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Introduction
Migraine	is	a	chronic	neurovascular	disorder	that	is	characterized	by	recurring	headache	of	unilateral	onset,	photophobia,	phonophobia	and	autonomic	disturbances	[89],	(IHS,	2013).	A	systematic	review	of

population-based	studies	reporting	migraine	prevalence	found	that	the	incidence	of	chronic	migraine	was	estimated	to	range	from	0	to	5.1%	[152].	However,	sex	differences	have	been	noted	with	women	up	to	four

times	more	likely	to	be	affected	than	men	[133].

Historically,	migraine	was	thought	to	be	a	vascular	disorder.	The	association	between	migraine	and	vascular	diseases	such	as	hypertension	and	ischemic	brain	injury	and	vascular	disorders	such	as	coronary

heart	 disease	 and	 stroke	 is	 well	 known	 [222].	 However,	 the	 advent	 of	 new	 technology	 has	 confirmed	 that	 migraine	 pathophysiology	 is	 associated	 with	 disturbances	 in	 many	 parts	 of	 the	 brain	 including	 the

hypothalamus,	thalamus	and	brainstem	[80].

The	recommended	treatment	and	prevention	strategies	for	migraine	within	the	last	decade	have	become	largely	pharmacological.	The	discovery	of	selective	5-hydroxytryptophan	agonists	has	provided	many

migraine	sufferers	relief	from	the	severely	debilitating	symptoms,	which	often	result	in	the	individual	being	unable	to	carry	out	even	the	most	basic	of	functions	during	an	attack	[79,80].	Prophylactic	treatment	using

a	range	of	drugs	(e.g.	β-blockers,	flunarizine,	valproic	acid	and	topiramate),	is	also	not	uncommon.	However,	while	drugs	are	often	prescribed	for	the	prevention	or	management	of	migraine,	pharmacotherapy	is	often

unsuccessful	in	preventing	a	recurrence	of	symptoms	in	migraine	sufferers	[63].

The	study	of	migraine	is	made	difficult	by	the	lack	of	an	animal	model	that	translates	fully	the	clinical	symptoms	of	migraine	[188],	the	episodic	nature	of	the	attacks	[1],	and	the	observation	that	the	migraine

‘trigger’	can	be	of	nutritional,	psychological,	hormonal	or	behavioural	origin	[47,57,105,176,235,112,113].	To	date,	researchers	have	been	unable	to	identify	a	set	of	triggers	common	to	all	migraineurs.	Indeed,	every

case	of	migraine	appears	to	have	its	own	set	of	unique	triggers	making	treatment	and	prevention	of	the	condition	difficult.	A	summary	of	some	of	the	most	common	migraine	triggers	is	provided	in	Table	1.

Table	1	Summary	of	the	reported	psychological,	nutritional,	hormonal,	behavioural	and	environmental	migraine	triggers	[145,134,114,112,113,70].

Group Migraine	trigger

Psychological Emotional	stress

Hormonal Menstrual	cycle,	oral	contraceptives

Behavioural Exercise,	disrupted	sleep,	fasting,	skipping	meals,	dehydration

Environmental Bright	lights,	odour,	weather	changes,	cigarette	smoke,	gasoline
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Abstract

The	 treatment	and	prevention	of	migraine	within	 the	 last	decade	has	become	 largely	pharmacological.	While	 there	 is	 little	doubt	 that	 the	advent	of	drugs	 (e.g.	 triptans)	has	helped	many	migraine

sufferers	to	lead	a	normal	life,	there	is	still	little	knowledge	with	respect	to	the	factors	responsible	for	precipitating	a	migraine	attack.	Evidence	from	biochemical	and	behavioural	studies	from	a	number	of

disciplines	is	integrated	to	put	forward	the	proposal	that	migraine	is	part	of	a	cascade	of	events,	which	together	act	to	protect	the	organism	when	confronted	by	a	metabolic	challenge.
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Nutritional Cheese,	milk,	citrus,	monosodium	glutamate,	aspartame,	glucosamine,	chocolate,	ice-cream,	alcohol,	white	wine,	red	wine,	banana,	coffee,	nitrates	(e.g.	sausage,	bacon)

A	significant	association	between	polymorphisms	in	the	insulin	receptor	gene	and	migraine	pathogenesis	has	been	confirmed	[143].	Moreover,	there	is	increasing	evidence	that	altered	energy	metabolism	and

utilization	may	hold	 the	key	 to	understanding	 the	pathogenesis	 of	migraine	 (e.g.	 [105,176].	However,	 if	 this	 is	 true	 then	 it	 should	be	possible	 to	 establish	a	 link	between	 the	known	migraine	 triggers	 and	 some

alteration	in	energy	metabolism	and	utilization.

The	aim	here	is	to	examine	the	effect	(if	any)	of	the	most	commonly	reported	migraine	triggers	on	glucoregulation.	The	review	will	consist	of	three	sections.	The	first	section	will	provide	a	minor	review	of	the

biochemical	processes	usually	activated	during	feeding	and	fasting	in	non-migraineurs.	This	information	has	been	included	in	order	to	assist	those	unfamiliar	with	the	feeding	and	fasting	literature.	Then	an	overview

of	the	most	salient	pathways	of	metabolism	known	to	contribute	to	migraine	will	be	presented.	Lastly,	data	from	human	and	animal	studies	will	be	used	in	order	to	argue	that	the	common	factor	linking	the	known

migraine	triggers	may	be	an	underlying	ability,	albeit	variable,	to	promote	the	development	of	a	metabolic	challenge.

Section	1:	Metabolic	effect	of	feeding	and	fasting
The	human	body	needs	to	be	able	to	function	when	food	is	not	available.	Thus,	the	metabolism	of	glucose,	the	main	energy	source	for	cells,	is	a	highly	regulated	mechanism.	When	food	is	available,	glucose	is

converted	by	glycolysis	into	pyruvate	and	lactate	in	the	cytosol	and	any	excess	glucose	is	converted	to	glycogen	by	glycogenesis	and	stored.	Alternatively,	when	food	intake	is	low	the	stored	glycogen	is	converted	back

to	glucose	by	glycogenolysis	[22].

Insulin,	a	peptide	hormone	released	by	beta	cells	in	the	pancreas,	has	a	key	role	in	the	utilization	of	glucose,	amino	acid	and	free	fatty	acids	[53].	In	order	for	glucose	to	gain	entry	to	most	cells	it	must	be

transported	by	an	active	mechanism,	which	is	controlled	by	insulin	receptors	in	the	cell	membrane.	However,	cells	located	in	the	brain	are	an	exception	to	the	rule	and	many	types	of	cells	do	not	need	insulin	to	absorb

glucose	[22].

After	a	meal	high	in	carbohydrate	the	levels	of	glucose	and	insulin	are	significantly	elevated	and	the	level	of	plasma	insulin	remains	elevated	until	the	plasma	glucose	level	begins	to	drop,	which	can	take

several	hours	[22].	 In	contrast,	during	 fasting	 insulin	secretion	 is	markedly	reduced	and	cortisol,	a	glucocorticoid	under	 the	control	of	 the	hypothalamic-pituitaryadrenal	 (HPA)	axis	 is	elevated	 in	order	 to	reduce

glucose	utilization	and	transport	and	promote	gluconeogenesis	[53].

Fasting	and	extended	periods	when	food	is	not	available	can	result	in	the	body’s	energy	needs	being	met	by	gluconeogenesis,	which	produces	glucose-6-phosphate	from	lactate,	amino	acids,	free	fatty	acids

(FFA)	and	glycerol	 from	stores	 located	 in	adipose	tissue	[22].	All	cells	with	the	exception	of	brain	cells	can	metabolize	FFA.	 If	 the	period	of	 fasting	 is	prolonged	the	 liver,	 in	order	to	maintain	the	brain’s	glucose

requirements,	has	the	ability	to	convert	FFA	to	ketone	bodies.	The	brain	can	adapt	to	the	usage	of	ketone	bodies	as	fuel	and	during	periods	of	extreme	starvation	can	obtain	up	to	75%	of	its	glucose	requirements	from

this	energy	source	[22].

Glucose	transport
The	brain	is	highly	dependent	on	glucose	from	the	circulation	to	meet	its	energy	needs.	Glucose	transport	from	the	circulation	across	the	capillary	endothelial	surface	occurs	via	the	GLUT1	transport	protein	and	the	subsequent

transport	of	glucose	from	the	interstitium	to	either	neuron	or	glial	cells	occurs	via	the	GLUT3	transporter	[31].

The	glucose	transporter	number	on	the	capillary	endothelial	surface	is	regulated	largely	by	the	plasma	glucose	concentration.	Under	normal	conditions	approximately	twice	the	amount	of	glucose	required	to	meet	the	brain’s

metabolic	needs	is	transported.	However,	due	to	the	brain’s	limited	capacity	for	storage	of	glucose	as	glycogen,	any	unused	glucose	is	transported	back	into	the	circulation	[31].

