
1  INTRODUCTION

This thesis presents the Australian Animal DISease (AADIS) model - a new disease

modelling  approach  to  support  emergency  livestock  disease  preparedness  and

planning in Australia. Although the AADIS model architecture supports any pathogen,

foot-and mouth disease (FMD) is the test case owing to its international importance,

complex epidemiology and economic significance to Australia.

1.1  The importance of emergency disease in livestock

Agriculture is an important aspect of the Australian economy and directly accounts for

approximately  3% of  GDP.  The annual  gross  value  of  farm production  is  $53.36

billion AUD with livestock and livestock products amounting to $23.22 billion AUD.

Annual exports of livestock and livestock products are valued at $18.33 billion AUD,

of which $15.40 billion AUD is attributable to the major livestock industries of cattle,

sheep  and  pigs  (Australian  Bureau  of  Agricultural  and  Resource  Economics  and

Sciences, 2014).

An emergency animal disease (EAD) is a disease with the potential to severely impact

trade, livestock production, the environment, or human health (Department of Primary

Industries, 2014). Australia is free of most EADs, including, FMD, sheep and goat

pox, Rift Valley fever (RVF), African swine fever (ASF), classical swine fever (CSF),

rabies, screw-worm fly and transmissible spongiform encephalopathy. An epidemic of

an EAD in a livestock population would have serious economic and social impacts. 

A particularly important EAD is  FMD, a highly contagious viral disease of cloven-

hoofed animals including cattle, sheep, pigs and goats. An outbreak of FMD in an

FMD-free country triggers  loss of access to international markets for livestock and

livestock products (Matthews, 2011).  This would have serious consequences for a

country such as Australia where exports account for approximately 60% of the gross

value  of  livestock  production  (Australian  Bureau  of  Agricultural  and  Resource
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Economics and Sciences, 2014). Domestic markets would be greatly weakened from

excess supply, and potential consumer resistance to livestock and livestock products

in the face of an FMD outbreak. A range of industries including livestock, livestock

products and genetic material would experience severe production and income losses.

The  present  value  of  total  direct  economic  losses  from  an  outbreak  of  FMD  in

Australia was recently estimated at up to $52.2 billion AUD over 10 years, depending

on the size of the outbreak and the effectiveness of control (Buetre et al., 2013). This

figure includes export losses and the costs of controlling and eradicating the disease

(for  example,  quarantining  of  infected  premises,  culling  and  disposal  of  affected

livestock, decontamination of premises, and vaccination supplies).

A large outbreak of FMD would also have a considerable indirect impact on support

industries such as livestock services, supplies and transportation, flow-on industries

such as wool and leather processing, and tourism (Rich, 2005;  Buetre et al., 2013).

For example, the 2001 outbreak of FMD in the UK impacted the tourism industry by

£2.7 to  £3.2 billion, approximately equivalent to the impact of the outbreak on the

agriculture and food chain industries (Thompson et  al.,  2002).  It  is  estimated that

previously FMD-free countries suffered losses of around $25 billion USD (in 2011

US dollars), from incursions over the last 15 years (Knight-Jones and Rushton, 2013).

Examples  include  the  2010-11  outbreak  in  South  Korea  with  an  impact  of  $2.87

billion USD and the 2010 outbreak in Japan with an impact of $568 million USD (in

2011 US dollars) (Knight-Jones and Rushton, 2013). The 2000-02 outbreak of FMD

in Argentina affected 2519 herds (Perez et al., 2004), and had an economic impact of

between $1.6 billion USD and 2.1 billion USD (Gallacher, 2007). The 2001 outbreak

of FMD in Uruguay affected 2057 farms and had a total economic impact of $243.6

million USD (Spickler et al., 2010).

Due to the serious economic impact and highly contagious nature of FMD, a control

program in an FMD-free country is aimed at containing and eradicating the disease as

quickly as possible. Generally this is based on the 'stamping out' of infection through
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culling of infected and exposed animals, disposal of carcasses, and decontamination

of infected premises and materials, in conjunction with the establishment of controlled

areas  to  restrict  movements  of  livestock  and  livestock  products.  Other  control

measures may include surveillance, tracing the movements of livestock and livestock

products,  and vaccination (OIE,  2012;  OIE,  2013).  A large outbreak of FMD can

require a control program on a massive scale, for example, during the 2001 UK FMD

outbreak,  6,456,000 sheep,  cattle  and pigs  were destroyed for disease control  and

welfare  purposes  (Anderson,  2002)  (Figure  1.1).  The  tally  is  conservative  as  it

excludes still-suckling animals, and may even be as high as 10 million (Campbell and

Lee, 2003; Kitching et al., 2006). To put these numbers into perspective, the 2000 UK

agricultural  census  reports  a  total  population  of  55  million  sheep,  cattle  and pigs

(Bourn,  2002).  The culling and disposal  of  such vast  numbers  of animals  created

major logistical problems, and raised concerns on the environmental impact of large-

scale funeral pyres and burial pits (Scudamore et al.,  2002; Hickman and Hughes,

2002).  Other  examples  of  the potential  scale  of  an FMD control  program are the

2010-11 outbreak in Korea where 3.47 million animals were culled,  and the 1997

outbreak in Taiwan where 4 million animals were culled (Knight-Jones and Rushton,

2013).
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Figure 1.1. Funeral pyres during the 2001 UK FMD outbreak (MacLeod, 2001) 



Those involved in FMD control operations such as disease managers, veterinarians,

culling teams, disposal teams and police, are subject to considerable mental health

stresses  from  the  intensive  and  disturbing  nature  of  the  work  (Productivity

Commission, 2002; Convery et al., 2007). Of the 10,157 premises on which culling

occurred  in  the  UK  in  2001,  only  2026  were  confirmed  infected  premises.  The

remaining 8,131 premises (4,762 dangerous contact premises and 3,369 contiguous

premises), were culled pre-emptively (Anderson, 2002). The policy of pre-emptive

culling places operational personnel in the highly distressing situation of potentially

destroying  large  numbers  of  animals  that  otherwise  might  have  remained  healthy

(Productivity Commission, 2002; Whiting and Marion, 2011). 

Approximately 312,800 people are directly employed in the Australian rural sector

(Australian Bureau of Agricultural and Resource Economics and Sciences, 2014). An

outbreak of FMD would have severe social impacts on owners and workers in the

affected livestock industries. Major psychosocial stresses can arise from the isolation

of quarantine (Figure 1.2), marginalisation of owning/working on infected premises,

loss  of  self-determination  and  trauma  from  the  imposition  of  culling,  loss  of

livelihood,  and uncertainty  about  the  future  (Productivity  Commission,  2002;  Van

4

Figure 1.2. Quarantined premises during the 2001 UK FMD outbreak (MacLeod,

2001) 



Haaften et al., 2004; Peck, 2005; Mort et al., 2005; Olff et al., 2005; Cohen et al.,

2007). Farmers impacted by an FMD outbreak and personnel involved in the control

program  may  experience  trauma  during  the  outbreak,  as  well  as  ongoing  post-

traumatic stress after the outbreak (Olff et al., 2005; Convery et al., 2007). 

1.2  Modelling to inform animal health policy and disease planning

Disease  managers  are  faced  with  a  variety  of  challenges  when  responding  to  an

outbreak of exotic disease. These include: what control measures to adopt; trade and

economic implications of control measures; management of finite resources such as

personnel,  equipment  and vaccine;  animal  welfare issues;  potential  risks to  public

health; and consumer concerns (Garner et al., 2007; Buetre et al., 2013). The control

program for an epidemic can be a compromise between the need for a large-scale

implementation  and  what  is  logistically  and  economically  feasible  (Morris  et  al.,

2002;  Tildesley  et  al.,  2006). It  is  a  complex task  to  efficiently  contain  a  highly

contagious  disease  whilst  minimising  the  impact  of  the  control  program on  non-

infected areas, the environment, export markets, and society in general (Scudamore

and Harris, 2002; Buetre et al., 2013). 

Epidemics  can  be  difficult  to  study  empirically,  particularly  if  a  pathogen  is

dangerous, rare, or not present in a country. FMD, for example, was last suspected (on

clinical grounds), in Australia in 1872 (Bunn et al., 1998). During a disease response,

animal  health  personnel  are  largely  restricted  to  enacting  established policies  that

leave little scope for the trialing of new control strategies (Animal Health Australia,

2014a). Disease models are increasingly being employed as decision support tools to

inform planning and policy  development  for  exotic  animal  diseases  (Bates  et  al.,

2003a;  Dubé et  al.,  2007a;  Garner  et  al.,  2007;  Garner  and Hamilton,  2011).  An

epidemiological model provides a safe and low-cost means of studying the potential

spread of disease and the cost-benefit of control measures (Miller, 1976). A model is

useful  for  conducting  'what-if  scenarios',  for  example:  the  influence  of  early/late

detection on outbreak severity (Ward et al., 2009); the augmentation of a stamping out

control policy with suppressive ring vaccination (Hagerman et al., 2012); the benefits
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of  rapid  effective  tracing  of  livestock  movements  in  the  event  of  an  outbreak

(Hagerman  et  al.,  2013);  and  the  impact  of  human  resourcing  levels  on  the

effectiveness of a control program (Roche et al., 2014). Models can also be used to

inform risk analysis  on the introduction  and establishment  of  disease (East  et  al.,

2013); assess the economic impact of disease outbreaks and control programs (Garner

and Lack, 1995; Abdalla et al., 2002; Buetre et al., 2013); study the role of wild and

feral animals in livestock epidemiology (Pech and Hone, 1988; Doran and Laffan,

2005; Ward et al., 2015); and assist in the training of disease managers (Taylor, 2003).

