Runoff Concentrations with Terminal Pond Concentrations O	ver the
Simulation Period	141
Figure 7.4. Predicted and Measured Values for 11Mar96	143
Figure 7.5. Predicted and Measured Values for 4Mar97	143
Figure 7.6. Simulated Crop Uptake Versus Measured Crop Uptake for Simulated Nutrients	144
Figure 7.7. Histogram of 13140 Random Numbers Generated by the Access function Rnd	145
Figure 7.8. Crop Uptake as a Function of "w90"	147
Figure 7.9. Crop Uptake as a Function of "mu"	147
Figure 8.1. Fifteen Year Simulation at "Tullimba" Feedlot	149
Figure 8.2. Gross Amount of Inputs and Outputs (kg/ha) over 15 Year Simulation	150
Figure 8.3. Time Series of Sodium in Solution in Soil Profile with Sodium Additions in Manu	re and
Effluent	152
Figure 8.4. Time Series of Cation Exchange Capacity of the Soil Profile	153
Figure 8.5. Time Series of Relative Cation Percentages in Each Soil Horizon	155
Figure 8.6. Comparison of Inorganic Nitrogen and Sodium in Solution in each Soil Horizon for 1	5 Year
Simulation	157
Figure 8.7. Inorganic N in the Soil Solution and Manure and Effluent additions of Total Nitrogen	159
Figure 8.8. Comparison of Inorganic Nitrogen and Sodium in Solution for Each Horizon	160
Figure 8.9. Average of Cumulative Inputs and Outputs over six year Simulations and Total Input	its and
Outputs	162

Figure 8.10. Six Year Total Output Pathways as a Percentage of Total Inputs for Each Nutrient	164
Figure 8.11. Time Series of Crop Nitrogen Deficiency, and Nitrogen Losses in Drainage and Runof	f166
Figure 8.12. Cumulative Density Function of Runoff Depth per Month	170
Figure 8.13. Cumulative Density Function of Na Removed in Runoff per Month	171
Figure 8.14. Cumulative Density Function of K Removed in Runoff per Month	172
Figure 8.15. Cumulative Density Function of Ca Removed in Runoff per Month	173
Figure 8.16. Cumulative Density Function of Mg Removed in Runoff per Month	174
Figure 8.17. Average of Total Amount of Each Cation Removed in Runoff Over a Six Year Simular	tion for
all Treatments	176
Figure 8.18. Box and Whisker Plots of Cation Totals in Runoff Over Six Year Simulations	177
Figure 8.19. Average Monthly Concentration of Cations in Runoff Solution for each Treatment	178
Figure 8.20. Cumulative Density Function of Inorganic N Removed in Runoff per Month	180
Figure 8.21. Cumulative Density Function of Organic N Removed in Runoff per Month	181
Figure 8.22. Cumulative Density Function of Ortho P Removed in Runoff per Month	182
Figure 8.23. Cumulative Density Function of Organic P Removed in Runoff per Month	183
Figure 8.24. Monthly Average Runoff Totals and Concentrations of N and P in Runoff Solution for	or Each
Treatment	184
Figure 8.25. Total Amount of N (kg/ha) Removed in Runoff Over a Six-Year Simulation for all Trea	itments
	185
Figure 8.26. Total Amount of P (kg/ha) Removed in Runoff Over a Six-Year Simulation for all Trea	ıtments
	185
Figure 8.27. Box and Whisker Plots of Total Drainage Depths (mm) for Each Treatment	186
Figure 8.28. Cumulative Density Function of Drainage Depth per Month	188
Figure 8.29. Cumulative Density Function of Na Removed in Drainage per Month	189
Figure 8.30. Cumulative Density Function of K Removed in Drainage per Month	190
Figure 8.31. Cumulative Density Function of Ca Removed in Drainage per Month	191
Figure 8.32. Cumulative Density Function of Mg Removed in Drainage per Month	192
Figure 8.33. Average of Total Amount of Each Cation Removed in Drainage Over a Six Year Sim	ulation
for all Treatments	193
Figure 8.34. Cumulative Density Function of Inorganic N Removed in Drainage per Month	194
Figure 8.35. Average of Total Amount of Inorganic N (kg/ha) Removed in Drainage Over a Si	. Veen
	x year
Simulation for all Treatments	x Year 195
Simulation for all Treatments Figure 8.36. Average Monthly Drainage and Concentration of Cations in Drainage Solution fo	x Year 195 r Each
Simulation for all Treatments Figure 8.36. Average Monthly Drainage and Concentration of Cations in Drainage Solution fo Treatment	x Year 195 r Each 197
 Simulation for all Treatments	x Year 195 r Each 197 atment