GLUT2	acts	as	a	transmembrane	carrier	protein	that	facilitates	glucose	movement	across	cell	membranes.	Moreover,	GLUT	2	also	acts	as	a	carrier	for	fructose	and	glucosamine	and	is	primarily	found	in	cell	membranes	in	the

liver,	kidney,	small	intestine	and	pancreas.	Feeding	and	an	increase	in	glucose	concentration	promote	upregulation	of	GLUT2	mainly	at	the	brush	border	membrane.	In	the	pancreas,	GLUT2	significantly	influences	insulin	secretion	by

regulating	the	entry	of	glucose	into	pancreatic	cells	[122].

GLUT2	activity	has	been	noted	in	the	hypothalamic	areas	of	the	brain.	Data	from	animal	studies	suggests	that	GLUT2	acts	as	a	glucose	sensor	in	the	 (ARC	and	PVN	not	defined	yet.	Need	to	replace	ARC	and	PVN	with:	hypothalamic

arcuate	nuclei	(ARC)	and	paraventricular	nuclei	(PVN).)ARC	and	PVN.	GLUT2	receptor	activation	plays	a	significant	role	in	the	hormonal	control	of	food	intake	in	the	hypothalamus	by	detecting	and	signaling	glucose	to	adapt	to	meal	size.

Moreover,	the	evidence	suggests	that	the	amount	of	food	consumed	is	significantly	altered	in	the	absence	of	any	change	in	feeding	frequency	[212].



In	contrast,	GLUT4	is	the	major	insulin	responsive	transporter	(see	Fig.	1).	GLUT4	expression	is	primarily	observed	in	muscle	and	fat	cells	and	the	principle	role	of	GLUT4	is	to	promote	whole-body	glucose	homeostasis	[36].	A

high	expression	of	GLUT4	can	occur	when	the	level	of	blood	glucose	is	low.	However,	the	level	of	GLUT4	expression	can	also	be	a	determinant	of	insulin-induced	insulin	sensitivity	[15]	with	a	reduction	in	GLUT4	content	also	indicating

insulin	resistance	[37].

Insulin	is	a	key	regulator	of	glucose	homeostasis	and	insulin	resistance	is	a	condition	whereby	a	normal	amount	of	insulin	produces	a	sub-normal	response.	Cells	become	resistant	to	the	actions	of	insulin	and	are	unable	to	use

it,	which	invariably	leads	to	hyperglycemia.	In	order	to	circumvent	the	hyperglycemia	pancreatic	beta	cells	produce	even	more	insulin,	which	over	time	promotes	hyperinsulinemia	[179].

The	insulin-sensitive	GLUT4	isoform	was	initially	thought	to	be	localized	to	vascular	structures	within	the	 (VMH	not	defined.	VMH	needs	to	be	replaced	with:	ventromedial	hypothalamus	(VMH))VMH,	which	could	suggest	a	role	for

insulin	in	this	specific	brain	area	[156].	However,	later	work	confirmed	that	GLUT4	and	GLUT8	are	expressed	in	several	areas	including	cortex,	amygdala,	hippocampus,	cerebellum	and	hypothalamus	prompting	the	authors	at	the	time

to	conclude	that	cerebral	insulin	may	increase	the	uptake	of	glucose	in	these	specific	brain	areas	[9].

Hypoglycemia
When	the	level	of	glucose	transport	is	insufficient	to	meet	the	brain’s	metabolic	needs	hypoglycemia	can	develop	[32,31].	The	normal	physiologic	counter	regulatory	response	to	hypoglycemia	includes	secretion	of	glucagons

and	pancreatic	polypeptide	from	the	pancreas;	cortisol	from	the	adrenal	cortex;	norepinephrine	from	sympathetic	post-ganglionic	nerve	terminals;	epinephrine	from	the	adrenal	medullae;	adrenocorticotrophic	hormone	(ACTH)	by	the

hypothalamus	and	growth	hormone	by	anterior	pituitary	gland.	Moreover,	the	stimulatory	effect	of	hypoglycemia	involves	(among	other	things)	an	elevation	in	histamine	and	the	modulation	of	corticotrophic	releasing	factor	and/or

vasopressin	[78,232].	The	acute	metabolic	effect	of	the	combined	neuroendocrine	response	involves	increased	hepatic	glycogenolysis/gluconeogenesis	together	with	elevated	rates	of	lipolysis	and	decreased	glucose	utilization	outside

of	the	brain	[58].

Symptoms	of	hypoglycemia	are	partly	sympathetic	(e.g.	sweating,	tremor,	palpitations,	sensations	of	hunger,	restlessness	and	anxiety)	and	thought	to	be	linked	to	the	release	of	catecholamines.	Other	symptoms	caused	by	an

insufficient	 supply	 of	 glucose	 to	 the	brain	 resulting	 in	neuroglucopenia	 include	blurred	 vision,	weakness,	 slurred	 speech,	 vertigo	 and	difficulties	 in	 concentration	 [25].	 There	 are	 relatively	marked	differences	 in	 regional	 glucose

concentrations	during	hypoglycemia	with	higher	glucose	levels	being	observed	in	the	thalamus,	hypothalamus	and	brainstem.	[168].

Fig.	1	Insulin-dependent	GLUT4	glucose	transport.



Hormonal	control	of	feeding
Feeding	behaviour	is	largely	dependent	on	the	efficient	performance	of	cortisol	and	insulin	and	any	dysregulation	in	either	of	these	two	hormones	has	the	potential	to	alter	a	large	number	of	biochemical	events.	Early	work

suggests	that	a	low-moderate	level	of	cortisol	is	required	to	stimulate	appetite	[42],	and	insulin	release	[181],	while	a	concomitant	rise	in	insulin	stops	feeding	[236].

The	effects	of	insulin	may	be	mediated,	in	part,	through	the	regulation	of	hypothalamic	neuropeptide	Y	(NPY)	synthesis	and	release	[213].	Fasting	promotes	an	elevation	in	glucocorticoids	[87],	which	increases	the	transcription

rate	of	NPY	mRNA	[55,234].	The	release	of	NPY	in	turn	raises	the	plasma	insulin	level	[120,146,233]	in	the	 (Replace	the	words:	ventromedial	hypothalamus	(VMH)	with:	VMH	)ventromedial	hypothalamus	(VMH)	[234].	Alternatively,	insulin

acts	locally	in	the	 (Replace	the	words:	hypothalamic	arcuate	nucleus	(ARC)	with:	ARC)hypothalamic	arcuate	nucleus	(ARC)	to	inhibit	NPY	gene	expression	[198].

An	important	effect	of	NPY,	a	36-amino	sequence	pancreatic	polypeptide,	on	the	 (Replace	the	words:	hypothalamic	paraventricular	nucleus	(PVN)	with:	PVN)hypothalamic	paraventricular	nucleus	(PVN)	is	its	ability	to	induce	feeding

[150]	and	drinking	behaviour	[208,209].	NPY-induced	feeding	behaviour	 in	the	PVN	appears	to	specifically	 increase	carbohydrate	 intake	[208],	and	a	 lack	of	glucocorticoids	by	 inhibiting	NPY	release	 in	the	PVN	notably	decreases

carbohydrate	intake	[219].

The	ARC	contains	glucose-sensitive	NPY-containing	neurons.	The	purpose	of	these	neurons	is	to	detect	an	elevation	or	reduction	in	the	glucose	concentration	in	the	brain	and	subsequently	reduce	or	stimulate	NPY-induced

feeding,	respectively	[150].	Thus,	glucose	utilization	may	constitute	an	important	signal,	either	direct	or	indirect,	in	the	modulation	of	NPY	production	in	the	hypothalamus	[2].

Animal	data	has	revealed	that	NPY	may	be	involved	in	mediating	the	effects	of	serotonin	or	5-hydroxytryptamine	(5-HT),	suggesting	some	functional	interaction	between	the	serotonergic	and	NPYergic	systems	[187].	5-HT	is

biochemically	derived	from	tryptophan	(Trp)	and	local	injection	of	NPY	in	the	VMH	can	significantly	reduce	the	concentration	of	5-HT	by	acting	through	Y1	receptors	to	modulate	the	rate	of	synthesis	of	Trp	hydroxylase,	an	enzyme

necessary	for	the	conversion	of	Trp	to	5-HT	[106].

In	 the	CNS,	5-HT	has	a	number	of	 functions	 including	regulation	of	mood	and	appetite.	5-HT	 is	a	powerful	anorectic	agent	 [61]	with	an	 increase	and	decrease	 in	5-HT	known	 to	 inhibit	and	promote	 feeding,	 respectively

[190,237].	The	effect	of	hypothalamic	5-HT	stimulation	is	specific	to	carbohydrate	intake	[127].	The	release	of	5-HT	can	preferentially	inhibit	the	ingestion	of	carbohydrate	more	than	food	containing	protein	or	fat	(e.g.	[129,128,126],	in

a	selective	and	dose-dependent	manner	[127].