Models  can  be  used  retrospectively  or  prospectively  (Woolhouse,  2004).  A

retrospective  model  is  'fitted'  to  data  from  past  outbreaks,  and  used  to  better

understand  that  particular  outbreak's  dynamics  (Taylor,  2003).  For  example,

alternative  control  strategies  can  be  trialed  to  determine  whether  the  historical

outcome could have been improved upon (Keeling et al., 2001; Mangen et al., 2001).

A prospective model is typically used to explore hypothetical outbreak scenarios, for

example, as part of animal health policy development (Garner et al., 2007; Roche et

al., 2014). 

Due to  the serious  economic and social  consequences  of  emergency diseases  like

FMD,  Australia  invests  considerable  time  and  resources  in  prevention  and

contingency planning (Animal Health Australia, 2014b). Models of disease spread and

control are increasingly recognised as cost-effective and informative tools to support

policy development and EAD planning.

1.3  Modelling FMD in Australia 

AusSpread is a regional-based model of FMD spread and control developed by the

Australian Government Department of Agriculture and Water Resources to assist with

EAD planning (Garner, 2004;  Garner and Beckett, 2005; Beckett and Garner 2007).

AusSpread is based on the MapBasic/MapInfo geographic information system (GIS)

platform  (Pitney  Bowes,  2014),  which  allows  spatially  explicit  representation  of
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entities such as farms, saleyards, weather stations, local government areas and states.

Seven farm types are defined (specialist beef, dairy, sheep, pig, mixed beef-sheep,

smallholders  and  feedlots),  with  also  the  option  of  user-defined  farm  types.  The

transmission  of  disease  between  farms  is  simulated  through  discrete  spread

'pathways'.  Control  measures  are  implemented  per  Australia's  emergency  animal

disease  response  policy  –  the  Australian  Veterinary  Emergency  Plan

(AUSVETPLAN) (Section 2.3), and can be customised to facilitate a range of what-if

scenarios. AusSpread has been used in a variety of FMD studies including: airborne

spread (Gloster et  al.,  2010),  the potential  economic impact of an FMD epidemic

(Buetre et al., 2013), the impact of resource constraints on the efficacy of an FMD

control program (Roche et al., 2014; Garner et al., 2014), animal welfare implications

of  an  FMD  control  program  (East  et  al.,  2014b),  and  evaluation  of  vaccination

strategies (Roche et al., 2015). Although operating within a GIS environment provides

considerable advantages in terms of model development and visualisation,  runtime

computational  constraints  effectively  limit AusSpread's  practical  use  to  studying

disease at a regional level. 

A national-scale  FMD model  is  needed to  study the consequences  of  inter-region

livestock movements while taking into account regional differences in environment,

livestock production and marketing systems. Disease control in Australia is managed

by  individual  states  and  territories  according  to  agreed  policies  and  guidelines

(Animal Health Australia, 2014a). A national-scale model thus also needs to take into

account jurisdictional differences in the implementation of control programs. 

1.4  Aims of the PhD project

The goal of the PhD project is to develop the Australian Department of Agriculture

and Water Resources' next-generation epidemiological model of national-scale, using

FMD as the test case disease. To support EAD planning and response, a disease model

needs to be able to represent the host population, and the spread and control of disease

across the environment. The aims of the project are identified below.
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The unit of interest for an epidemiological model can be the animal, the herd (a same-

species  group of  animals  managed  as  a  distinct  unit),  or  the  farm (premises  that

contain one or more herds). The choice of modelling unit of interest is a trade-off

between the  desired  modelling  granularity,  availability  of  data,  and computational

overhead.

FMD can spread through a number of mechanisms including movement of infected

animals  (Green  et  al.,  2006);  contact  with  contaminated  material,  products  and

equipment  (Bates  et  al.,  2001);  and  under  appropriate  conditions,  viral  plumes

(Donaldson et al., 2001). 

The transmission of FMD is a multi-scale process in that the spread of disease within

a herd/farm proceeds under different circumstances and rates to the spread of disease

between herds/farms  (Carpenter  et  al.,  2003;  Kitching  et  al.,  2006;  Balcan  et  al.,

2010).

Australia  is  a  large  country  with  diverse  livestock production  systems,  marketing

systems, geography and climate, all of which potentially influence the spread of FMD

(Animal Health Australia 2014b). 
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Aim 1: Determine the most appropriate modelling unit
of interest for an FMD model of national scale. 

Aim  2:  Model  the  transmission  of  disease  between
herds/farms across spread pathways appropriate to FMD.

Aim 3: Capture the multi-scale nature of the spread
of FMD by considering both within-herd/farm and
between-herd/farm spread mechanisms.

Aim  4:  Capture  heterogeneities  of  species,
environment,  region,  production  systems  and
marketing systems that influence the spread of FMD.



While  national  policy  for  the  control  and  eradication  of  FMD  is  outlined  in

AUSVETPLAN  (Animal  Health  Australia,  2014a), Australia  is  a  federation  and

disease control is implemented under individual state/territory legislation.

Epidemiological models of large populations can be computationally intensive and

may require custom software implementations (Parker and Epstein, 2011), and highly

parallel  platforms  such  as  high-performance  computing  clusters  (Germann  et  al.,

2006).  The target hardware for the PhD project is,  however,  limited to a standard

desktop computer. Also, the software must be standalone (i.e., not reliant on external

servers and services).

An  important  role  of  epidemiological  models  is  to  explore  hypothetical  outbreak

scenarios,  for  example,  as  part  of  animal  health  policy  development  (Kao,  2002;

Garner et al., 2007). Accordingly, a model should be flexible and user-configurable. 

Although the test case disease for AADIS is FMD, other livestock diseases are to be

modelled in the future. The model should have the ability to incorporate a range of

data sources such as weather, vegetation and feral animal ranges.
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Aim 5:  Model  all  key  control  measures  used in  the
control and eradication of FMD in Australia, taking
into  account  jurisdictional  heterogeneities  in  both
policy implementation and resourcing.

Aim  6:  The  model  is  computationally  efficient  such  that
national-scale simulations of FMD spread and control can
be conducted on a standard desktop computer.

Aim 7: The model has a high level of configurability
so that a range of what-if scenarios can be conducted
on the spread and control of FMD.

Aim 8: The model has an extensible model
architecture and software architecture.



It  is  vital  that  epidemiological  models  are  carefully  validated  as  fit  for  purpose

(Taylor, 2003). A model that is not properly verified and validated is nothing more

than 'an exercise in mathematical sophistry' (Kitching et al., 2006). Expected users of

the AADIS model may include animal health policy officers, disease managers and

veterinary epidemiologists from both the public and private sectors.

There are a range of FMD models already described in the scientific literature. The

project will review and draw upon existing work while seeking innovative ways to

improve performance and functionality.

1.5  Thesis outline

• Chapter  1  introduces  the  AADIS  project  by  explaining  the  motivation  for

modelling the spread and control of emergency disease in livestock, and the

nature and significance of foot-and-mouth disease in Australia. The aims for

the project are stated.

• Chapter  2  provides  background information  on FMD, livestock production

systems in Australia and how EADs are managed in Australia.  Population-

based  and  individual-based  epidemiological  modelling  approaches  are

reviewed  in  order  to  provide  context  for  the  AADIS  hybrid  modelling

approach.

• Chapter 3 describes the AADIS hybrid model architecture and the underlying

epidemiology, algorithms and formulae for each disease spread pathway and

control measure. 
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Aim  9:  Users  have  confidence  that  the  model  is  fit  for  the
purpose of supporting the development of animal health policy.

Aim  10:  The  project  produces  an
epidemiological  model  that  advances
the field of computational science in the
context of veterinary epidemiology.



• Chapter 4 provides an overview of the AADIS software architecture and some

implementation  highlights.  Examples  of  the  user  interface  are  provided  to

illustrate the capabilities of the model. 

• Chapter 5 describes the verification and validation of AADIS. Testing of the

grid-based  spatial-indexing  system  is  used  as  an  example  of  verification.

Validation activities include cross-model comparisons with the well-published

AusSpread and InterSpread Plus models, a parameter sensitivity analysis, and

an independent assessment of AADIS by the University of Melbourne.

• Chapter 6 presents three small case studies. Firstly, AADIS is used to assess

the benefits of augmenting a stamping out control policy with suppressive ring

vaccination. Secondly, an analysis of the number of runs required for model

outcomes to converge is conducted. Thirdly, model performance is compared

between a regional-scale simulation and a national-scale simulation.

• Chapters 7 and 8 discuss findings and draw conclusions. The aims of the PhD

project are re-examined to assess if they have been met.

