Sorption of sulfuryl fluoride into wheat and its impact on efficacy, fluoride residues and product quality

Mudhir Ismail Hwaidi

M.Sc Field Crops, University of Tikrit, Iraq B.Sc Plant Production, University of Tikrit, Iraq

> A thesis submitted for the degree of Doctor of Philosophy of the University of New England

School of Environmental and Rural Science Faculty of Arts and Sciences University of New England

May 2015

DECLARATION

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree or qualification.

I certify that any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

Mudhir Ismail Hwaidi 25/05/2015

ACKNOWLEDGEMENTS

I would like to acknowledge the Iraqi government, Ministry of Higher Education and Scientific Research, the Office of Scholarships and Cultural Relationships for provision of a scholarship that allowed me to enrol in the degree. I would also like to thank the University of New England for travel assistance and other monies to assist with my project.

My supervisory team of Professor Bob Martin, Dr Mike Sissons and Dr Pat Collins all played a role in getting my research completed and thesis submitted. I thank them all for supporting my journey. I am grateful for their detailed reviews of the many drafts of my thesis..

Thank you to many staff of the Tamworth Agricultural Institute. A special thankyou to Narelle Egan, Shaylene Sissons, Susan Balfe and Debra Delaney for their assistance

Thankyou to many staff at the Postharvest Grain Protection Team, Department of Agriculture and Fisheries, Brisbane, Qld. I would like to say a special thankyou for Dr Gregory Daglish, Dr Manoj Nayak, Ms Hervoika Pavic, Ms Linda Bond and Dr Raman Kaur for their help and advice during my work.

I would also like to thank general staff members of the University of New England who provided assistance to me personally and for practical elements of my research, namely, Lalit Kumar and Ashleigh Dempster.

I have enormous appreciation of my father, mother and my brothers and sisters for their support in my PhD journey. I thank them so much for their encouragement, interest and

support. I also thank them for putting up with all my complaining on the telephone and for their love and emotional support which has enabled me to complete my thesis.

A special thank you to my wife, for her support, motivation and encouragement, which has been vital in completing this project. I thank my wife for ensuring that I eat properly and have time out.

SUMMARY

This work was carried to investigate sorption of sulfuryl fluoride (SF) and its impact on efficacy, residues and technological quality of wheat and its products. An important factor to consider in the practical application of fumigants is the impact of sorption of the gas into the commodity during fumigation. Sorption may reduce the biological activity of a fumigant by reducing the concentration of gas available to target insects and no information is available on the impact of sorption on the biological efficacy of this fumigant against target pests.

Information on the efficacy of SF against insect pests is generally limited to fumigation times of 48 h or less. The aim of this work was to provide more detailed information about the sorption behaviours of SF when wheat, semolina and flour are fumigated at three concentration x time exposures under different conditions (temperature, grain moisture content), filling ratio and repeated fumigation. The impact of fumigating with SF under these conditions on the efficacy against lesser grain borer in the presence of bread wheat, effects on the technological properties of durum wheat and the presence of fluoride residue in selected grain fractions were studied.

For sorption studies, bread wheat, durum wheat, commercial flour and semolina at typical grain storage temperatures (15, 25 and 35°C) and moisture contents (12% and 15%), were fumigated with SF at CT, concentration x time combinations, equal to 1500 mg.h/L (4.167 mg/L x 360 h, 8.928 mg/L x 168 h and 31.25 mg/L x 48 h). The results of this study indicated sorption rate of SF into the commodity increased as temperature and commodity moisture content increased at each applied concentration. The highest rates of sorption occurred at 35°C and 15% m.c., and lowest rates at 15°C and 12% m.c. Importantly, there was no desorption of SF by the commodity after airing under any of the test conditions. My results indicated that SF is sorbed slowly by wheat grains and their processed products (flour or semolina) relative to other common fumigants such as phosphine and methyl bromide.

Sorption follows first order reaction kinetics described by the exponential decay equation, $C_t = C_0 e^{-k^*t}$, where *k* is the sorption rate constant. Unbound SF is rapidly lost from the commodity upon aeration with no further desorption detected indicating that sorbed SF is irreversibly bound to the commodity matrix. The most important factors determining the rate of sorption are commodity particle size (exposed surfaces) and temperature then moisture. The rapid desorption of SF is beneficial for work place and health and safety. A special consideration needs to be taken into account when fumigation is done with this fumigant in the presence of the commodity to avoid downgrading the toxic level of the fumigant.