There	is	usually	an	antagonistic	relationship	between	NPY	and	5-HT.	The	level	of	5-HT	is	usually	reduced	during	fasting	when	the	level	of	cortisol	and	NPY	is	elevated.	Following	ingestion	of	a	high	carbohydrate	meal	the	level

of	5-HT	and	insulin	is	elevated	and	the	level	of	NPY	reduced	[53]	 (Reference	for	Dallman	et	al.,	1995	provided	and	will	need	to	be	added	to	reference	list.)(Dallman	et	al.,	1995).	A	significantly	raised	insulin	can	affect	the	uptake	of	Trp	and

influence	the	synthesis	of	5-HT	in	the	brain	[18].	Food	intake	can	alter	the	level	of	transmitter	that	serotoninergic	neurons	release	such	that	carbohydrates	with	a	higher	glycemic	index	may	have	a	greater	serotoninergic	effect	than

carbohydrates	with	a	low	glycemic	index (Please	add	reference	206	(i.e.	Smolders	et	al.	2001)	here	so	that	it	reads:	(136,	206))	[136].

In	rodents,	5-HT	above	20	mg/kg	can	induce	apparent	hypoglycemia.	The	hypoglycemic	effects	of	5-HT	are	strongly	antagonized	by	methysergide,	a	known	5HT1	agonist	and	5HT2	antagonist,	partially	inhibited	by	ketanserin	a

selective	5-HT2	receptor	antagonist	known	to	promote	insulin	resistance,	and	unaffected	by	tropisetron	(ICS	205-930)	a	5-HT3	receptor	antagonist.	Thus,	the	hypoglycemia	induced	by	5-HT	may	be	mediated	by	both	the	5-HT1	and	5-

HT2	receptors	[240,205,76].

In	non-diabetic	mice,	5-HT	can	induce	a	dose-dependent	hypoglycemia	and	significant	elevation	in	serum	insulin	concentration.	5-HT	can	significantly	inhibit	glucose-induced	hyperglycemia	and	increase	glucose-stimulated

insulin	release.	However,	a	similar	effect	was	not	noted	in	streptozotocin-induced	diabetic	mice	with	5-HT	found	to	have	no	effect	on	either	the	level	of	glucose	or	insulin.	Thus,	5-HT-induced	hypoglycemia	is	specifically	linked	to	a

significant	increase	in	serum	insulin	concentration	[215].

The	serotonin	5-HT3	receptor,	a	ligand-gated	ion	channel,	when	activated	can	induce	Ca2+	influx	[189].	In	pancreatic	islet	cells,	an	increase	in	systolic	free	calcium	concentration	is	critical	for	secretagogue-induced	insulin

release	[60].	Thus,	activation	of	5-HT3	receptors	may	promote	insulin	release	by	stimulating	calcium	(Ca2+)	influx.

In	non-diabetic	mice	peripherally	administered	5-HT	can	induce	a	marked	increase	in	the	plasma	glucagon	level.	However,	the	hyperglucagonemic	effects	of	5-HT	is	only	associated	with	activation	of	5-HT2	receptors	[241].	It	is

known	that	glucagon	leads	to	a	decrease	in	hepatic	glutathione	(GSH)	synthesis	that	in	turn	is	associated	with	decreased	postprandial	insulin	sensitivity	[170].	Thus,	the	5-HT2	receptor	may	increase	the	glucose	level	by	altering	insulin

sensitivity	during	periods	of	severe	hypoglycemia.

Section	2:	Pathways	of	metabolism	in	migraine
Early	work	revealed	that	an	elevation	in	FFA	and	ketone	bodies	often	precedes	a	migraine	attack	[91].	Similarly,	an	elevation	in	FFA,	glycerol	concentrations,	growth	hormone,	cortisol	and	ketone	bodies	can



also	occur	during	a	migraine	attack	[203].	Indeed,	hypercortisolism	is	a	common	finding	in	migraine	patients	[242].	The	elevation	of	plasma	FFA	was	noted	together	with	changes	in	blood	glycerol	concentrations	and

insulin	was	depressed,	which	when	considered	together	is	consistent	with	a	metabolic	stress	response	[91,203].

Glyceryl	trinitrate
The	 administration	 of	 glyceryl	 trinitrate	 or	 nitroglycerin	 (GTN)	 has	 proven	 to	 be	 an	 effective	method	 for	 triggering	 a	migraine	 attack	 in	 humans.	 In	 the	 last	 few	 years	 the	 use	 of	 GTN	 in	 clinical	 trials	 has	 been	 refined

[101,102,103,104]	and	the	technique	is	now	regarded	to	be	a	reliable	method	[1]	for	inducing	a	spontaneous	migraine	attack	with	a	latency	of	several	hours	[103,204,218].

The	release	of	5-HT,	a	monoamine	neurotransmitter	that	improves	insulin	sensitivity	[94],	is	known	to	be	impaired	in	migraine	[34].	The	level	of	5-HT	in	the	hypothalamus,	mesencephalon,	pons	and	medulla	of	rodents	treated

with	GTN	demonstrate	a	delayed	(4	h)	decrease	in	medullary	and	pontine	levels	of	5-HT	[218].	Although,	estrogen	administration	was	shown	to	modulate	the	basal	expression	of	transmitters	and	block	the	GTN	effect	[166].

Nitric	oxide
GTN	 is	 a	 nitric	 oxide	 (NO)	 donor	 [103]	 that	 acts	 directly	 and/or	 indirectly	 on	 the	 central	 nervous	 system	 through	 the	 release	 of	NO	 [218].	NO	 or	 parts	 of	 the	NO	 activated	 cascade	 are	 known	 to	 play	 a	 key	 role	 in	 the

development	of	headache	and	migraine	[101].

The	primary	role	of	NO	is	to	help	control	blood	flow	to	nearly	every	part	of	the	body.	NO	is	a	potent	vasodilator	that	influences	the	functioning	of	many	organs	including	lungs,	liver,	kidney,	stomach	and	heart.	NO	is	produced

by	many	cells	in	the	body.	However,	the	production	of	NO	by	vascular	endothelium	is	particularly	important	in	the	regulation	of	blood	flow	[110].

NO	is	synthesized	from	L-arginine	(Arg)	in	a	reaction	catalyzed	by	NO	synthase	(NOS).	Furthermore,	histamine	by	promoting	Ca2+	release	can	activate	NOS	[3,123].	An	increase	in	NO	and	histamine	is	commonly	observed	in

migraine.	Additionally,	the	level	of	NO	and	histamine	is	often	elevated	during	a	migraine	attack	[158].	An	overview	of	NO	synthesis	is	provided	in	Fig.	2.



Rodent	studies	have	shown	that	NO	can	inhibit	glucose	transport	and	metabolism	with	glucose	uptake	and	lactate	output	noted	to	be	30%	and	60%	lower	in	GTN	treated	animals	compared	to	controls	[125].	Furthermore,	the

basal	activity	of	NOS	is	significantly	higher	in	diabetic	compared	to	non-diabetic	gastric	glands	[43].

Administration	of	N	omega-nitro-L-arginine	methyl	ester	(L-NAME),	a	NOS	inhibitor,	promotes	a	marked	and	immediate	increase	in	glucose-stimulated	insulin	release	in	the	absence	of	any	alteration	in	Ca2+	flux,	both	in	vitro

and	in	vivo.	Furthermore,	L-NAME	administration	can	significantly	inhibit	the	release	of	glucagon	when	applied	in	a	glucose-free	environment.	Thus,	one	of	the	actions	of	NO	may	be	to	increase	the	level	of	glucagon	by	suppressing

glucose-stimulated	insulin	release	[4].

Histamine
At	least	four	histamine	receptors	denoted	by	H1,	H2,	H3	and	H4	have	been	identified	[238].	Histaminergic	neurons	are	involved	in	the	mediation	of	the	insulin/hypoglycemia-induced	release	of	ACTH	and	beta-endorphin	and

this	effect	is	mediated	via	activation	of	postsynaptic	H1-receptors	and,	to	a	lesser	extent,	H2-receptors	[109].	Activation	of	H1	[69,160]	and	inhibition	of	H3	[192]	receptors	in	VMH	and	PVN	may	suppress	food	intake	and	increase	the

level	of	plasma	glucose	[157]	by	activating	glycogenolysis	during	energy	depletion	[192].