• The  appendices  contain  a  glossary  of  acronyms,  the  relational  database

schema, summaries of the model input and output files, and the University of

Melbourne report.
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2  REVIEW  OF  FMD  EPIDEMIOLOGY  AND

MODELLING APPROACHES 

2.1  Aetiology and epidemiology of FMD

FMD  is an acute, extremely contagious viral disease of domestic and wild cloven-

hoofed animals, including cattle, sheep, goats, swine, deer, Bactrian camel, buffalo,

bison,  moose  and  antelope.  The  FMD  virus  (FMDV)  is  a  member  of  the

Picornaviridae family of RNA viruses and has seven serotypes: A, O, C, Asia 1, and

South African Territories (SAT) 1, 2 and 3. Each FMDV serotype exhibits a wide

variety  of  antigenic  characteristics  which  adds  complexity  to  diagnosis,  and  the

development and availability of vaccines (Grubman and Baxt, 2004; Merck, 2012). 

FMD is clinically characterised by fever and the formation of vesicles and erosions in

the mouth and nostrils, on the teats, and on the skin between and above the hoofs

(Meyer  and  Knudsen,  2001;  Donaldson,  2004).  The  manifestation  of  the  disease

varies between species, for example, sheep typically exhibit mild clinical signs that

can be difficult to detect and may be mistaken for less serious conditions (Grubman

and Baxt, 2004). FMD does not typically kill adult animals although mortality rates in

young animals can be very high. Infected animals become debilitated with loss of

appetite,  weight  loss,  lameness,  weakness  and  significantly  reduced  milk  yield

(Animal  Health  Australia,  2014a).  FMDV  replicates  in  the  nasopharynx,  and

epithelium  of  the  tongue,  nose,  muzzle,  and  coronary  bands.  Infectious  animals

release virus in exhaled air,  vesicular fluid, saliva, milk, sweat, semen, faeces and

urine (Meyer and Knudsen, 2001). The concentration of viral particles in exhaled air

is species dependent, for example, pigs can shed over a thousand times more viral

particles from the respiratory tract than cattle (Donaldson and Alexandersen, 2002). 
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Transmission of FMD generally occurs through direct contact between infected and

susceptible animals (Kitching, 2011). A susceptible animal can become infected via

inhalation,  ingestion,  artificial  or natural breeding, and through skin abrasions and

mucous membranes (Grubman and Baxt, 2004). The incubation period varies with

host  species,  dose  of  virus,  strain,  and route  of  infection.  An infected  preclinical

animal can shed large amounts of virus, for example, the milk from an infected cow

can contain virus up to four days before the onset of clinical signs (Animal Health

Australia, 2014a). This is epidemiologically significant as infectious animals may be

unwittingly moved and/or sold. Infected animals tend to stop shedding virus within

six days of the appearance of vesicles (Animal Health Australia, 2014a). 

FMDV can survive for long periods outside a host cell, for example, up to 50 days in

water, up to 74 days on pasture, up to 90 days in faeces, and up to 200 days in soil.

Viable virus has been recovered from milk and butter for up to 45 days, from bacon

for up to 190 days, and from bovine semen stored at -50oC for 320 days (Animal

Health Australia, 2014a; Center for Food Security and Public Health, 2014). FMD

thus poses a serious threat of indirect spread through animal products, by-products,

fomites and vectors. 

Under  favourable  climactic  conditions  aerosolised  FMDV  can  travel  substantial

distances. The extent of an aerosol plume depends on the concentration of the viral

source,  the virus strain,  whether the plume is over land or water,  wind speed and

stability,  relative  humidity  and  temperature  (Donaldson  and  Alexandersen,  2002;

Animal Health Australia, 2014a). Although it is suspected that in 1981 FMDV was

conveyed over 250 km from France to the UK, it is generally accepted that airborne

spread poses a risk over land at shorter distances of up to say 20 km (Gloster et al.,

2006; Schley et al., 2009).
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Whilst Australia has been free of FMD since 1872 (Bunn et al., 1998), it is endemic in

approximately 50 countries across Africa, the Middle East, Asia and South America

(Kitching, 2011) (Figure 2.1).

FMD  is  one  of  the  most  infectious  diseases  known  (Grubman  and  Baxt,  2004;

Rushton et al., 2012), with the basic reproduction number R0 (the expected number of

new infections arising from one infected animal in a fully susceptible population),

estimated  as  high  as  70  (Woolhouse  et  al.,  1996),  and  high  morbidity  rates  in

susceptible populations (Geering et  al.,  1995).  Live FMDV is strictly  regulated in

FMD-free countries such as Australia and the USA. For example, research involving

live FMDV is not  permitted in  Australia  (Jeggo and Griffiths,  2010),  and is  only

allowed  in  the  USA  in  the  high-security  Plum  Island  Animal  Disease  Center

(Department of Homeland Security, 2015). 

The  epidemiology  of  FMD  is  complex  as  the  virus  is  highly  contagious,  multi-

serotype,  multi-host  and  can  spread  via  multiple  pathways.  FMD  is  the  most
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Figure 2.1. Conjectured world status of FMD (Kitching, 2011) 



significant threat to the Australian livestock sector due to its economic importance and

presence in regional neighbours (Matthews, 2001; Animal Health Australia, 2014a).

2.2  Australian livestock production systems

Livestock production in Australia is largely based on extensive grazing of cattle and

sheep,  with  smaller  intensive  poultry,  pig,  fisheries  and  aquaculture  industries

(Australian  Bureau  of  Statistics,  2014;  Australian  Bureau  of  Agricultural  and

Resource Economics and Sciences, 2014). The beef cattle industry also has intensive

lotfeeding and finishing components (Meat and Livestock Australia, 2014c). The main

industries vulnerable to an FMD outbreak are beef, dairy, wool, sheepmeat, and pigs.

Australia has approximately 76 million sheep, 29 million cattle and 2 million pigs on

approximately  78,000  commercial  farms  (Australian  Bureau  of  Statistics,  2014).

Commercial farms in Australia vary greatly in size, ranging from, for example, small

piggeries in the intensively farmed Goulburn Valley (Regional Development Victoria,

2010), up to extensive cattle stations such as the 23,677 km2 Anna Creek Station in

remote outback South Australia (Kidman, 2015). Farms may consist of more than one

herd of the same or different species, for example, mixed beef-sheep farms. 

The  'smallholder'  category  of  premises  includes  hobby/lifestyle  farms  and  farms

where the primary activity is unrelated to livestock. A typical smallholder has under

50 animals of mixed species on a small acreage of under 20 hectares (Department of

Primary Industries, 2006; Hernández‐Jover et al., 2014). Unlike commercial farming

enterprises,  there  is  far  less  data  available  on  small  holdings  of  livestock.  It  is

estimated  that  there  are  over  100,000  smallholder  premises  in  Australia  (Roche,

2013), with the majority occupying peri-urban regions (Aslin et al., 2004; Department

of Primary Industries, 2006).

The  Australian  livestock  industry  is  geographically  diverse  and  spread  across

temperate regions in the south-west and south-east, desert and grassland regions in the

centre, subtropical regions in the north-east, and tropical regions in the north. For the
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purposes  of  studying  disease  outbreaks  and  assessing  control  measures,  it  is

convenient to partition Australia into reasonably homogeneous regions on the basis of

geography, environment, livestock production and marketing practices. The regions

provide  a  useful  framework  for  the  spatiotemporal  characterisation  of  livestock

movements. The 12 beef production regions (AusVet Animal Health Services, 2006)

are provided as an example in Figure 2.2.

There is considerable heterogeneity in the movement patterns of Australian livestock.

Sheep movements typically occur within 200km of the home premises but may range

up to 500km for stud animals (Hassall and Associates, 2006). Beef cattle in the high-

density eastern and south-eastern regions tend to undergo high frequency and short

distance movements (Durr et al.,  2010). Beef cattle in the low density central and

northern  regions  tend  to  undergo  low  frequency  and  long  distance  movements,

ranging up to over 3000 km between Queensland and the Northern Territory (AusVet

Animal Health Services, 2006). 

Livestock movements can facilitate the rapid spread of infectious disease, especially

early in an outbreak prior to detection (Gibbens et al., 2001). The rapid escalation of
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Resources, 2015) 



the 2001 UK FMD outbreak is attributed to movements of infected sheep to and from

markets prior to the establishment of movement controls (Ferguson et al., 2001; Kao,

2002; Mansley et al., 2003; Mansley et al., 2011). Routine long distance movements

from home premises to places of finishing and/or slaughter are of epidemiological

interest  as preclinical infectious animals can potentially develop expansive contact

networks. The broad range of movement patterns in the Australian livestock industries

contrasts to those in countries such as Denmark and the Netherlands where livestock

industries  are  generally  based  on  small  farms,  intensive  production  systems,  and

short-range livestock movements (Bigras-Poulin et al., 2006; Backer et al., 2012a).

2.3  Management of emergency animal disease in Australia

Australia  is  a  federation  made up of  six  states  and two mainland territories.  The

Australian  Government  is  responsible  for  quarantine,  disease  reporting,  export

certification and international trade. State and territory governments are responsible

for animal health services within their respective jurisdictions. This means that while

there are national policies for managing notifiable diseases such as FMD, the actual

control  measures  are  administered  by the jurisdictions  under  their  own legislation

(Animal  Health  Australia,  2014b).  The  Emergency  Animal  Disease  Response

Agreement (EADRA) defines how the cost  of an EAD control  program is  shared

between federal, state and industry stake-holders (Animal Health Australia, 2014d). In

the event of an EAD outbreak, all parties must agree on the infected jurisdiction's

disease management plans.