Sorption of SF at various grain filling ratios (0.95, 0.75, 0.50) was evaluated with durum wheat fumigated with 1 mg/L SF applied for 168 h at 25°C. The highest sorption rate was at 0.95, and time to sorb the fumigant decreased with increasing filling ratio. Physical sorption accumulated exponentially, and chemical sorption increased linearly. Physical sorption was strongly related to chemical sorption in a quadratic manner, and the independency of physical sorption affected the turning point of the chemical sorption. Sorption of the fumigant increased as the density increased and it was sorbed significantly higher at bulk density than at grain density, this shows the impact of the density of the commodity on sorption as there are more grains in agiven volume with bulk grain. Different densities of the bulk can be obtained from the same grain density and from the same bulk. While it is beneficial to maximise the amount of grain stored in a facility (high filling ratio), this can lead to more extensive sorption of SF and result in higher residue content than using a lower, 0.5 filling ratio. The high sorption of the fumigant at the higher filling ratio left higher fluoride residues as the results of this study indicated. In addition, high sorption means reducing the effective concentration needed to kill eggs and adults therefore downgrading the fumigant concentration under the level required for insect control. It is recommended that a filling ratio of 0.50 be used so that an accurate and effective fumigation procedure against insects with minimal sorbed gas by the grain will be achieved.

Repeated fumigation occurs in the grain industry and this was investigated by testing the impact of up to 5 repeated fumigations of bread (hard) wheat and soft wheat with 8.928 mg/L of SF for 168 h at 25 C. SF was sorbed more into bread wheat than soft wheat. For both commodities, sorption rate decreased with increasing number of fumigations. Fluoride residues increased with increasing number of fumigations, and the maximum residue was at the fifth fumigation. Repeating fumigation four times or more results in the fluoride residue becoming higher than the current maximum limit in Australia.

Adult and egg of *Rhyzopertha dominica*, an insect resistant to phosphine, was used as a model insect to study the impact of sorption of SF into the commodity on its efficacy. Bread wheat was exposed to 0.5, 1, and 2 mg/L SF fumigated for 168 h at 25°C and 60% rh. Results indicated a dramatic initial and then gradual chemical sorption of SF into the wheat grain and this sorption affected the toxicity of SF against both egg and adult life stages. However, complete sorption was predicted after 34 d. The major effect of sorption on the mortality of egg and adult related to physical sorption. There was a quadratic relationship between the mortality rate constants of adult and egg and physical sorption and a linear relationship between the mortality rate constants of adult and egg and chemical sorption of SF in wheat. It is suggested that traditionally used CTPs (concentration x time products) need revision and consideration should be given to the sorption of SF by wheat.

Selected samples taken from the fumigation vs. temperature, moisture and SF dosage were evaluated for the effect of SF on the technological characteristics of wheat grains and their derived products (semolina, pasta from durum wheat and bread from hard wheat). SF greatly reduced germination percentage and this effect was enhanced at higher doses of SF and at higher grain moisture content and temperature. The lowest germination was 1.5% at 31.25

mg/L SF, 15% moisture and 35°C compared to unfumigated wheat (90.25%). This is due to the toxicity of SF. Fluoride residues in cereal grain were higher than the maximum residue limit. Milling reduced fluoride residue below the maximum residue limit probably because the majority of fluoride residue is concentrated in bran and this is removed during milling. Cooking pasta also helped reduce fluoride and this moved into the cooking water. Fumigation with SF increased the yellowness of semolina, cooking loss, over cooking tolerance, firmness and stickiness. These factors were affected by temperature with a significant interaction in many cases. However, fumigation with SF at different conditions had no affect on bread making quality. SF affects germination significantly so that it not suitable for grain stored as seeds, in addition to its effect on some quality traits for durum, pasta, and bread. SF may leave fluoride residues in cereal grains higher than the maximum residue limits in Australia if the fumigated commodity was stored with high levels of filling ratios and the fumigation was repeated more than three times at high storage conditions of temperature and moisture. In addition, whole grain or milled product as milled products such as flour and semolina sorb the fumigant more than the whole grain. However, after milling, flour residues levels will be less than the maximum reside limits and the majority of the residues will be in bran.