One	 function	of	astrocytic	histamine	 receptors	 in	vivo	may	be	 the	stimulation	of	glucose	 release	 from	astrocytes,	a	process	mediated	by	 increased	 intracellular	 free	Ca2+.	Histamine’s	glycogenolytic	effect	 is	significantly

reduced	in	the	absence	of	extracellular	Ca2+	and	can	be	completely	blocked	by	mepyramine,	a	H1	receptor	antagonist	[144].	Interestingly,	the	serotonin	5-HT3	receptor,	a	ligand-gated	ion	channel,	when	activated	can	induce	Ca2+

Fig.	2	Nitric	oxide.	(1)	The	binding	of	acetylcholine	to	G	protein	receptors	causes	inositol	1,4,5-trisphosphate	(InsP3)	production	(2)	and	Ca2+	release	from	endoplasmic	reticulum	(ER).	(3)	The	release	of	Ca2+	activates	calmodulin	which	activates	nitric	oxide

(NO)	synthase	and	produces	NO.	(4)	NO	diffuses	from	endothelial	cell	into	adjacent	smooth	muscle	cells.	(5)	In	smooth	muscle	cell,	NO	activates	guanylyl	cyclase	to	make	cyclic	GMP	(cGMP).	(6)	cGMP	activates	protein	kinase	G,	which	phosphorylates	several

muscle	proteins	to	induce	muscle	relaxation.



influx	[189].

A	large	number	of	H3	receptors	have	been	observed	in	the	cerebral	cortex,	amygdala,	striatum,	hippocampus,	thalamus	and	hypothalamus	[159].	The	role	of	the	H3	receptor	may	be	to	regulate	the	synthesis	and	release	of

histamine	[221].	The	H3	receptor	can	(among	other	things)	inhibit	the	release	of	histamine	[12]	and	5-HT	in	cortex	[194,67],	which	could	potentially	alter	5-HT	receptor	activity	and	insulin	sensitivity.

Calcitonin	gene-related	peptide
GTN	administration	can	promote	the	release	of	calcitonin	gene-related	peptide	(CGRP),	a	37	amino	acid	intrapancreatic	neuropeptide	released	from	the	heart	[97]	and	trigeminal	sensory	nerves	[66].	The	administration	of

CGRP	can	trigger	a	spontaneous	migraine	attack	[124,13,211]	and	CGRP	receptor	blockade	is	an	effective	anti-migraine	strategy	[79].	However,	pre-treatment	with	kynurenine	(KYN)	and	 (Replace	the	acronym	KYNA	with:	kynurenic	acid

(KYNA))KYNA	can	attenuate	the	GTN-induced	changes	in	CGRP	immunoreactivity	in	the	rat	caudal	trigeminal	nucleus,	which	suggests	that	KYNA	may	alter	trigeminal	nociception	[50,224].

CGRP	acts	on	islet	hormone	secretion	by	significantly	 inhibiting	and	stimulating	insulin	concentration	at	 low	and	high	concentrations,	respectively	[90].	When	CGRP	is	administered	intravenously	the	level	of	basal	glucose

concentration	 is	 increased	and	the	glucose	rise	after	OGTT	 is	enhanced.	CGRP	promotes	a	significant	 increase	 in	 the	 level	of	plasma	glucose	and	subsequently	plasma	 insulin	concentration.	Thus,	an	elevated	CGRP	may	promote

hyperglycemia,	which	in	turn	causes	secondary	hyperinsulinemia	[147].

Rodent	studies	have	confirmed	that	CGRP	can	inhibit	insulin	stimulated	glucose	transport	[96]	by	reducing	tissue	glucose	response	to	insulin	[66].	CGRP	is	a	potent	inhibitor	of	muscle	glycogen	synthesis	and	may	cause	insulin-

resistance	upon	activation	of	skeletal	muscle	sensory	nerves	[130].

Tryptophan-kynurenine	pathway
Tryptophan	 (Trp),	 one	of	 the	9	essential	 amino	acids	humans	are	 incapable	of	 synthesizing,	 is	metabolized	via	 two	non-protein	pathways:	methoxyindole	and	KYN.	Moreover,	 the	availability	of	Trp	as	a	 substrate	 for	both

pathways	is	influenced	by	the	level	of	FFA’s,	which	release	plasma	Trp	from	their	bond	with	albumin	[162].

Trp	is	required	for	the	synthesis	of	5-HT	[41],	with	the	conversion	from	Trp	to	5-HT	catalysed	catalyzed	by	the	rate-limiting	enzyme	Trp	hydroxylase	[106].	However,	only	5%	of	the	available	Trp	is	used	to	synthesize	5-HT	via	the

methoxyindole	pathway	[54].	The	major	route	of	Trp	metabolism	being	the	formation	of	KYN,	catalysed	catalyzed	by	rate-limiting	enzymes	Trp	2,3-dioxygenase	2	(TDO2)	or	indoleamine	2,3-dioxygenase	1	(IDO1).	At	least	95%	of	the

available	Trp	is	metabolized	via	the	Trp-KYN	pathway	[54],	which	generates	several	neuroactive	and	immunomodulatory	metabolites	(See	Fig.	3).



The	 conversion	 of	 Trp	 to	 KYN	 is	 regulated	 by	 enzymes	 influenced	 by	 pro-inflammatory	 factors	 and	 glucocorticoids.	 TDO2,	 which	 has	 been	 observed	 primarily	 in	 the	 liver	 and	 brain,	 is	 induced	 in	 the	 liver	 by	 Trp	 and

glucocorticoids	[135].	Thus,	an	increase	in	the	release	of	cortisol,	a	glucocorticoid	that	becomes	immediately	elevated	when	the	organism	is	under	stress,	could	upregulate	activity	of	Trp	to	KYN	metabolism	[162].	Alternatively,	IDO1

has	been	found	in	several	extrahepatic	tissues	including	the	brain.	IDO1	can	be	up-regulated	by	cytokines	and	proinflammatory	agents	such	as	lipopolysaccharides,	amyloid	peptides,	HIV	proteins	and	tumor	cells.	However,	interferon-

gamma	(IFN-γ)	is	the	most	potent	stimulant	of	IDO1	and	of	interest	here	is	the	finding	that	IFN-γ	can	activate	IDO1	mRNA	accumulation	in	rat	pancreatic	islet	cells	[135].

Tryptophan-kynurenine	pathway	and	receptor	activity
Overactivation	of	NMDA	glutamate	 (Glu)	receptors	has	been	observed	 in	migraineurs	 [51,52].	Moreover,	Glu	has	been	 implicated	 in	migraine	pathogenesis	 largely	because	 it	 is	known	to	play	an	 important	role	 in	cortical

spreading	depression	and	activation	of	the	trigeminal	system	(Csati	et	al.,	2012),	[65].

Activation	of	NMDA	receptors	promotes	Ca2+	 influx	 into	cells,	which	subsequently	promotes	 the	 formation	of	NO	[131].	However,	KYNA	can	 inhibit	 the	synthesis	of	NO.	Similarly,	3-OH-anthranilic	acid	 (3-HANA),	at	 sub-

millimolar	concentrations	can	inhibit	the	expression	and	activity	of	inducible	NOS	(iNOS),	which	catalyzes	the	conversion	of	Arg	to	NO	[41].

When	NMDA	and	metabotropic	Glu	receptors	are	activated,	arachidonic	acid	(AA),	an	unsaturated	fatty	acid,	is	released	from	phospholipids	in	an	action	catalyzed	by	the	enzyme	phospholipase	A2	[29].	Metabolites	of	the	KYN

pathway	 such	 as	KYNA	 can	 inhibit	while	 (Define	 acronyms	QUINA	 and	 XA:	 quinolinic	 acid	 (QUINA)	 and	 xanthurenic	 acid	 (XA))QUINA	 and	XA	 activate,	NMDA	Glu	 receptors	 [167].	 Both	 QUINA	 and	 (Define	 acronym	 PICA:	 picolinic	 acid

(PICA))PICA	stimulate	iNOS	and	together	with	3-hydroxykynurenine	(3-HK)	and	3-HANA	can	increase	lipid	peroxidation	and	AA	resulting	in	increased	production	of	prostaglandins	[162].

Kynurenine	pathway	and	insulin	resistance
The	KYN	pathway	has	been	implicated	in	a	range	of	diseases	and	disorders	including:	acquired	immune	deficiency	syndrome	(i.e.	AIDS),	dementia,	Alzheimer’s	disease,	Huntington’s	disease,	schizophrenia,	depression,	anxiety,

multiple	sclerosis,	rheumatoid	arthritis,	cardiovascular	disease,	amyotrophic	lateral	sclerosis,	neoplasia	and	hypotension	[41,121].	However,	of	interest	here	is	the	additional	finding	that	KYN	metabolites	have	also	been	linked	to	both

metabolic	syndrome	[162],	and	migraine	[65,51,52].

In	the	 last	 few	years	 is	has	become	evident	there	may	be	a	relationship	between	metabolic	syndrome	and	migraine	[82].	Metabolic	syndrome	patients	may	be	at	 increased	risk	of	cardiovascular	disease	[149],	stroke	 [83],

hypertension	[5]	and	migraine	[82].	Several	definitions	of	the	metabolic	syndrome	have	been	proposed,	which	has	caused	some	confusion.	However,	the	pathophysiology	for	metabolic	syndrome	almost	always	includes	impaired	insulin

sensitivity	or	insulin	resistance	[5].

Insulin	resistance	is	a	known	risk	factor	for	hypertension	[132],	stroke	[108],	cardiovascular	disease	[73],	metabolic	syndrome	[82]	and	migraine	[179].	Thus,	 insulin	resistance	could	hold	 the	key	 to	understanding	 the	co-

morbidity	between	migraine	and	these	other	conditions	[191].