Australian  policy  for  the  control  and  eradication  of  FMD  is  outlined  in

AUSVETPLAN (Animal Health Australia, 2014a;  Animal Health Australia, 2014c).

In brief, the policy is to eradicate the disease as quickly as possible using stamping

out,  which  involves  culling  and  disposal  of  infected  and  exposed  animals.  Upon

confirmation of FMD, mandatory control strategies include:
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• The  establishment  of  a  national  livestock  standstill  that  imposes  total

movement controls on all species susceptible to FMD for a minimum of three

days. 

• Quarantine and movement controls of animals, animal products and fomites in

declared areas in order to minimise the spread of infection. A restricted area

(RA) of minimum radius 3km is established around each infected premises

(IP) and dangerous contact premises (DCP). An RA imposes the highest levels

of surveillance and movement controls. Premises within an RA that have not

yet been formally assessed are termed at-risk premises (ARPs). A control area

(CA) of minimum radius 10km is also established around each IP and DCP. A

CA is intended to be a disease-free buffer between the (known-to-be infected)

RAs and (the believed to be uninfected) areas outside the controlled areas. A

CA imposes lower levels of surveillance and movement controls than an RA.

Premises  within a  CA and outside an RA that  have not  yet  been formally

assessed are termed premises of relevance (PORs). The area outside the RAs

and CAs is not a declared area and is referred to as the outside area (OA).

Premises in the OA are still subject to surveillance and movement restrictions.

• Tracing and surveillance to determine the source and extent of infection. A

trace premises (TP) is a temporary classification for a premises that has been

identified through tracing has having been potentially exposed to FMDV, and

is awaiting surveillance. A suspect premises (SP) is a temporary classification

for a premises that has been reported as containing susceptible animal(s) that

are exhibiting clinical signs consistent with FMD, and is awaiting surveillance.

• Valuation and destruction of animals on IPs and potentially on DCPs.

• Disposal  of  destroyed  animals  and  infected  animal  products,  and

decontamination of depopulated premises. An IP is re-classified as a resolved

premises (RP) when all IP operations have been completed.

Optional control strategies include: 
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• Vaccination  to  reduce  susceptibility  of  animals  to  infection  and  clinical

disease, and potentially reduce virus excretion. A farm on which vaccination

has been completed is referred to as a vaccinated premises (VP).

• Pre-emptive destruction of susceptible animals in order to minimise the spread

of infection.

• Zoning and/or compartmentalisation (to support trade).

• Risk-based movement controls. 

Refer  to  Animal  Health  Australia  (2014a  and  2014c),  for  further  details  of  the

Australian policy for the control and eradication of FMD. 

2.4  Approaches to modelling the spread and control of disease

Models of disease spread can be distinguished on the basis of how they handle time

(discrete/continuous),  space  (spatially-explicit/non-spatial),  and  variability,  chance

and uncertainty (deterministic/stochastic) (Taylor, 2003). However, these criteria do

not lend themselves to a taxonomy. For example, a stochastic model may or may not

be  spatial,  and  a  deterministic  model  may  view  time  discretely  or  continuously.

Another way of viewing models is whether they are population-based or individual-

based. A population-based model is formulated from the top down with population-

level  relationships  that  predict  individual-level  states.  Individual-level  models  are

formulated  from  the  bottom-up,  whereby  population-level  relationships  emerge

organically from the aggregation of individual-level behaviours. Similar distinctions

between the top-down mathematical emphasis of population-based approaches and

the bottom-up ecological emphasis of individual-based approaches have been made

by  Fahse  and  colleagues  (1998),  Kostova-Vassilevska,  (2004)  and  Grimm  and

Railsback (2005). A hybrid model combines population-based and individual-based

approaches in order to exploit the strengths of both approaches. 

The classification  of  modelling approaches  in  Figure  2.3 provides  context  for  the

AADIS hybrid model architecture and is not intended to be an overarching taxonomy.
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2.4.1  Population-based modelling

A population-based  model  views  a  population  as homogeneous,  i.e.,  individuals

within the population mix uniformly and randomly, and have an equal likelihood of

contracting a disease (Hethcote, 2000). Population-level relationships are formulated

from the top down (for example, a system of equations), in order to predict individual-

level states (such as the proportion of the population that is infected over time). 

Earn (2008) provides  an interesting introduction to  population-based modelling of

epidemics by analysing historical data on bubonic plague in 17th century London and

measles in 20th century New York. Plague deaths and measles cases are plotted to

yield curves that illustrate how an epidemic waxes and wanes over time (Figure 2.4).

Earn explores how well the classic Susceptible-Infected-Recovered (SIR) mass-action

model  (Section  2.4.1.1)  fits  the  empirical  data.  The  goal  of  mathematical

epidemiological modelling is to quantify empirical trends in order to arrive at reusable

formulations and principles.
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Figure 2.3. Modelling approaches for the spread of disease



Population-based models of disease spread have been in use since at least Bernoulli in

the 18th century (Dietz and Heesterbeek, 2002; Blower and Bernoulli, 2004). Seminal

contributions from the early 20th century include: 

• Hamer's  and Soper's  observations  on  the  periodicity  of  measles  outbreaks,

which  led  to  the  understanding of  epidemic  thresholds  and herd immunity

(Jacquez, 1987; Fine, 1993; Heesterbeek, 2005),

• Ordinary differential equation (ODE)-based mass-action models by Kermack

and McKendrick, and Ross and Hudson (Diekmann et al., 1995; Heesterbeek,

2005; Earn, 2008), 

• The Greenwood and Reed-Frost chain-binomial models (Abbey, 1952; Fine,

1977; Jacquez, 1987). 

The continuous-time ODE-based SIR mass-action model and the discrete-time Reed-

Frost  chain-binomial  model  laid  important  foundations  for  subsequent  modelling

efforts.  They  are  briefly  described  below to  set  the  scene  for  the  AADIS  hybrid

approach. Broader coverage of population-based modelling techniques can be found

in texts such as Murray (2002) and Keeling and Rohani (2008).

2.4.1.1  ODE-based mass-action models

The  genre  of  mass-action  models  of  disease  spread  is  generally  credited  to  the

independent teams of Kermack and McKendrick, and Ross and Hudson (Heesterbeek,

2005).  Epidemiological  mass-action  is  analogous  to  the  'law  of  mass-action'  in
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Figure 2.4. Epidemic curves for bubonic plague and measles (Earn, 2008)



chemical kinetics, where the rate of a chemical reaction between two reactants in a

'well  stirred'  reaction  vessel  is  proportional  to  the  concentrations  of  the  reactants

(Heesterbeek,  2005).  The  rate  of  transmission  from  infectious  to  susceptible

individuals  is  proportional  to  the  product  of  the  densities  of  the  infectious  and

susceptible  sub-populations  (Heesterbeek,  2005).  Mass-action  epidemiological

models assume a homogeneous ('well stirred') population, i.e., the population mixes

uniformly and randomly, and individuals have an equal likelihood of contracting a

disease  (Hethcote,  2000).  Mass-action  disease  transmission  is  also  referred  to  as

frequency-dependent,  i.e.,  the  per-capita  force  of  infection  is  proportional  to  the

'frequency'  of  infectious  individuals  (where  frequency  is  the  ratio  of  infectious

individuals  to  the  population  size).  This  implies  that  the  contact  rate  between

infectious  and  susceptible  individuals  is  constant  and  thus  independent  of  the

population  density  (Begon  et  al.,  2002).  (The  alternative  is  density-dependent

transmission where the contact rate is proportional to the population density.) 

A classic  example  of  a  mass-action  equation-based  model  (EBM)  is  provided  in

Figure 2.5. The system of ODEs deterministically and dynamically disaggregates a

population  into  logical,  non-spatial  compartments  (susceptible,  infected,  and

recovered), according to infection state. The expression βSI in Equation 2.1 is referred

to as the transmission term as it describes the rate at which susceptible individuals
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dS
dt

=−βS I

dI
dt

= βS I−γ I

dR
dt

= γ I

where S = proportion of animals in the herd that are susceptible
I = proportion of animals in the herd that are infected
R = proportion of animals in the herd that are recovered
β = effective contact rate (contact rate×transmission probability)
γ = recovery rate

Figure 2.5. Simple SIR ODE-system

(2.1)

(2.2)

(2.3)



become infected  (Murray,  2002).  The ODE system  is  solved numerically  to  yield

compartment proportions over a solution time interval. (For illustrative purposes, the

solution  to  the  related  Susceptible-Exposed-Infectious-Recovered  (SEIR)  ODE-

system is provided in Figure 2.6. In this case, the Infected compartment is sub-divided

into Exposed and Infectious compartments – this is covered in Section 3.4). A mass-

action model describes how the population 'flows' between compartments during an

outbreak. 