DECLARATION	i
ACKNOWLEDGMENTS	ii
SUMMARY	iv
CONTENTS	viii
FIGURES	xii
TABLES	XX
APPENDIX A	xxxiii
PUBLICATIONS RELATED TO THIS THESIS	xli
ABBREVIATIONS	xlii
CHAPTER ONE: Literature review	1
Wheat uses and importance in the world with emphasis on wheat production,	
export, import uses of wheat in Australia, Middle East and Iraq	1
Wheat types and technological uses	
Bread	
Pasta	7
Pasta quality	8
Grain quality	
Grain storage and protection	
Importance and management of insect pests of cereal grains in	
Australia and Iraq	13
Characteristics of fumigants used for grain fumigation	
Principles of fumigation	
Principles of sorption and desorption	
Residues in wheat	
Sulfuryl fluoride	
Chemical and physical properties	
Historical use	
Use as a fumigant in stored products	
Toxicity against insects	
Sorption	
Effects on grain quality	
Residues	25
Toxicity against human and animal	
Germination	
CHAPTER TWO: Sorption and desorption of sulfuryl fluoride by wheat, flour a	
semolina	
Abstract	
Introduction	
Materials and methods	33
Experimental design	
Preparation of test samples	
Experimental Units	
Fumigation process	
Measuring sorption	
Measuring desorption	
Calculating initial fumigant concentration	
Statistical analysis	

CONTENTS

Results	
Sorption of SF into commodities	
Effect of temperature on sorption of SF	46
Effect of moisture content on sorption of SF	
Initial concentration	
Desorption of SF from commodities	
Discussion	
Conclusion	
CHAPTER THREE: Does sorption of sulfuryl fluoride by wh	neat affect the
efficacy of the fumigant against the ac	lult and egg of <i>Rhyzopertha</i>
dominica?	58
Abstract	
Introduction	58
Materials and methods	60
Experimental design	60
R. dominica culturing	60
Commodity moisture	61
Calculating commodity volume V _g	61
Fumigation	61
Bioassay fumigation	
Statistical analysis	
Results	65
Adult mortality	
Egg survival	
Discussion	
Conclusion	
CHAPTER FOUR: The effect of varying filling ratio on the s	orption of sulfury
fluoride by wheat	
Abstract	
Introduction	
Materials and methods	
Experimental design	
Commodity	
Moisture content	
Determining bulk, true density and commodity volume V_g	
Fumigation	
Statistical analysis	
Results	
Discussion	
Conclusion	
CHAPTER FIVE: Changes in sorption rates and fluoride res	
fumigation of wheat with sulfuryl fluoride	
Abstract	
Introduction	
Materials and methods	
Experimental design	
Commodity	
Moisture content	
Determining bulk, true density and commodity volume V_g	
Fumigation	

Statistical analysis	
Results	
Sorption	
Residues	
Discussion	
Conclusion	
APTER SIX: Effects of fumigation with sulfuryl fluoride on some to	
characteristics of wheat and durum	
Abstract	
Introduction	
Materials and methods	
Germination	
Thousand grain weight	
Test weight or hectolitre weight (HLW) and grain hardness	
Ash content	
Fluoride residue analysis	
Milling grain into semolina using the Quadrumat Junior Mill	
Milling of wheat for pasta making	
Experimental pasta making and evaluation	
Pasta optimum cooking time (OCT)	
Pasta cooking loss and water absorption	
Pasta colour: cooked and uncooked	
Cooked pasta firmness	
Cooked pasta stickiness	
Semolina colour	
Mixograph	
Bread baking	
Milling of durum wheat for bread making	
Test bake - rapid process	
Experimental design	
Germination and 1000 grain weight	
Protein, grain hardness, hectolitre weight and milling study	
Ash study	
Fluoride residues	
Pasta	
Pasta testing	
Mixograph and semolina colour study	
Bread	
Statistical analysis	
Results	
Germination	
Effects of SF fumigation on grain quality traits of durum wheat	
Effects of SF fumigation on semolina quality traits of durum wheat	
Effects of SF fumigation on pasta quality traits of durum wheat	
Bread	
Fluoride residues	
Discussion	
Germination	177
Effect of SF on grain quality traits	
Effect of SF on semolina and pasta technological properties	

Bread	
Fluoride residues	
Conclusion	
CHAPTER SEVEN: Aims, General discussion, significance, r	ecommendations, future
work and conclusion	
Aims	
General discussion	
Significance	
Recommendations	
Future work	
Conclusion	
REFERENCES	
APPENDIX A: Raw data of the thesis	