Dysregulation	of	the	Trp-KYN	pathway	and	KYN-NAD	pathway	is	associated	with	insulin	resistance	[154].	A	significant	positive	relationship	has	been	reported	between	KYN	and	insulin	resistance	with	a	higher	KYN	level	shown

to	be	associated	with	higher	body	mass	index	and	HOMA2-IR	insulin	resistance	index	scores	[64].

Pyridoxal-5-phosphate	 (P5P),	 an	 active	 form	of	 vitamin	B6	 is	 needed	as	 a	 co-factor	 to	 activate	 the	key	 enzymes	of	KYN-NAD	pathway.	Moreover,	 an	 absence	of	P5P	 redirects	KYN-NAD	metabolism	 to	production	of	XA,	 a

metabolite	known	to	impair	synthesis,	release	and	activity	of	insulin	[163].

When	KYN	metabolites	were	compared	in	chronic	migraineurs	(N	=	119)	and	age-matched	healthy	controls	(N	=	84)	a	significant	reduction	in	KYN,	KYNA,	3-HANA,	3-HK,	5-hydroxyindolacetic	acid	(5-HIAA)	and	QUINA	was

noted	in	chronic	migraineurs.	Alternatively,	the	level	of	Trp,	ANA	and	XA	was	significantly	increased	[51,52].	Thus,	given	that	in	migraineurs	the	level	of	KYNA	and	3-HANA	is	significantly	reduced	and	XA	is	significantly	increased

[51,52],	the	data	confirms	that	the	level	of	NO	[158]	and	risk	of	insulin	resistance	[163]	in	migraineurs	may	be	increased.

Section	3:	Migraine	triggers	and	glucoregulation
Fukui	 et	 al.	 [70]	 assessed	 200	migraineurs	 (162	women,	 85	men)	 and	 found	 that	 the	most	 common	 group	 of	migraine	 triggers	 (reported	 by	 both	 genders),	 could	 be	 classed	 as	 nutritional	 triggers.	 The

Fig.	3	The	kynurenine	pathway.	Tryptophan	is	oxidized	by	cleavage	of	the	indole-ring	initiated	either	by	tryptophan	2,3-dioxygenase	2	(TDO2)	or	indoleamine	2,3-dioxygenase	1	(IDO1).	Kynurenine	(KYN)	is	the	first	stable	intermediate	formed.	There	are

several	neuroactive	intermediates	generated	before	the	final	product,	nicotinamide	adenosine	dinucleotide	(NAD)	is	achieved.	These	comprise	the	free-radical	generator,	3-OH-anthranilic	acid	(3-HANA),	the	excitotoxin	and	N-methyl-D-aspartic	acid	(NMDA)

receptor	agonist,	quinolinic	acid	(QUINA),	the	NMDA	receptor	antagonist,	kynurenic	acid	(KYNA),	the	neuroprotectant	picolinic	acid	(PICA),	and	xanthurenic	acid	(XA),	which	has	been	linked	to	insulin	resistance.



nutritional	triggers	 in	order	of	 frequency	were	fasting,	chocolate,	alcohol/red	wine	and	coffee.	Other	factors	such	as	stress,	citrus,	cheese,	monosodium	glutamate,	aspartame,	menstrual	cycle	(females),	nuts	and

nitrates	were	also	thought	to	be	able	to	promote	a	migraine	attack.	Space	does	not	permit	an	investigation	of	all	migraine	triggers.	Therefore,	in	the	next	few	sections	a	selection	of	the	most	common	migraine	triggers

identified	by	Fukui	et	al.	[70]	will	be	investigated	in	the	context	of	glucoregulation.

Fasting	and	skipping	meals
An	 overnight	 fast	 can	 act	 as	 a	 migraine	 trigger	 in	 vulnerable	 individuals	 [176].	 Indeed,	 it	 has	 been	 known	 for	 some	 time	 that	 fasting	 and	 the	missing	 of	 one	 or	 more	meals	 can	 promote	 the	 development	 of	 migraine

[49,27,28,141].	A	migraine	attack	often	occurs	after	an	overnight	fast	and	the	majority	of	migraine	attacks	have	been	noted	between	0600	h	and	1200	h	[207].	Consistent	with	these	claims	later	studies	found	that	more	than	48%	of

migraine	attacks	reportedly	occur	between	0400	h	and	0900	h	[68].

An	increase	in	histamine	is	commonly	observed	in	migraine.	Similarly,	the	level	of	histamine	is	often	elevated	during	a	migraine	attack	[158].	Plasma	histamine	levels	reportedly	increase	in	the	early	hours	of	the	morning	(Rehn

et	al.,	1987).	One	of	the	roles	of	histamine	is	to	promote	glucose	transport	and	an	elevation	in	histamine	can	occur	in	order	to	assist	cells	when	presented	with	a	metabolic	challenge	[221].

Reactive	hypoglycemia
Hypoglycemia	was	claimed	to	be	a	common	precipitating	factor	in	migraine	headaches	as	early	as	75	years	ago	[48].	Later	studies	confirmed	that	a	large	percentage	of	migraineurs	showed	signs	of	being	hypoglycemic (Include

reference	173	(i.e.	Pearce,	1971)	so	the	line	reads:	Later	studies	confirmed	that	a	large	percentage	of	migraineurs	showed	signs	of	being	hypoglycemic	(173),	due	to	hyperinsulinism	(185).)	due	to	hyperinsulinism	[185].	However,	it	was	not	until	a

decade	later	that	new	evidence	emerged	suggesting	migraine	can	be	triggered	by	a	sucrose-induced	reactive	hypoglycemia	[57].

Reactive	 hypoglycemia	 is	 a	 relatively	 uncommon	meal-induced	 hypoglycemiac	 disorder.	 Patients	 are	 characterized	 as	 ingesting	 excessive	 quantities	 of	 refined	 carbohydrate	 and	 hyperinsulinism	 usually	 accounts	 for	 the

hypoglycemia.	The	recommended	treatment	usually	involves	dietary	restriction	of	refined	carbohydrates.	However	some	patients	may	require	medication	[92].

Hyperinsulinemia,	diabetes	mellitus	and	hyperlipidemia	are	known	to	incite	vertigo,	tinnitus,	and	hearing	loss	[107].	An	investigation	into	the	cause	of	vestibular	dysfunction	found	that	90%	of	patients	had	either	an	abnormal

glucose	tolerance	test	or	an	abnormal	insulin	level	[178].

A	relationship	between	hyperinsulinemia	and	migraine	with	tinnitus	and/or	vertigo	has	previously	been	suggested	[119].	Migraine	sufferers	often	report	the	presence	of	vestibular	symptoms	such	as	vertigo	[71,220].	However,

the	vertigo	does	not	appear	to	be	related	to	the	visual	disturbance	associated	with	aura	[155].

Less	specific	symptoms	of	dizziness	and	head	motion	intolerance	have	also	been	reported	in	migraineurs	[46].	However,	in	these	instances	it	was	claimed	the	dizziness	could	be	related	to	hypotension,	anxiety	disorders	or	major

depression,	all	of	which	have	an	increased	prevalence	in	migraine	patients	[155].

Refined	sugar	products
Clinical	evidence	suggests	that	the	consumption	of	sucrose	can	promote	a	significant	elevation	in	serum	insulin	in	fasted	female	migraine	sufferers.	However,	while	the	level	of	serum	insulin	in	female	migraineurs	was	noted	to

be	significantly	higher	than	males	and	controls	there	was	no	evidence	of	sucrose-induced	hyperinsulinism	in	any	of	the	participants	[114,113].

The	size	of	the	carbohydrate	molecule	can	influence	the	postprandial	glucose	and	insulin	response	such	that	more	complex	carbohydrates	elicit	lower	responses	[148].	The	consumption	of	sucrose	can	produce	higher	blood

sugar	readings	than	other	carbohydrates	such	as	fructose	or	honey	due	to	sucrose-induced	glucose	intolerance	[201]	and	insulin	resistance	[193].

Comparisons	with	starch	show	that	the	consumption	of	sucrose	can	result	in	a	20%	increase	in	the	insulin	level	[44].	FFA	synthesis	is	also	increased	[98],	which	could	significantly	increase	histamine	production	[239],	inhibit

glucose	utilization	and	oxidation	in	muscle,	and	promote	gluconeogenesis	in	liver	[140].	Sucrose	feeding	enhances	lipogenesis	in	the	liver	and	promotes	an	increase	of	the	lipid	concentration	in	liver	and	blood	[228].	Lipogenic	enzyme

activity	is	significantly	higher	with	sucrose	[184,161].	Moreover,	the	level	of	fasting	triglycerides	(cholesterol),	VLDL,	LDL	and	HDL	of	males	(not	females)	is	positively	correlated	with	the	amount	of	sucrose	in	the	diet	[182].