2.4.1.2  Reed-Frost chain-binomial model

The flow of a population between compartments can also be dictated by probabilities

derived from sources such as the current epidemic state, livestock movement patterns,

historical  data  and  expert  opinion  (Miller,  1976).  The  Reed-Frost  model  (Abbey,

1952), is a discrete-time model where the infection state transitions are governed by

probabilities that depend on contact rates and population size (see Figure 2.7). 
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Figure 2.6. Web utility for solving an SEIR ODE

system (Nesse, 2012) 

Consider a closed population of size N with one infectious individual and N-1 susceptible individuals.
Let t = the time period for the simulation.
Let k = the number of contacts that the infectious individual has with susceptible individuals per time 
period.
The probability p that an arbitrary susceptible individual comes into contact with the infected 
individual in a given time period is given by:

p = k / (N-1) (2.4)

Let q = the probability that contact does not occur in the given time period.

q = 1 – [k / (N-1)] (2.5)



Population-based models have been widely used to study a range of animal diseases.

Some examples are highly pathogenic avian influenza (HPAI) (Arino et  al.,  2006;

Bavinck  et  al.,  2009;  Pandit  et  al.,  2013),  CSF  (Stegeman  et  al.,  1999),  bovine

tuberculosis (Perez et al., 2002) and FMD (Miller, 1976; Haydon et al., 1997; Howard

and Donnelly, 2000; Ferguson et al., 2001; Kao, 2002; Thornley and France, 2009).

2.4.1.3  Population-based models of FMD

Complex  biological/environmental/economic  systems  are  typically  multi-scale  and

non-linear - characteristics that are ill-suited to a simple population-based modelling

approach (Baroni  and Richiardi,  2007;  Bansal  et  al.,  2007;  D'Souza  et  al.,  2009;

Grassly  and  Fraser,  2008;  Parker  and  Epstein,  2011;  Vincenot  et  al.,  2011). The

parameters in a basic compartmental model are fixed over the solution interval. This

is  not  realistic  as  variables  such  as  weather,  biosecurity  procedures  and  resource

constraints  on  the  implementation  of  control,  dynamically  reshape an  outbreak of

disease (Donaldson et al., 2001;  Caraco et al., 2001;  Keeling et al., 2001; Campbell

and Lee, 2003;  Hagenaars et al., 2004; Galvani and May, 2005; Lloyd-Smith et al.,
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Let It = the number of infectious individuals in the population at time period t.
Contacts between individuals are independent events. The probability that an arbitrary susceptible 
individual does not come into contact with any infectious individuals in a given time period t is 
thus qIt.. 

The probability that an arbitrary susceptible individual does come into contact with an infectious 
individual in a given time period t is thus 1 – qIt..

Let St = the number of susceptible individuals in the population at time period t.
The expected number of new latent cases arising during time period t is thus St [1 – qIt.].
Thus, the number of new latent cases at the conclusion of time period t (i.e., in time period t + 1) is

        Lt+1 = St [1 – qIt.] (2.6)

Let D = the mean duration of disease latency expressed in the same units as the time period.
The number of infectious individuals in the population in any given time period t is calculated by 
summing the set of new latent cases, (i.e., Lt), that have progressed into the infectious state.
              i = t-D

        It = ∑ Li (2.7)
              i = 0

Equations 2.6 and 2.7 form the Reed-Frost model.

Figure 2.7. Reed-Frost model (Abbey, 1952; Bates et al., 2003a)



2005; Kitching et al., 2006; Bansal et al., 2007; James et al., 2007;  Mansley et al.,

2011; Garner and Hamilton, 2011). 

Miller (1976) provides an example of how a discrete state-transition FMD model can

be augmented  to  better  reflect  outbreak  dynamics.  The  herd  population  is

disaggregated into four compartments based on infection state: susceptible, infectious,

immune  and  removed.  The  proportion  of  the  population  in  each  of  the  four

compartments is determined probabilistically in discrete time steps of a week. The

probability of a susceptible herd becoming infected during week  n depends on the

number of infected herds in week n - 1 and the 'dissemination rate', a measure of the

average  number  of  herds  that  an  infectious  herd  comes  into  contact  with.  The

dissemination rate varies weekly reflecting the dynamic influence of factors such as

quarantines, restrictions on the movement of live animals, and increased awareness of

the outbreak. A dynamic dissemination rate provides more granular disease dynamics

than  a  constant  contact  rate  such  as  that  used  in  the  Reed-Frost  model.  A

compartmental approach scales well with population size as individual herd states are

not calculated, just the proportion of the population in each of the infection states. As

such, the Miller model is a computationally efficient means of modelling the spread of

FMD across the continental USA.

Population-based models are generally concise and easy to parameterise. They can be

useful for fast  prototyping of disease dynamics, for example, early in an outbreak

when the data needed to parameterise a more complicated individual-based model

may not yet be available (Keeling, 2005; Arino et al., 2006). During the early stages

of the 2001 UK FMD outbreak, an ODE-based mass action model (Ferguson et al.,

2001), was able to be quickly parameterised from the limited outbreak data that was

available (Keeling, 2005). The more complex individual-based models that were also

used (Keeling et al., 2001; Morris et al., 2001), required far greater data and effort to

parameterise (Kao, 2002; Keeling, 2005). Population-based models can also serve as
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useful benchmarks to test the broad validity of more complex models (Heesterbeek,

2005; Skvortsov et al., 2007). 

The traditional simple ODE-based mass action model can be augmented to include:

the clustering effect of short range infection (Ferguson et., 2001; Kao, 2002); within-

farm  transmission  (Thornley  and  France,  2009);  the  appearance  of  clinical  signs

(Thornley and France, 2009); and control measures such as stamping out, pre-emptive

culling (Matthews et al., 2003) and vaccination (Thornley and France, 2009). Haydon

and colleagues (1997) employ a discrete-time SEIR compartmental model to estimate

how the transmission rate β and basic reproduction number R0 varied over time during

the 1967 outbreak of FMD in the UK. Howard and Donnelly (2000) employ a similar

method to estimate how the transmission rate varied during the 1967 UK and 1997

Taiwan outbreaks. The derived values are then used to retrospectively simulate the

outbreaks  in  order  to  conduct  what-if  scenarios  on  the  impact  of  delays  between

diagnosis and culling. A population-based model can, however, become very complex

and less tractable as more variables are factored into the mathematical abstraction

(Miller,  1976;  Parunak  et  al.,  1998;  Bobashev  et  al.,  2007).  As  the  mathematics

driving a model becomes more sophisticated, it risks becoming a 'black box' to non-

mathematicians.

Livestock  disease  outbreak  dynamics  are  influenced  by  heterogeneities  in  region,

environment, species, herd size, and farming practices (Keeling et al., 2001). Take for

example,  an  outbreak  of  FMD within  an  extensive  beef  farm in  remote  northern

Australian, compared to one in an intensive dairy farm in southern Australia. Despite

the same pathogen and species, there are quite distinct disease spread dynamics and

control  environments  for  each  region.  This  is  due  to  heterogeneities  in  livestock

density, farming practices, market systems, climate, probability of disease detection

and reporting (based on the level of contact between owners/inspectors and livestock),

and jurisdiction-dependent disease control policies and resourcing. The homogeneous

'well-mixed' assumption of aggregated population-based models is quite a limitation if
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the population is heterogeneous and mixes heterogeneously (Hethcote, 2000; Keeling

et al., 2001; Kitching et al., 2006; Bansal et al., 2007; Grassly and Fraser, 2008). This

is especially the case with a disease such as FMD where infectivity and susceptibility

varies significantly between the affected species (Kitching et al., 2006).  In a simple

compartmental  model  such  as  the  SIR  EBM  in  Figure  2.5,  individuals  within  a

compartment are indiscernible. A population-based approach cannot account for the

impact of singular individuals such as super-spreaders (Lloyd-Smith et al., 2005), and

the influence that the spatial distribution of a population has on disease transmission

(Matthews et al., 2003).

2.4.2  Individual-based modelling

Individual-based models are formulated from the bottom-up. The modelling focus is

the natural behaviour of individuals and how they interact with each other, and with

the  environment.  Population-level  relationships  emerge  over  time as  opposed to  a

population-based model where the relationships are prescribed as inputs.  The notion

of a population of synergistic individuals is flexible, for example, buyers and sellers

in a market (Heppenstall et al., 2005), bacteria and immune cells in tissue (D'Souza et

al., 2009), or the occupants of a city (Colizza and Vespignani, 2008). The population-

level  outcomes  that  emerge  from  individual-based  models  are  free  from  the

'aggregation bias' that can occur from the implicit statistical averaging of population-

based  models  (Baroni  and  Richiardi,  2007).  A shift  has  been  observed  from  a

population-based  approach towards  an  individual-based approach in  the  economic

(Birkin  and  Wu,  2012),  geographical  (Crooks  and  Heppenstall,  2012),  ecological

(Parry  and  Evans,  2008),  and  animal  health  policy  (Garner  and  Hamilton,  2011)

modelling domains. 