FIGURES

Fig.1.1. Production map of Australian wheat4
Fig.1.2. Wheat production in Iraq by province4
Fig.1.3. Structure and germination of wheat grain
Fig. 2. 1. Sorption of sulfuryl fluoride into bread wheat, flour, durum wheat and semolina at 25°C and 12% moisture content. Sulfuryl fluoride was applied at 4.167 mg/L
Fig. 2. 2. Rate of sorption, <i>k</i> , for semolina and durum at three concentration x time fumigations
Fig.2.3. Influence of temperature on sorption of sulfuryl fluoride by wheat at 12% moisture content. Sulfuryl fluoride was applied at 8.928 mg/L x 168 h at 15, 25 and 35° C46
Fig.2.4. Rate of sorption, <i>k</i> , of sulfuryl fluoride into flour and wheat at two moisture contents and three temperatures. Sulfuryl fluoride was applied at 4.167 mg/L for a fumigation period of 360 h
Fig.2.5. Sorption of sulfuryl fluoride by wheat and flour at 25°C and 12% moisture content. Initial concentrations x exposure periods for each commodity were 4.167mg/L x 360 h, 8.928 mg/L x 168 h and 31.25 mg/L x 48 h

Fig.3.7. Relationship between the adult mortality rate constant (*R*) and the sorption rate constant (*k*) of bread wheat (12% mc, 25°C, 60% rh with adult and egg) fumigated with 0.5 mg/L sulfuryl fluoride for 168 h, (---) upper and lower confidence limits at 95%......73

Fig.3.12. Relationship between the egg mortality rate constant (*E*) of *R*. *dominica*, and the partition coefficient of physical sorption (*K*) of wheat (12% mc, 25°C, 60% rh with adult and

Fig.4.8. Linear relationship between sorption rate constant (k) of sulfuryl fluoride by durum wheat bulk density of 0.843 g/ml at 12% moisture content, 25°C and 0.95 filling ratio...........97

Fig.4.9. Linear relationship between sorption rate constant (k) of sulfuryl fluoride by durum wheat grain density of 1.436 g/ml at 12% moisture content, 25°C and 0.95 filling ratio...... 99

Fig.4.11. Linear relationship between sorption rate constant (k) of sulfuryl fluoride by durum wheat grain density of 1.436 g/ml at 12% moisture content, 25°C and 0.75 filling ratio......100

Fig.4.12. Linear relationship between sorption rate constant (k) of sulfuryl fluoride by durum wheat bulk density of 0.843 g/ml at 12% moisture content, 25°C and 0.50 filling ratio......100

Fig.4.13. Linear relationship between sorption rate constant (k) of sulfuryl fluoride by durum wheat grain density of 1.436 g/ml at 12% moisture content, 25°C and 0.50 filling ratio......101

Fig.4.14. Quadratic response of sorption rate constant k to the impact of partition coefficient of physical sorption (K, as units) of sulfuryl fluoride sorbed by durum wheat bulk, density of 0.843 g/ml at12% moisture content at, 25°C and 0.95 filling ratio......101

Fig.4.17. Quadratic response of sorption rate constant k to the impact of partition coefficient of physical sorption (*K*, as units) of sulfuryl fluoride sorbed by durum wheat grain density of 1.436 g/ml at12% moisture content at, 25°C and 0.75 filling ratio......103

Fig.5.3. Sorption of SF into soft wheat 12.5% m.c. over five successive fumi	gations. Symbols
indicate first \bullet , second \blacksquare , third \blacktriangle , fourth \bullet and fifth \blacktriangleright fumigation. SF was	applied at 8.928
mg/L flask volume for 168 h at 25 C	

Fig.5.4. Change in % loss SF/h with successive fumigations of bread wheat and soft wheat at 12.5% m.c. fumigated with SF 8.928 mg/L flask volume for 168 h at 25 C......118

TABLES

Table.1.1. Wheat production in Iraq by province shows planted area, yield and production per
hectare for the agricultural season 2011-2012
Table.1.2. Exported Australian wheat in metric tonnes to Iraq from 2009 to 2013
Table.1.3. Common and scientific names of the important insect pests of stored cereal grains
and the major commodity that can be infested by each insect15
Table.1.4. Common fumigants
Table.1.5. Chemical and physical properties of sulfuryl fluoride
Table.2.1. Sorption of sulfuryl fluoride into bread wheat at three nominal concentration-time
regimes, three temperatures and two moisture contents, (0.5 filling ratio, concentrations of SF
applied were calculated on the basis of empty vessel volume)

Table.2.5. Percentage loss per hour of sulfuryl fluoride from the head space, and calculated rate constants for a full container, k_f , where $k_f = k \ge f$, with k = the experimentally derived sorption rate and f = the filling ratio (Banks, 1986), (0.5 filling ratio, concentrations of SF applied were calculated on the basis of empty vessel volume).