Sucrose-fed	animals	exhibit	significantly	higher	fasting	serum	insulin,	plasma	glucose	and	plasma	triglyceride	levels	and	significantly	lower	insulin	sensitivity	[85].	Additionally,	sucrose-fed	animals	demonstrate	greater	body

weight	and	higher	levels	of	non-fasting	insulin	and	glucose	and	6-h	fasted	triglyceride	[183].

However,	when	sucrose	is	combined	with	fat	the	level	of	insulin	is	potentiated	and	relatively	low	amounts	of	sucrose	and	fat	can	produce	a	significantly	higher	insulin	response	when	compared	to	sucrose	alone	[84].	Therefore,

while	sucrose	alone	may	not	promote	hyperinsulinism	in	migraineurs	[113],	food	products	such	as	chocolate,	which	contain	a	large	amount	of	sucrose	and	fat	[35],	could	potentiatie	the	level	of	plasma	insulin	further	and	promote	the



development	of	reactive	hypoglycemia	due	to	hyperinsulinism-induced	insulin	resistance.	Furthermore,	if	we	consider	that	chocolate	also	contains	histamine	[169],	the	relationship	between	chocolate-induced	reactive-hypoglycemia	and

migraine	becomes	even	more	plausible.

Sucrose-induced	insulin	resistance
The	link	between	refined	sugar	and	metabolic	syndrome	is	well	established	[139].	Sucrose	consumption	can	promote	insulin	resistance	in	humans	[197]	and	animals	[39].	Therefore,	reducing	the	amount	of	refined	sugar	in	the

diet	often	forms	part	of	the	metabolic	syndrome	patient’s	treatment	[139].	Similarly,	sucrose	is	a	known	migraine	trigger	[185]	and	eliminating	sucrose	from	the	diet	can	result	in	a	significant	decrease	in	migraine	symptoms	[57]	and

need	for	pain	medication	[112].

Migraine	sufferers	often	report	cravings	for	food	high	in	refined	sugar	and	then	a	migraine	develops	later	[105].	It	has	recently	been	reported	that	a	population	of	glutamatergic	neurons	that	contain	GLUT2	and	project	to	the

nucleus	accumbens	have	been	identified	in	the	rodent	paraventricular	thalamus.	Of	interest	here	is	the	finding	that	these	neurons	are	activated	by	hypoglycemia	and	their	inactivation	by	Slc2a2	increases	motivated	sucrose-seeking	but

not	saccharin-seeking	behaviour	[122].

Clinical	data	suggests	 that	 the	consumption	of	sucrose	by	male	and	 female	migraineurs	can	result	 in	a	significant	and	 immediate	decrease	 in	 the	glucose/insulin	 (G/I)	 ratio	and	 increase	 in	 insulin/cortisol	 (I/C)	 ratio	 in	all

participants	[113]	with	lower	G/I	ratio	[14,142]	and	higher	I/C	ratio	[75]	depicting	higher	degrees	of	insulin	resistance.	However,	gender	differences	in	insulin	sensitivity	can	emerge	over	time	with	the	G/I	ratio	at	135-min	and	150-min

noted	to	be	significantly	lower	and	I/C	ratio	in	general	significantly	higher	in	female	migraineurs	[113].	Thus,	the	effect	of	sucrose	on	insulin	sensitivity	in	male	and	female	migraineurs	is	not	the	same	and	significant	differences	in

insulin	sensitivity	emerge	in	female	migraineurs	at	approximately	120-min	post-sucrose	consumption.

Red	and	white	wine
Alcohol	is	a	commonly	reported	migraine	trigger	 ((Fukui	et	al.,	2010)	should	read	(Fukui	et	al.,	2008)	-	in	the	reference	list	currently	as	70)(Fukui	et	al.,	2010)	and	red	wine	(in	particular),	can	provoke	a	migraine	attack	in	more	than

80%	of	the	11	migraineurs	assessed	[134].	The	biochemical	data	confirms	that	both	red	wine	and	white	wine	can	alter	glucoregulation.	However,	the	effect	of	red	wine	and	white	wine	on	energy	metabolism	and	utilization	is	not	the

same.	Indeed	there	is	increasing	evidence	to	suggest	that	the	effect	of	wine	on	glucoregulation	is	influenced	by	not	only	the	nutritional	content	of	the	alcoholic	beverage	but	also	the	nutritional	status	of	the	individual	at	the	time	of

wine	ingestion	[111,117],	two	factors	that	are	rarely	considered	in	alcohol	research.

Most	alcoholic	beverages	contain	some	histamine.	However,	red	wine	is	unique	because	it	not	only	contains	the	highest	amount	of	histamine	[230]	it	is	also	one	of	the	few	alcoholic	beverages	that	can	promote	histamine	release

[99].	An	elevation	in	histamine	usually	occurs	when	cells	are	presented	with	a	metabolic	challenge	[221].	Thus,	the	data	could	be	highlighting	that	consuming	red	wine	may	alter	energy	metabolism	and	utilization	in	some	way.

The	elevation	in	histamine	that	has	been	noted	when	red	wine	is	consumed	is	not	surprising	when	we	consider	that	red	wine	contains	resveratrol,	a	potent	anti-oxidant	with	known	hypoglycaemic	and	hypolipidemic	properties

[214].	The	administration	of	resveratrol	in	diabetic	animals	can	promote	a	simultaneous	decrease	and	increase	in	plasma	glucose	and	plasma	insulin,	respectively	[164].

The	consumption	of	red	wine	under	fasting	conditions	can	significantly	reduce	the	level	of	preprandial	plasma	glucose	and	serum	insulin	[116].	However,	while	both	red	and	white	wine	can	significantly	reduce	the	level	of

postprandial	plasma	glucose	a	similar	alcohol-induced	lowering	of	postprandial	serum	insulin	was	only	noted	with	white	wine	[115,117].	Moreover,	when	insulin	sensitivity	in	the	red	wine	and	white	wine	trials	was	compared	the	level

of	insulin	sensitivity	in	the	white	wine	trial	was	found	to	be	significantly	higher	 (Reference	should	be:	Kokavec,	Halloran	and	Crowe,	2009)(Kokavec,	unpublished	data),	which	is	at	odds	with	the	diabetic	findings	[33,77,151].

The	effect	of	consuming	red	wine	and	white	wine	alone	after	a	meal	on	the	glucose-insulin	relationship	is	not	the	same	[116,117].	The	evidence	suggests	that	ingesting	red	wine	can	significantly	alter	the	postprandial	glucose-

insulin	relationship	and	promote	the	development	of	a	pseudo-hypoglycemic	condition.	Alternatively,	white	wine	promotes	a	pseudo-diabetic	condition	as	evidenced	by	a	significant	lowering	of	insulin,	which	mostly	likely	occurs	due	to

a	wine-induced	increase	in	insulin	sensitivity.

By	way	of	explanation	I	would	like	to	offer	that	it	is	well	accepted	that	a	positive	correlation	exists	between	central	5-HT	activity	and	peripheral	insulin	sensitivity	[94].	Red	wine	can	increase	the	level	of	whole	blood	5-HT	in

migraineurs	and	controls	[171,172].	However,	the	binding	of	5-HT	to	5-HT1	receptors	is	inhibited,	possibly	due	to	the	presence	of	resveratrol	[175],	which	could	increase	the	risk	of	insulin	resistance	[76].

Banana
Migraine	sufferers	often	report	that	eating	a	banana	can	trigger	a	migraine	attack	[112,113].	However,	most	of	the	studies	have	not	asked	patients	to	describe	how	ripe	the	banana	is	when	it	was	consumed	and	have	assumed

the	banana	was	ripe	(i.e.	yellow	in	color).	The	ripeness	of	bananas	is	important	because	as	we	will	see	in	the	next	few	paragraphs	there	is	a	difference	in	nutritional	content	between	green	bananas	and	yellow	bananas,	which	has	the



potential	to	impact	insulin	sensitivity.

The	banana	fruit	starts	off	as	being	green	and	then	slowly	changes	to	yellow	as	the	fruit	ripens.	The	developing	fruit	contains	a	high	concentration	of	tannins	[200],	which	is	known	to	significantly	reduce	5-HT	activity	[186]	and

as	a	consequence	reduce	insulin	sensitivity	[94].

As	the	banana	fruit	develops	it	imports	sucrose	to	produce	starch.	Then	when	the	banana	fruit	is	fully	formed	it	go	through	a	process	called	‘climacteric’.	The	process	includes	the	starch	in	bananas	being	broken	down	and

sucrose	accumulating	in	the	tissue.	There	is	a	burst	of	respiration,	which	fuels	the	ripening	process.	Therefore,	the	major	carbohydrate	in	ripe	bananas	is	sucrose	[200],	the	consumption	of	which	is	known	to	promote	insulin	resistance

(e.g.	[193].