Individual-based  models  have  a  natural  affinity  for  capturing  population

heterogeneity, stochasticity, spatial relationships, adaptivity, social systems and policy

elements (Parunak et al., 1998; Davidsson, 2001; Hare and Deadman, 2004; Bithell et

al., 2008; Perez and Dragicevic, 2009; Carpenter, 2011; Parker and Epstein, 2011). An

individual-based modelling approach is well suited to the heterogeneous environment

27



in which a livestock epidemic operates (Kao, 2002). Significant heterogeneities may

exist in host species, production systems, market practices, geography, climate and

jurisdiction-dependent  policies.  The ability  to  distinguish between individuals  in  a

population is useful during the initial and final stages of an outbreak when the number

of infected animals is low and the averaged approach of population-based models may

not be accurate (Teclaw, 1979; Germann et al., 2006; Bansal et al., 2007).

2.4.2.1  Emergence

Emergence is the aggregation of individual-level behaviours that forms population-

level  behaviour,  in  the  absence  of  a  centralised  controlling  entity.  The  emergent

population-level  behaviour  cannot  be  directly  inferred  from the  behaviour  of  the

individuals  –  it  only  arises  organically  from  the  synergistic  interaction  between

individuals,  and between individuals  and the environment  (Grimm and Railsback,

2005).  Examples of emergence are tropical cyclones (Figure 2.8),  termite mounds

(Figure 2.9), the stock market, the schooling of fish (Figure 2.10), the swarming of

insects, and the flocking of birds (Figure 2.11). 
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Figure 2.8. Tropical cyclone Ingrid off the

Queensland coast (Descloitres, 2005)

Figure 2.9. Termite mound in Litchfield

National Park, Australia (Bradhurst, 2008)



Feder (2007) uses stereoscopic cameras to capture 3D images of starlings flocking in

Rome. The data reveals that a bird's speed and heading is influenced by six to seven

of its neighbours. The interactions are anisotropic, in that neighbours on either side of

a  bird  exert  more  influence  than  neighbours  at  the  front  and  rear.  Further,  the

interactions  are  not  dependent  on  distance  between  the  subject  bird  and  its

neighbours.  These observations  are  perhaps  related  to  the  wide  field  of  view and

limited  depth  perception  of  monocular  bird  vision.  The  distance-independent

relationship between neighbours allow a flock's density to vary, yet the flock remain

cohesive, whilst responding to an external stimuli such as the detection of a predator.

Each bird is modelled with a software entity that dynamically calculates a heading

based on its neighbours. For simplicity, all birds are assumed to maintain a constant

velocity. Individual birds autonomously carry out simple rules such as maintaining a

heading/speed that is compatible with immediate neighbours, whilst watching out for

environmental obstacles and predators. At a population level, complex and dynamic

3D flocking patterns emerge with no centralised coordination (Figure 2.11).

2.4.2.2  Microsimulations

One of the earliest examples of a disaggregated approach to modelling is the Orcutt

socio-economic system (Orcutt, 1957; Orcutt et al., 1961). Orcutt focuses on the role

of  individual  decision-makers  in  an  economy  such  as  people,  households  and
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Figure 2.10. Blue jack mackerel bait ball

 (Swann, 2014)

Figure 2.11. Simulated flocking of starlings in

Rome (Feder, 2007)



companies, as opposed to the traditional economic sector-based aggregated approach.

The  behaviours  and  responses  of  individuals  depend  on  the  current  state  of  the

system,  and  are  evaluated  at  discrete  time  steps  (e.g.,  weekly).  Individual-level

behaviour  may  be  deterministic,  or  stochastic  via  sampling  from  probability

distributions  (Vose,  2008).  As  the  system  evolves,  so  too  do  the  probabilities

governing  individual  behaviours,  until  such  time  as  an  overall  system  'solution'

emerges.  Model  parameterisation  is  varied  in  order  to  investigate  the  impact  of

economic policies on the population. Sensitivity/uncertainty analysis (Taylor, 2003),

is used to isolate the parameters that strongly influence model outputs.

In  general,  microsimulation  models  (MSMs),  simulate  the  states,  behaviours,

interactions  and  evolution  of  individual  units  in  an  environment  (Baroni  and

Richiardi,  2007).  Microsimulations are a useful mechanism to study the impact of

policy on a population, at both the individual level and the population level (Boman

and  Holm,  2005;  Baroni  and  Richiardi,  2007;  Birkin  and  Wu,  2012).  Early

microsimulations  were  non-spatial  and  represented  individuals  with  simple  data

structures  (Elveback  et  al.,  1971). Microsimulations  later  evolved  to  include  the

spatial aspects of a population through integration with GIS platforms.

Microsimulations are able to model the ecological elements of an epidemic separately.

This approach offers more transparency and control than a population-based model

that  has  complex aggregated  formulations.  An example  is  AusSpread,  a  spatially-

explicit  state-transition  microsimulation  based  on  the  MapBasic/MapInfo  GIS

platform  (Pitney  Bowes,  2014).  The  'policies'  of  disease  transmission  (via  direct

contact,  saleyard  spread,  indirect  contact  and airborne  spread),  are  applied  to  the

population  of  susceptible  farms.  Policies  of  disease  control  and  eradication

(movement  restrictions,  tracing,  surveillance,  IP  operations  and  vaccination),  are

applied during the control program. AusSpread operates in discrete time steps of a day

and  uses  Markov  chain  Monte-Carlo  (MCMC)  methods  (Hamra  et  al.,  2013),  to

represent  the  natural  stochasticity  of  disease  spread  and  control.  The  values  for
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fluctuating,  uncertain,  or  unknown  parameters  are  dynamically  sampled  from

probability distributions. An outbreak scenario is run hundreds of times with the same

initial conditions in order to produce probability distributions of possible outcomes.

Outbreak metrics include number of infected premises, outbreak duration, infected

area, number of culled animals, number of vaccinated animals, and cost of the control

program.  AusSpread  has  been  used  to  study  the  spread  and  control  of  FMD  in

Australia (Garner and Lack,  1995; Beckett  and Garner,  2007; Buetre et  al.,  2013;

Garner et  al.,  2014; Roche et  al.,  2014; East et  al.,  2014b), and the United States

(Ward et al., 2009; Hagerman et al., 2012; Hagerman et al., 2013), and has also been

adapted to study other diseases including CSF (Cowled et al., 2012).

InterSpread Plus (Stevenson et  al.,  2013), Exodis (Risk Solutions, 2005a), and the

North American Animal Disease Spread Model (NAADSM) (Harvey et al., 2007) are

also spatially-explicit,  stochastic, state-transition microsimulations. They have been

used  to  study  the  spread  and  control  of  FMD in  Canada  (Sanson  et  al.,  2014),

Denmark (Halasa et al., 2014), Korea (Yoon et al., 2006), New Zealand (Owen et al.,

2011), Switzerland (Bachman et al., 2005), the United Kingdom (Keeling, 2005) and

the United States (Cozzens et al., 2010; McReynolds et al., 2014), and have also been

adapted to  study other  animal  diseases  including ASF (Nigsch et  al.,  2013),  CSF

(Jalvingh et al., 1999; Ribbens et al., 2012),  Equine Influenza (Garner et al., 2011;

Rosanowski, 2012) and HPAI (Vandendriessche et al., 2009; Longworth et al., 2014).

Microsimulations such as AusSpread, InterSpread Plus, Exodis and NAADSM have

proven useful as decision support tools for FMD planning and policy development

(Garner et al.,  2007). By varying model parameterisation, what-if scenarios can be

conducted across a variety of outbreak scenarios and control strategies. The emergent

behaviour  of  such  models  is  the  spatiotemporal  spread  of  disease  across  the

population,  waxing and waning as the epidemic unfolds and control measures are

deployed. 
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Complex individual-based models (such as AusSpread, InterSpread Plus, Exodis and

NAADSM), that endeavour to explicitly capture the heterogeneities of an epidemic

can  have  extensive  configuration  data.  This  may  include  livestock  demographics,

livestock movements, weather and pathogen strain specifics. The suitability of data-

driven models for a study depends on the availability and quality of supporting data

(Green and Medley, 2002; Kao, 2002; Keeling, 2005; Kitching et al., 2006; Dubé et

al., 2007a). Inadequate data can be replaced with assumptions/expert opinion but this

has the potential  to introduce bias into a model.  The parameterisation of complex

spatially-explicit models can be time consuming and require a good understanding of

the epidemiological system being modelled (Woolhouse, 2004; Keeling, 2005). This

can make them less agile than simpler population-based models (Kao, 2002; Arino et

al.,  2006). There is a risk that incorrect parameterisation of a complex individual-

based model may actually mislead rather than inform (Thornley et al., 2009). 

2.4.2.3  Spatial-kernel models

A spatial-kernel  (or  transmission  kernel),  is  a  means  of  deriving  probabilities  of

transmission between infectious and susceptible individuals in a population, based on

the  distances  between  them (Hayama et  al.,  2013).  An  example  of  a  model  that

employs this  approach is  the 'Cambridge-Edinburgh'  model (Keeling et  al.,  2001),

used during the  2001 outbreak of FMD in the UK. The farm population is derived

from UK census data on farm locations and livestock holdings. The probability that an

infected farm transmits disease to a susceptible farm is based on species, number of

animals on the farms, and a transmission kernel that relates infectivity to the distance

between  the  farms.  Monte-Carlo  methods  drive  the  transition  of  farms  through

susceptible, incubating, infectious, and culled states. FMD studies that employ the

Cambridge-Edinburgh model or its derivatives include Keeling and colleagues (2003),

Tildesley  and  colleagues  (2006),  Tildesley  and  Keeling  (2008),  Tildesley  and

colleagues (2009) and Porphyre and colleagues (2013).