Table. 3. 4. Model fit for the relationship between constant rate of reaction (*k*) at sulfuryl fluoride concentrations 0, 0.5, 1 and 2 mg/L on the mortality rate constant of eggs (*R*) fumigated at 25°C and 60% r.h in presence of wheat (12% m.c) at 0.5 filling ratio......72

Table.4.5. Quadratic impact of partition coefficient of physical sorption (K) on sorption rate constant (k) of SF by Durum wheat 12% moisture content at 25°C and three different filling

Table.5.3. Effect of repeated fumigation by SF 8.928 mg/L at 25°C for 168 h on fluorideresidues of bread wheat 12% moisture.121

Table.6.11. Protein content% of durum wheat response to the fumigation by SF (control, 4.167 mg/L x 360, 8.928 mg/L x 168 h and 31.25 mg/L x 48 h) at 15, 25 and 35°C......149

Table.6.16. Analysis of variance table for influence of fumigation on semolina redness (a^*) for commercially supplied semolina and milled from durum semolina by SF (control, 4.167 mg/L x 360, 8.928 mg/L x 168 h and 31.25 mg/L x 48 h) at 15, 25 and 35°C......153

Table.6.25. Influence of fumigation by SF (control, 4.167 mg/L x 360, 8.928 mg/L x 168 h and 31.25 mg/L x 48 h) at 15, 25 and 35°C on width of mixogram at peak time for the commercially supplied semolina (C) and milled from durum semolina (M)......161

Table.6.29. Water absorption of pasta made from semolina fumigated by SF (control, 4.167 mg/L x 360, 8.928 mg/L x 168 h and 31.25 mg/L x 48 h) at 15, 25 and 35°C......164

Table.6.31. Cooking loss g of pasta made from semolina fumigated by SF (control, 4.167 mg/L x 360, 8.928 mg/L x 168 h and 31.25 mg/L x 48 h) at 15, 25 and 35° C......165

Table.6.33. Firmness force 1 g of pasta made from semolina fumigated by SF (control, 4.167 mg/L x 360, 8.928 mg/L x 168 h and 31.25 mg/L x 48 h) at 15, 25 and 35°C......165

Table.6.42. Uncooked and cooked pasta colour fumigated at different conditions......169

Table.6.47. Fluoride residues in milled semolina and the bran from durum wheat fumigated with 4.167 mg/L for 360 h at 25°C and 12% moisture content, 8.298 mg/L for 168 h 25°C and 12% moisture content and 31.25 mg/L Х 48 h at 35°C and 12%

APPENEDIX A

Table.A.3. Raw data for the applied concentration 4.167 mg/L at stated temperatures and moistures showing the calculated concentration of the fumigant at time of 24 h......240

Table.A.4. Raw data for the applied concentration 4.167 mg/L at stated temperatures and moistures showing the calculated concentration of the fumigant at time of 48 h......241

Table.A.5. Raw data for the applied concentration 4.167 mg/L at stated temperatures and moistures showing the calculated concentration of the fumigant at time of 72 h......242

Table.A.7. Raw data for the applied concentration 4.167 mg/L at stated temperatures and moistures showing the calculated concentration of the fumigant at time of 168 h......244

Table.A.8. Raw data for the applied concentration 4.167 mg/L at stated temperatures and moistures showing the calculated concentration of the fumigant at time of 192 h......245

Table.A.9. Raw data for the applied concentration 4.167 mg/L at stated temperatures and moistures showing the calculated concentration of the fumigant at time of 216 h......246

Table.A.10. Raw data for the applied concentration 4.167 mg/L at stated temperatures and moistures showing the calculated concentration of the fumigant at time of 240 h......247

Table.A.11. Raw data for the applied concentration 4.167 mg/L at stated temperatures and moistures showing the calculated concentration of the fumigant at time of 264 h......248

Table.A.19. Raw data for the applied concentration 8.928 mg/L at stated temperatures and moistures showing the calculated concentration of the fumigant at time of 96 h......256

Table.A.20. Raw data for the applied concentration 8.928 mg/L at stated temperatures and moistures showing the calculated concentration of the fumigant at time of 168 h......257

Table.A.31. Raw data of percentage reduction of adults at three concentrations of SF......268

 Table.A.43. Raw data of repeated fumigation for five times with 8.928 mg/L on soft wheat

 12.5% moisture content.