Peanuts
Decreased	dietary	fat	is	associated	with	statistically	significant	decreases	in	headache	frequency,	intensity,	duration,	and	medication	intake	[24].	Therefore,	given	that	the	nutritional	content	of	peanuts	includes	about	47%	fat,

25%	protein,	19%	carbohydrate	and	7%	water	[11],	it	is	not	surprising	that	peanuts	can	instantly	provoke	a	migraine	attack	in	vulnerable	individuals	[114,113].

Oleic	and	linoleic	acids	are	the	most	abundant	fatty	acids	in	peanuts	[11]	while	the	carbohydrates	in	peanuts	include	starch,	pectin,	cellulose	and	sucrose	[153].	Early	studies	detected	the	presence	of	sucrose,	fructose	and

glucose	in	peanuts.	Later	studies	confirmed	that	sucrose	was	the	major	soluble	sugar	constituent	in	peanuts	followed	by	glucosamine,	stachyose,	and	raffinose.	The	insoluble	fraction	contained	glucosamide,	arabinose	and	trace	levels

of	glucose	and	rhaminose	[153].

As	noted	above,	peanuts	contain	glucosamine,	a	product	of	glucose	metabolism	via	the	hexosamine	pathway	that	is	known	to	impair	insulin-induced	GLUT4	transport	translocation	to	the	plasma	membrane	and	induce	insulin

resistance	[17,6].	Furthermore,	peanuts	contain	a	combination	of	fat	and	sucrose	[11,153],	which	is	known	to	promote	hyperinsulinism	[84],	and	increase	the	risk	of	insulin	resistance	[193].

Aspartame	and	monosodium	glutamate
Aspartame	found	in	food	can	instantly	provoke	a	migraine	attack	[199].	Similarly,	food	containing	monosodium	glutamate	(MSG)	is	also	a	commonly	reported	migraine	trigger	that	can	promote	the	development	of	migraine

symptoms	almost	immediately	[199].

Ingesting	aspartame	can	increase	the	supply	of	phenylalanine,	which	subsequently	can	promote	a	decrease	in	tryptophan	uptake	by	brain	tissue	or	a	depression	in	tryptophan	conversion	to	5-HT	[202].	Aspartame	has	been

shown	to	significantly	impair	the	release	of	5-HT	in	several	brain	regions	[21]	and	reduce	NPY	activity	in	the	ARC	[19].	Thus,	aspartame	can	promote	a	decrease	in	glucose	sensing	in	the	ARC	[150]	and	by	reducing	activity	at	5-HT

receptors	could	encourage	the	development	of	insulin	resistance	[76].

Rodent	studies	have	shown	that	MSG	can	reduce	the	activity	of	lactate	dehydrogenase	in	liver	and	serum	and	increase	the	activity	of	glucose-6-phosphate	dehydrogenase,	which	results	in	increased	biosynthesis	of	fatty	acids

and	 subsequent	 shift	 in	 carbohydrate	metabolism	 towards	 lipogenesis	 (Reference	 (Malik	 and	 Ahluwalia,	 1994)	 should	 be	 138	 (i.e.	 Malid	 and	 Ahluwalia,	 1994))(Malik	 and	 Ahluwalia,	 1994).	 Furthermore,	 a	 combination	 of	 MSG	 and	 a

hypercaloric	diet	can	induce	an	alteration	in	the	metabolic	rate	of	glucose	utilization	[59].	MSG-treated	mice	show	a	significantly	reduced	GLUT4	content	in	the	absence	of	any	change	in	the	amount	of	GLUT-1,	which	suggests	that

MSG	may	promote	insulin	resistance	[137].	MSG	can	cause	a	brief	but	significant	dose-dependent	decrease	in	glucose	uptake	by	the	brain.	Similar	to	aspartame,	damage	from	MSG	is	prominent	in	the	ARC,	pre-optic	nucleus,	and	the

median	eminence	[45].

Caffeine
Drinking	coffee	prior	to	having	an	OGTT	can	significantly	increase	circulating	levels	of	epinephrine	and	stimulate	lipolysis.	Caffeine	ingestion	was	also	shown	to	significantly	exaggerate	the	plasma	insulin	response	during	the

OGTT.	However,	the	significant	elevation	in	plasma	insulin	during	the	OGTT	was	not	associated	with	any	corresponding	lower	in	blood	glucose	with	plasma	glucose	remaining	unchanged	or	even	becoming	slightly	elevated	in	some

participants	[81].

Caffeine	ingestion	can	increase	brain	levels	of	tryptophan,	5-HT,	and	5-hydroxyindoleacetic	acid	in	a	dose-dependent	fashion	[195].	The	ingestion	of	caffeine	can	decrease	cerebral	blood	flow	and	promote	an	increase	in	brain

glucose	use	[56].	Under	these	conditions	insulin	resistance	can	occur	due	to	the	caffeine-induced	increase	in	circulating	levels	of	epinephrine	[23].

Cheese
Cheese	contains	histamine	and	the	presence	of	histamine-producing	bacteria	 in	cheese	is	a	key	factor	 in	histamine	production.	Lactobacilli	play	a	significant	role	 in	histamine	formation	in	Gouda	cheese.	Moreover,	cheese



ripening	temperature,	pH,	and	salt	concentration	may	influence	the	ability	of	lactobacillus	to	produce	histamine.	Lastly,	cheese	storage	temperature	plays	a	role	in	histamine	production	with	higher	temperatures	found	to	increase

histamine	content	[216].

Citrus
Citrus	is	a	common	migraine	trigger	[145,134].	Most	citrus	fruits	are	high	in	vitamin	C	and	potassium	and	are	a	good	source	of	folate,	iron,	calcium	and	other	minerals.	However,	nutrients	such	as	vitamin	C	can	elevate	NO

levels	[229],	which	could	promote	a	significant	decrease	in	glucose	transport	and	metabolism	[125],	and	promote	insulin	resistance.

Of	 the	citrus	 fruits	grapefruit	 is	 the	most	 studied	 in	 the	general	population	because	 it	 is	 thought	 to	contain	a	number	of	protective	plant	chemicals.	Grapefruit	 is	high	 in	 fibre,	 low	 in	calories	and	contains	phenolic	acid,

limonoids,	terpenes,	monoterpenes	and	bioflavonoids	[86].	The	major	bioflavonoid	found	in	grapefruit	is	naringen	(4′,5,7-trihydroxyflavanone),	which	gives	the	fruit	its	bitter	taste.	Naringen	can	promote	antioxidant	activity,	lower	blood

lipids	and	decrease	the	plasma	glucose	level.	Thus,	Naringen	has	potent	hypoglycemic	and	hypolipidemic	properties	[86].

Naringen	 is	 known	 to	 inhibit	 insulin-stimulated	 glucose	 uptake	 in	 3T3-L1	 adipocytes	 in	 a	 dose-dependent	manner	 by	 inhibiting	 the	 activity	 of	 phosphoinositide	 3-kinase	 (PI3K),	 a	 key	 regulator	 of	 insulin-induced	GLUT4

translocation.	Thus,	regular	consumption	of	grapefruit	could	potentially	promote	insulin	resistance	in	susceptible	individuals	via	impaired	glucose	uptake	in	adipose	tissue	[88].

Naringen	has	also	been	shown	to	inhibit	the	action	of	Cytochrome	P450	(CYP450),	which	may	result	in	severe	drug	interactions	in	vitro	due	to	inability	to	breakdown	some	medications.	CYP450	enzymes	are	present	in	most

body	tissues	and	play	an	important	role	in	hormone	synthesis	and	breakdown	(including	estrogen	and	testosterone	synthesis	and	metabolism).

The	metabolism	of	estrogen	mainly	occurs	in	the	liver,	where	the	majority	of	CYP450	is	expressed.	The	regulation	of	CYP450	enzymes	is	by	estrogen	at	the	estrogen	receptor,	which	suggests	that	CYP450	may	be	related	to

homeostasis	of	estrogen	at	local	organs.	Thus,	any	alteration	in	CYP450	could	significantly	influence	estrogen	synthesis	and	metabolism	[223],	which	in	turn	could	alter	feeding	behaviour	[62]	and	insulin	sensitivity	[72].

Following	hypoglycemia	the	production	of	prostaglandin,	a	substance	that	causes	inflammation,	is	decreased	[232].	Ironically,	grapefruit	fruit	peel	can	significantly	block	prostaglandin	production	[86],	due	to	the	presence	of

nobiletin,	a	flavanoid	flavonoid	found	in	the	peel	of	most	citrus	fruit	[100].

Magnesium	deficiency
During	hypoglycemia,	Mg2+	[26]	and	the	concentration	of	phosphocreatine	and	ATP	is	reduced	[177].	Similarly,	a	chronically	decreased	phosphocreatine:ATP	ratio	has	been	observed	in	migraineurs	[225]	and	Type	I	diabetics

[26].	The	level	of	Mg2+	in	erythrocytes	prior	to	a	migraine	attack	is	significantly	lower	in	migraine	without	aura	patients	when	compared	to	other	headache	sufferers	[196].	However,	during	a	migraine	attack	there	is	more	consistency

with	a	reduction	in	Mg2+	noted	in	both	migraine	with	and	without	aura	patients	[180].