The spatial-kernel approach aggregates the various FMD spread mechanisms at work

(direct contacts, indirect contacts and aerosols), into a simple tractable formulation.
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Kitching and colleagues (2006), however, warn that the spatial-kernel approach may

over-emphasise the importance of short-range transmission, with models tending to

spread  disease  radially  in  short-distance  increments  from  infected  premises.  The

disaggregated approach of a microsimulation such as AusSpread and InterSpread Plus

avoids this phenomena as distinct transmission 'policies' (such as long range livestock

movements), are applied across the population. 

The aggregation of spread mechanisms in a spatial-kernel approach results in simple

parameterisation.  During  the  UK 2001 outbreak,  the  Cambridge-Edinburgh model

was able to be quickly parameterised from contact tracing data collected early in the

outbreak (Keeling, 2005). In contrast, the disaggregated approach of InterSpread Plus

required  much  more  detailed  parameterisation.  This  illustrates  the  fine  balance

between a model being detailed enough that it  is granular and realistic, yet not so

complex  that  its  usability  is  hampered  by  lack  of  supporting  data  and  complex

parameterisation (Keeling, 2005). 

2.4.2.4  Cellular and geographic automata

A cellular  automaton  (CA) is  an  individual-based model  that  discretises  a  spatial

environment into a lattice of cells (Iltanen, 2012). Individuals (sometimes referred to

as agents), occupy at most one cell at a time. Agents have internal states, and rules

that govern interactions with other agents and with the environment. The rules may be

deterministic or stochastic and typically depend on the current states of neighbouring

agents.  Agents  may  be  static  and  confined  to  a  home  cell,  or  mobile  across  the

environment.  Time  is  also  discretised  in  that  the  rules  are  triggered  en  masse at

periodic intervals. The states and/or positions of the agents evolve over time and the

CA may  exhibit  emergent  behaviour.  A simple  example  of  the  CA concept  is

Conway's  game  of  'Life'  (Gardner,  1970).  Cellular  automata  are  computationally

efficient, and relatively straight forward to build and understand. Over the years, they

have  evolved  into  a  sophisticated  modelling  technique  ranging  from  micro-

environments such as the spread of bacteria within tissue (Alber et al., 2003), right up

to macro-environments such as viral spread across a population (Doran and Laffan,
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2005). Cellular automata have been used to study a range of animal diseases including

CSF (Milne et al.,  2008), rabies (Thulke et al., 1999), HPAI (Situngkir, 2004) and

FMD (Morley and Chang, 2003; Doran and Laffan, 2005),

Doran and Laffan (2005) employ a CA to study the potential spread of FMD between

feral pigs and unfenced livestock in Queensland, Australia (Figure 2.12). A lattice

with cell dimensions of 5.385 x 5.385 km is superimposed over the study area. The

resulting 29 km2  cell area represents a typical home range for feral pigs in tropical

Australia. Feral pig densities and distributions across the lattice are synthesised from

aerial  surveys,  questionnaires  and  expert  opinion.  Livestock  densities  and

distributions are synthesised from census data. 

The agent population is comprised of feral pig herds and 'pig-equivalent' herds. A pig-

equivalent herd is an artificial construct representing livestock, but expressed in terms

of pigs. The translation takes into account variability between species with respect to

virus shedding, and susceptibility to infection. A sheep flock is deemed equivalent to

0.5 pig herds, while a cattle herd is deemed equivalent to 0.64 pig herds. This tactic

allows the model to simplify disease spread as being between homogeneous herds.
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Herds are assumed to mix homogeneously within a cell. Intra-cell disease spread is

handled  by  a  deterministic,  state-transition  Susceptible,  Exposed,  Infectious,

Recovered, Susceptible (SEIRS) model. An infected feral pig herd is assumed to roam

within its home cell and have an effective contact with a susceptible herd within one

to six days. Exposed herds transition to infectious, recovered and susceptible again

based on model parameterisation. A cell is deemed to be completely infected at most

six days from the first infection of a herd, after which it starts participating in the

inter-cell spread of disease. Inter-cell spread of disease is represented by a stochastic

distance kernel, defined in terms of cells. The only susceptible cells at risk from an

infected cell are those in the immediate Moore neighbourhood (Weisstein, 2015). The

probability  of  infection  depends  on  the  density  of  susceptible  herds  and  the  cell

location relative to the infected cell. The diagonal cells (north-west, north-east, south-

west and south-east), are seen as 71% less likely to become infected than the adjacent

cells (north, south, east and west). 

A geographic automaton (GA) is an evolution of cellular automata. Whereas a CA

environment  is  defined rigidly  in  terms  of  a  lattice,  a  GA has  a  fully  geographic

environment,  typically  through  integration  with  a  GIS  platform  (Torrens  and

Benenson, 2005; Ward et al., 2007; Laffan et al., 2007; Yassemi et al., 2008; Highfield

et al., 2008; Ward et al., 2011). An example of a GA is Sirca (Laffan et al., 2007),

which builds upon the Doran and Laffan (2005) CA. Sirca allows herd neighbours

(for the purposes of inter-herd spread), to be defined as a function of geography (e.g.

distance), as opposed to purely in terms of neighbouring cells. While a geographical

environment  is  conducive  to  higher  quality  simulated  contacts,  it  is  typically

accompanied by an increased computational overhead from the geographic queries.

Techniques such as spatial-indexing can ease this burden (Kennedy et al., 2009).

2.4.2.5  Agent-based models

An agent (Franklin and Graesser, 1997; Boman and Holm, 2005;  Macal and North,

2010), is generally regarded as having the following characteristics:

• self-contained with respect to state, logic and goals,
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• the ability to detect and interact with other agents and/or the environment,

• autonomy/authority to react/interact without external prompting,

• adapts/evolves/learns over time as a consequence of interactions.

Autonomy is perhaps the single most important characteristic of an agent (Macal and

North, 2010). An agent can independently react to a variety of stimuli, for example,

other agents, the environment, the passing of time, and progression through space. In

contrast, traditional microsimulations tend to have populations of passive individuals

upon which external 'policies' are applied.

An agent-based model (ABM) is a system of autonomous, self-organising agents that

interact in the context of an environment. Agents need not be homogeneous and so

ABMs are  naturally  suited  to  modelling  heterogeneous populations.  An agent  can

represent a discrete individual or abstract a group of individuals such as a herd. An

ABM  is  a  continuation  along  the  CA/GA  evolutionary  path.  Whereas  a  CA

environment is constrained to a lattice of cells, and a GA environment is constrained

by geography, an ABM environment is generalised. Agents may interact over a variety

of topologies, including lattices, Euclidean 2D/3D space, contact networks, GIS and

aspatial  'soup'  (Macal  and  North,  2010).  As  with  other  individual-level  models,

population-level behaviour emerges over time from the collective states of agents and

the environment of an ABM (Macal and North, 2010). There are several alternative

terms for similar concepts such as multi-agent system, agent-based simulation, multi-

agent-based system,  individual-based model,  and complex adaptive  systems (Hare

and Deadman, 2004; Boman and Holm, 2005; Macal and North, 2010). The variety of

terminology  perhaps  reflects  the  breadth  of  research  domains  interested  in  agent-

based  modelling  and  simulation.  There  are  several  programming  languages,

frameworks, integrated development environments, and distributed platforms specific

to the development  of  ABMs (Bordini  et  al.,  2006;  Railsback et  al.,  2006;  Allan,

2010). The Foundation for Intelligent Physical Agents (FIPA) defines a standard for

the creation, management and interoperation of heterogeneous agents (IEEE, 2014).
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ABM  frameworks  generally  provide  standard  infrastructure  such  as  agent

communication, discrete time management, and agent scheduling. Popular examples

include NetLogo (Wilensky, 1999), JADE (Bellifemine et al., 2001), MASON (Luke

et  al.,  2005),  Swarm (Minar  et  al.,  1996),  Repast  Simphony (North  et  al.,  2013),

GAMA (Grignard et al., 2013) and D-MASON (Cordasco et al., 2013). ABMs have

been used to study a variety of animal diseases, including FMD (Dion et al., 2011;

Ariuntsetseg and Yom, 2013), bovine tuberculosis (Ross et al., 2011), RVF (Paul et

al., 2014), and HPAI (Amouroux et al., 2008; Kim et al., 2010; Roche et al., 2011).