LIST OF TABLES

Table 2.1. The Difficulties and Attributes Associated with Variables to be Considered in use	of Manure
and Effluent	19
Table 3.1. Increase in Organic Carbon in the Soil	34
Table 3.2. Typical Estimates of Non-Point Phosphorus	46
Table 4.1. Variables in Model	74
Table 4.2. Output of Model Fitting	74
Table 4.3. EC at T2 as a Function of Piezometer SWLs	76
Table 5.1. Piece-wise Probability Distribution for January Rainfall	98
Table 6.1. Rainfall States and Corresponding Rainfall Intervals	108
Table 6.2. Probability of No Rain Following "x" Number of Continuous Rain Days	109
Table 6.3. p-values for Comparison of Simulated and Acutal Rainfall Distributions	111
Table 6.4. Comparison of Effluent from Tullimba Feedlot Holding Ponds and Various Sites in	the United
States	114
Table 6.5. Averages and Standard Deviations for Nitrogen and Phosphorus as a Function of To	otal Rainfall
in the Preceeding 5 Days	119
Table 6.6. Manure Characteristics from Tullimba and the Literature	120
Table 6.7. Potential Yield for Sorghum and Oats	126
Table 6.8. Average of Selected Nutrient Removed in Oats and Sorghum over Three Yea	r Period at
Tullimba (% of crop weight)	
Table 6.9. Variables Requiring Initialisation	
Table 6.10. Estimating the Soil Moisture Characteristics	
Table 6.11. Soil Moisture Characteristics used in Initial Model Run	
Table 6.12. Starting Values for Adsorbed and Soluble Nutrients	134
Table 6.13. First-Order Rate Constant used in Nitrogen Mineralisation Function	135
Table 6.14. Statistically Derived Manure and Effluent Variables	135
Table 6.15. Statistically Sampled Effluent Variables Sampled from Lognormal Distributions	
Table 6.16. Statistically Sampled Manure Variables Sampled from Normal Distributions	136
Table 6.17. Variables Determined from the Generation of a Random Number	136
Table 7.1. Calibrated Soil Moisture Characteristics	139
Table 7.2. Check of Model Output using a Mass Balance of each Nutrient	145
Table 8.1. "S-plus" Analysis of Variance Output for Differences in Runoff Totals Ove	r Six Year
Simulations	168
Table 8.2. Significant Difference Between Application Rates (p<0.05) for K, Ca and Mg	175
Table 8.3. "S-plus" Analysis of Variance Output for Differences in Drainage Totals Over	r Six Year
Simulations	

LIST OF APPENDICES

Appendix A. Sample Collection and Handling

Appendix B. Review of Modelling Literature

Appendix C. Monthly Rainfall Probability Distributions

Appendix D. Monthly Evaporation Probability Distributions

Appendix E. Soil Measurements over Last 3 Years

Appendix F. Analysis Of Variance for Crop Uptake as a Function of "mu"

Appendix G. Analysis Of Variance for Crop Uptake as a Function of "W90"

Appendix H. Analysis Of Variance for Nitrogen Crop Deficiency as a Function of "W90" And "mu"

Appendix I. Analysis Of Variance for Drainage Output as a Function of "mu"

Appendix J. Analysis Of Variance for Drainage Output as a Function of "W90"

Appendix K. Analysis Of Variance for Runoff Output as a Function of "mu"

Appendix L. Cropping Cycle, Manure and Fertiliser Additions for 15 Year Simulation

Appendix M. Average Monthly Runoff and Drainage Depths

Appendix N. Analysis Of Variance and Multiple Comparisons-: Runoff Totals for Cations for All Treatments

Appendix O. Analysis Of Variance and Multiple Comparisons-: Nitrogen and Phosphorus in Runoff for All Treatments

Appendix P. Analysis Of Variance and Multiple Comparisons-: Drainage Totals for Cations and Inorganic Nitrogen for All Treatments