Low	magnesium	(Mg2+)	has	been	linked	to	a	number	of	chronic	diseases,	including	migraine,	stroke,	hypertension,	cardiovascular	disease,	type	2	diabetes	mellitus	and	metabolic	syndrome	[16].	Mg2+	plays	a	critical	role	in

maintaining	nerve	and	muscle	function,	cardiac	excitability,	neuromuscular	conduction,	muscular	contraction,	vasomotor	tone,	blood	pressure,	bone	integrity,	and	glucose	and	insulin	metabolism	[165].

The	 link	 between	magnesium	 deficiency	 and	 type	 2	 diabetes	 is	well	 established	 [227].	Mg2+	 plays	 a	 significant	 role	 in	 glucose	 and	 insulin	metabolism	 by	 impacting	 tyrosine	 kinase	 and	 phosphorylase	 b	 kinase	 activity.

Additionally,	Mg2+	can	significantly	alter	expression	of	GLUT4,	with	Mg2+	helping	to	regulate	glucose	translocation	into	the	cell	[36].	A	significant	reduction	in	Mg2+	can	impair	glucose	utilization	and	insulin	sensitivity	[210].	Thus,

the	magnesium	data	suggests	that	glucose	utilization	and	insulin	sensitivity	may	be	significantly	altered	in	migraineurs.

Menstrual	cycle
Regular	hormonal	fluctuations	associated	with	the	menstrual	cycle	can	influence	appetite	and	food	intake	[62].	Changes	in	5-HT	concentration	has	been	reported	during	the	menstrual	cycle	with	the	level	of	5-HT	lowest	in	the

post-ovulatory	or	premenstrual	phase	of	the	cycle	[217].	Energy	expenditure	and	food	intake	is	also	higher	in	the	post-ovulatory	phase	when	compared	to	the	pre-ovulatory	or	follicular	phase	[231].

Estrogen,	a	female	sex	hormone	synthesized	by	the	hypothalamic-pituitary-gonadal	axis,	similar	to	5-HT	has	been	shown	to	decrease	carbohydrate	intake	[30]	and	promote	insulin	synthesis	and	release	[8].	However,	estrogen

treatment	can	significantly	decrease	the	level	of	NPY	in	the	PVN.	Thus,	modulation	of	food-intake	by	estrogen	could	be	mediated	by	altered	NPY	release	locally	from	nerve	terminals	in	the	PVN	[30].

Abrupt	falls	in	estrogen	can	trigger	a	migraine	attack	[166].	Additionally,	women	commonly	report	developing	migraine	symptoms	during	the	second	half	of	their	menstrual	cycle	in	the	premenstrual	or	luteal	phase	[47],	when

estrogen	is	low	[74].	A	significant	alteration	in	insulin	sensitivity	has	been	noted	during	the	menstrual	cycle.	The	release	of	estrogen	can	improve	insulin	sensitivity	[72],	with	decreased	receptor	binding	observed	in	the	luteal	phase

[62],	when	the	risk	of	developing	migraine	is	increased	[47].



The	taking	of	oral	contraceptives	is	also	a	known	migraine	trigger	[20]	and	in	particular	can	be	potentially	hazardous	for	migraine	with	aura	patients	[7].	Cyclic	fluctuations	in	sex	hormones	are	absent	or	minimized	in	oral

contraceptive	users.	Furthermore,	significant	cycle-related	trends	are	not	observed	in	women	using	oral	contraceptives	[10].

When	the	concentration	of	estrogen	and	progesterone	is	raised	either	artificially	as	in	oral	contraceptive	use	or	naturally	as	in	pregnancy,	insulin	sensitivity	is	impaired	[62].	Thus,	women	are	more	likely	to	develop	migraine

symptoms	when	the	risk	of	developing	insulin	resistance	is	also	increased.

Emotional	stress
Emotional	stress	can	trigger	a	migraine	in	vulnerable	individuals	[145,112].	Cortisol,	a	glucocorticoid	known	to	play	a	role	in	energy	metabolism	and	utilization	[53],	is	rapidly	released	in	response	to	emotional	stress	[226].

Hypercortisolism	is	a	common	finding	in	migraine	patients	[242].	However,	an	increase	in	cortisol	can	promote	activity	away	from	5-HT	synthesis	and	activate	the	Trp-KYN	pathway.

The	function	of	 insulin	 in	the	brain	may	be	to	assist	 in	glucose	homeostasis	by	regulating	cerebral	glucose	metabolism	and	regulating	feeding.	 Insulin	can	 lower	food	 intake	and	body	weight	and	an	absence	of	circulating

glucocorticoids	 can	 increase	 the	 brain’s	 sensitivity	 to	 insulin	 [40].	 Alternatively,	 cortisol	 excess	 can	 inhibit	 glucose	 utilization	 and	 transport	 [95,226],	 which	 in	 turn	 can	 promote	 insulin	 insensitivity,	 induce	 hypoglycemia	 due	 to

increased	demand	for	glucose,	and	result	in	decreased	excitability	of	brain	cells	[93].

Summary
The	aim	of	this	paper	was	to	attempt	to	stimulate	discussion	on	the	relationship	between	migraine	and	energy	metabolism	and	utilization	by	proposing	that	migraine	may	be	part	of	a	cascade	of	events,	which

together	act	to	protect	the	organism	when	confronted	by	a	metabolic	challenge.	From	the	evidence	presented	above	it	would	appear	that	most	of	the	common	migraine	triggers	can	be	linked	to	less	than	optimum

energy	metabolism	and	utilization	in	some	way.

More	 than	 95%	 of	migraineurs	 can	 identify	 at	 least	 two	migraine	 triggers	 [70]	 suggesting	 there	may	 be	 a	metabolic	 relationship	 between	migraine	 triggers	 [38].	 Earlier	 Peatfield	 [174]	 highlighted	 the

possibility	that	migraine	triggers	can	be	grouped	and	even	suggested	there	could	be	a	relationship	between	red	wine,	cheese	and	chocolate.	Indeed,	as	this	review	has	revealed	both	of	these	claims	could	be	true	in

that	there	does	appear	to	be	a	metabolic	relationship	with	red	wine	[230],	cheese	[216]	and	chocolate	[169],	all	known	to	contain	histamine.

This	review	has	been	successful	in	showing	that	the	biochemical	changes	that	occur	before	and	during	a	migraine	attack	are	consistent	with	the	development	of	a	metabolic	challenge.	Most	(if	not	all)	of	the

migraine	 triggers	 could	 potentially	 reduce	 insulin	 sensitivity	 (e.g.	 sucrose,	 red	 wine,	 peanuts,	 menstrual	 cycle,	 oral	 contraceptives,	 bananas,	 aspartame,	 glucosamine,	 monosodium	 glutamate,	 caffeine,	 citrus,

emotional	stress),	which	could	ultimately	influence	GLUT4	activity	in	vulnerable	individuals.

It	is	very	tempting	to	conclude	that	activation	of	the	Trp-KYN	pathway	and	insulin	resistance	is	one	of	the	underlying	factors	in	migraine.	Metabolism	of	Trp	via	the	Trp-KYN	pathway	is	promoted	when	cortisol

is	elevated	and	hypercortisolism	has	been	noted	in	migraineurs	[242].	In	migraineurs	the	level	of	KYNA	and	3-HANA	is	significantly	reduced	and	XA	is	significantly	increased	[51,52],	which	further	suggests	that	the

level	of	NO	[158]	and	risk	of	insulin	resistance	[163]	in	migraineurs	may	be	increased.

However,	how	the	migraine	triggers	promote	insulin	resistance	does	not	appear	to	be	the	same	in	all	cases.	Moreover,	sex	differences	with	respect	to	the	ability	of	sucrose,	a	substance	known	to	promote

insulin	resistance	in	humans	[197]	and	animals	[39],	to	promote	insulin	resistance	in	migraineurs	have	been	reported	(e.g.	[113].	Thus,	migraine	may	be	a	highly	unique	and	complex	disorder.

The	material	presented	in	this	review	is	by	no	means	extensive	and	has	merely	focussed	on	some	of	the	more	established	biochemical	aspects	of	energy	metabolism	and	utilization.	There	are	many	biochemical

factors	that	could	have	been	examined	in	this	review	(e.g.	leptin,	ghrelin,	cholecystokinin)	and	probably	many	more	factors	that	remain	to	be	discovered.	However,	the	information	that	has	been	presented	serves	as	a

good	starting	point	to	perhaps	make	us	start	to	review	the	current	treatment	and	management	of	migraine	patients.
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Highlights

• Migraine	is	associated	with	the	development	of	a	metabolic	challenge.

• Migraine	triggers	can	differentially	alter	energy	metabolism	and	utilization.

• Common	factor	linking	triggers	is	an	ability	to	promote	insulin	resistance.

• Insulin	resistance	may	underlie	the	pathogenesis	of	migraine.