 .280

 Table.A.45. Raw for the effect of SF concentrations, temperatures and moisture on durum

 hectolitre weight kg/hL

 Table.A.47. Raw for the effect of SF concentrations, temperatures and moisture on durum

 protein content.

 .284

Table.A.50.	Raw	for	the	effect	of,	SF	concentrations,	temperatures	and	moisture	on	bran
production d	luring	mill	ing	from d	uru	m gi	rain					.287

Table.A.59. Raw data of uncooked pasta colour
Table.A.60. Raw data of cooked pasta colour
Table.A.61.Raw data of pasta firmness
Table.A.62.Raw data of pasta stickiness
Table.A.63.Raw data of mixograph
Table.A.64.Raw data of ash content%
Table.A.65. Raw data of over cooking time firmness
Table.A.66. Raw data for baking study
Table.A.67. Raw data for fluoride residues study

PUBLICATIONS RELATED TO THIS THESIS

Mudhir Hwaidi, Patrick J. Collins, Mike Sissons, Hervoika Pavic,

Manoj K. Nayak., 2015. Sorption and desorption of sulfuryl fluoride by wheat,

flour and semolina. Journal of Stored Products Research 62, 65-73.

ABBRIVIATIONS

a-	Greenness
a*	Red-green difference for colour
a+	Redness
AACC	American Association of Cereal Chemistry
AD	Anno Domini
AEGIC	Australian Export Grain Innovation Centre
AGI	Australian Grain Industry
APVMA	Australian Pesticide and Veterinary Medicines Authority
ATP	Adenosine Triphosphate
b-	Blueness
b*	Yellowness index
b+	Yellowness
°C	Temperature degree
CIMMYT	International Maize and Wheat Improvement Centre
CL	Cooking Loss
cm	Centimetre
СР	Cooked Pasta
СТР	Concentration x Time Products for fumigation calculations
DAF	Department of Agriculture and Fisheries
DNA	Deoxyribonucleic acid
DP	Uncooked Pasta
DPI	Department of Primary Industries
EPA	Environmental Protection Agency
EPPO	European and Mediterranean Plant Protection Organisation

F	Fluoride residue
FAD	Food and Drug Administration
FAO	Food and Agriculture Organisation
FAOSTA	Food and Agriculture Organisation Statistics
FFDAC	Federal Food, Drug and Cosmetic of America
FPD	Flame Photometric Detector
g	Gram for weight
g/ml	grams per millilitre for bulk and grain density
GC	Gas Chromatograph
GIEWS	Global Information and Early Warming System
h	hour
ha	hectare
HLW	Hectolitre Weight
IAEO	International Atomic Energy Agency
ISTA	International Rules of Seed Testing
Kg/hL	Kilogram per hectolitre
Kgy	Kilogray
Кра	Kilopascal
L*	Brightness for colour
m.c.	Moisture Content
mg.h/L	Milligrams per hour per litre (a unit for CTP)
mg/kg/day	Milligrams per human body weigh per day (allowed for F)
mg/L	Milligrams per Litre (fumigant concentration per volume)
min	Minutes
ml	Millilitre

mm	Millimetre
MPH	Maximum Peak Height
MPT	Mixograph peak Time
mRNAs	Messengers of Ribonucleic Acid
mt	metric tone
NSW	New South Wales
OC	Optimum Cooking Time
OCT	Over Cooking Tolerances
PDS	Public Distribution System
QLD	Queensland
r.h	Relative humidity
RACI	The Royal Australian Chemical Institute Incorporated
RBD	Resistance Break Down
RO	Reveres Osmoses (for water)
Rpm	Revolution per minute
SA	South Australia
Sec	Second
SF	Sulfury Fluoride
SKHI	Single Kernel Harness Index
TAI	Tamworth Agricultural Institute
TCD	Thermal Conductivity Detector
USDA	Unites States Department of Agriculture
V	Volt
VIC	Victoria
VS.	Verses

WA	West Australia
WA8	Width of Mixogram at 8 minutes past peak mixing
WAP	Width of mixogram at Peak time
WHO	World Health Organisation
WI	Whiteness Index for colour
YI	Yellowness Index for colour