EPIFMD (Dion et al., 2011) is an example of an ABM used in the study of FMD. It

models  the  effect  of  landscape  heterogeneities  on  the  potential  spread  of  FMD

between African buffalo in the Kruger National Park and domestic cattle adjoining the

park.  Three  FMD  serotypes  are  endemic  in  South  Africa,  and  buffalo  can  carry

FMDV with  minimal  clinical  signs.  Domestic  cattle  are  typically  managed  in  a

traditional  communal  manner,  which  involves  daily  herding  between village

enclosures and unfenced grazing/water resources. Whilst Kruger is in theory enclosed

by a fence, in practice, the fence has unpredictable integrity due to large animals,

poachers, floods, wear and tear, and gates being left open.  Cattle based near Kruger

are thus at  risk of  contracting FMD through direct  contact  with buffalo at  shared

watering holes and grazing areas. As such, cattle are vaccinated against FMD twice a

year and subjected to weekly inspections by government veterinarians. The buffalo

population is synthesised from park census data and ranger observations. A buffalo

agent is a small group of buffaloes that moves stochastically around the environment

based on census data and ranger observations. Whether or not a buffalo agent leaves

the park (and poses a risk to cattle), depends on the state of the nearby fence. The

uncertainty of fence disrepair and repair are factored into the model stochastically

based on fence maintenance, survey data, and surrounding land features. The cattle

population is synthesised from survey data and livestock register reports. Each herd of

cattle  is  modelled  by  an  agent  that  stochastically  moves  around  the  environment

according  to  survey  data  and  GPS-derived  grazing  patterns.  The  EPIFMD

environment is GIS-based and includes features such as land cover, water resources,
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climate, land use, villages, roads and park fences. The movements of animal agents

are  influenced  by  seasonal  environmental  variables  including  temperature,

precipitation, water resources and vegetation. A lattice with cell dimensions of 100

metres  x 100 metres  is  superimposed over  the  environment.  A cattle  agent  and a

buffalo  agent  are  deemed  to  be  in  contact  when  they  occupy  the  same  cell.  As

EPIFMD is stochastic, the model outputs are spatiotemporal distributions of cattle and

buffalo movements to and from grazing/water resources, buffalo excursions from the

park, and direct contacts between buffalo and cattle. EPIFMD only models contacts

that  may  lead  to  the  transmission  of  FMD, not  the  actual  transmission  of  FMD.

Indirect contacts are not modelled as the national park and surrounding villages do not

typically  share  vehicles,  equipment,  personnel.  Airborne  'contacts'  are  also  not

modelled due to the low numbers of (virus shedding) pigs in the area, and the Kruger

climate  generally  not  being  conducive  to  virus  remaining  viable  in  a  plume

(Donaldson and Alexandersen, 2002). The parameterisation of EPIFMD can be varied

to study the extent  to  which factors  such as  landscape heterogeneities,  population

distributions  and  densities,  population  demographics,  movement  patterns,  fence

integrity,  climate,  and seasonal variations,  influence the location and frequency of

direct contacts. EPIFMD is an example of how the individual-level approach of an

ABM is a natural fit for capturing the complexities of a heterogeneous environment.

2.4.2.6  Massive Agent-based models

A massive agent-based model (MABM) is an expansion of an ABM to handle very

large  populations.  The  distinction  between  an  ABM  and  a  MABM  is  somewhat

arbitrary. However, for illustrative purposes, an ABM has up to thousands, or perhaps

hundreds of thousands of agents, while a MABM may run into the millions, or even

billions of agents. The explicit modelling of individuals in a large population can be

computationally  intensive  and  MABMs  are  generally  not  suitable  for  desktop

computers  and  off-the-shelf  ABM  frameworks.  In  particular,  some  simple  ABM

frameworks  employ a  thread  of  execution  per  agent  which  imposes  limits  on the

maximum number of agents that a platform can support (Krzywicki et al., 2015). This

limitation is addressed by frameworks such as D-MASON (Cordasco et al., 2013) that
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support distributed ABMs. Large populations may require specialised implementation

strategies such as lightweight agents that share pools of threads (Kim et al., 2007),

custom  memory  management  (Parker  and  Epstein,  2011),  or  aggregated  'super-

individuals' (Scheffer et al., 1995; Parry and Evans, 2008). MABMs typically require

a  highly  parallel  platform  such  as  high-performance  computing  (HPC)  clusters

(Carley et al., 2006; Germann et al., 2006; Stroud et al., 2007; Yamamoto et al., 2007;

Macal and North, 2008; Aleman et al., 2009; Parker and Epstein, 2011), which tends

to confine them to university, defense and scientific research environments. GPGPU

(General Purpose computing on Graphics Processing Units) is a low cost alternative

parallel platform (Lysenko and D'Souza, 2008; D'Souza et al., 2009; Richmond et al.,

2009; Welch et al., 2014).

An example of  a  MABM is  the Global  Scale  Agent  Model  (GSAM) (Parker  and

Epstein,  2011).  GSAM  is  a  distributed  modelling  platform capable  of  simulating

pandemics across populations of several billion agents. Disease may spread from an

infectious  agent  to  a  susceptible  agent  as  a  consequence  of  family  contacts,

coworker/classmate contacts or random contacts. Agents transition through infection

states according to the disease being modelled. GSAM is written in Java and employs

a  highly  optimised  distributed  software  architecture  that  is  portable  across  both

operating systems and hardware platforms. GSAM is typically  hosted on an HPC

cluster with each node dedicated to processing an assigned spatial compartment. Inter-

node communication is queued and carried out in periodic bursts in order to reduce

latency.  GSAM efficiently simulates the global propagation of a variety of diseases.

An example run-time performance is 2.4 billion infections across a population of 6.5

billion agents in 7.8 hours (on a 32 node HPC UNIX cluster). 

2.4.2.7  Network-based models

Individuals in a population can be abstracted as nodes in a network. An edge between

two nodes represents an interaction between individuals (or direct contact), that may

facilitate the transmission of disease (Bansal et al.,  2007). A network-based model

extends  the  spatial-kernel  approach  (Section  2.4.2.3),  with  a  data-driven  contact
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network that defines the set of potential paths over which disease may propagate. The

level of realism of the contact network depends on the available data in the modelling

domain.  Human  contact  networks  are  irregular  and  heterogeneous,  and  so  large

network-based models of human disease such as influenza, often employ generalised

contact patterns derived from sources such as surveys and census data (Bansal et al.,

2007).

The notion of a network-based model extends to metapopulations (Hess, 1996). In this

case, the nodes are sub-populations and the contact network describes the movement

of individuals between sub-populations (Colizza and Vespignani, 2008). This type of

network-based  model  is  well  suited  to  livestock  with  farms  as  the  nodes  in  the

network  and  a  contact  network  derived  from  recorded  livestock  movements.  In

countries where agriculture and biosecurity is of great importance to the economy,

there is an increasing availability of data on the movement of livestock and livestock

products.  An  example  is  the  Australian  National  Livestock  Identification  System

(NLIS) which  tracks  livestock from property of  birth  to  place of  slaughter/export

(Durr et al., 2010; Meat and Livestock Australia, 2014a). The NLIS database is a rich

source of data on cattle movements that take into account species, production system

and region, and can be used to derive realistic livestock movement patterns on a per-

consignment basis. Green and colleagues (2006) use the UK equivalent Cattle Tracing

System (CTS) to derive a realistic contact network based on inter-farm movements

and consignments to and from markets. Their FMD model is then able to take into

account  temporal  heterogeneities  such  as  season-based  movements,  and  spatial

heterogeneities such as market catchment areas. Green and colleagues also model the

clustering of infected farms through a fixed-rate local spread mechanism. 

2.4.3  Hybrid models

Hybrid  epidemiological  models  incorporate  a  population-based  approach  and  an

individual-based approach into a single model in order to harness the strengths of both

approaches.
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2.4.3.1  Stage-based

A stage-based (or threshold) hybrid model is modal in that simulation is conducted at

any  given  time  by  either  a  population-level  model  (such  as  an  EBM),  or an

individual-level model (such as an ABM). Bobashev and colleagues (2007) describe a

stage-based  hybrid  model  of  global  human  influenza  that  dynamically  switches

between an ABM and an EBM, based on the number of cases. Within-city spread is

initially  modelled  with  an  ABM  in  order  to  capture  subtle  interactions  between

individuals  early  in  an  epidemic.  The  ABM  is  halted  when  a  cases  threshold  is

reached and a snapshot of agent states is used as the initial conditions for an EBM.

Although the granularity of modelling decreases to population-level,  it  occurs at a

point in the outbreak when the number of cases is sufficient to support a population-

averaged approach. Moreover, the overall performance of the model is maintained due

to the computationally efficient EBM. The model switches back to an ABM when the

number of cases in a city falls  below a threshold value in order to capture subtle

interactions between individuals as the epidemic wanes.

2.4.3.2  Embedded

An embedded  hybrid  model  extends  both  the  spatial-kernel  (Section  2.4.2.3)  and

network-based (Section 2.4.2.7) approaches with the addition of explicit modelling of

the spread of disease within a sub-population. An individual-based model simulates

the  spread  of  disease  between  sub-populations,  and  a  population-based  model

simulates the spread of disease within sub-populations. This approach captures the

multi-scale nature of an epidemic in that the mechanisms and rates of disease spread

within sub-populations are often quite distinct from those between sub-populations

(Balcan  et  al.,  2010).  A population-based  approach  is  appropriate  when  a  sub-

population  can  be  simplified  as  closed  and  homogeneous.  An  individual-based

approach captures heterogeneity across the meta-population and in the environment.

Embedded  models  have  been  used  to  study  large  scale  human  epidemics,  with

realistic mobility networks characterised from data sources such as censuses, surveys,

the International Air Transport Association (IATA) database and the Official Airline
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Guide (OAG) database (Bansal et al., 2007; Balcan et al., 2009; Yu et al., 2010; Van

den  Broeck  et  al.,  2011;  Parker  and  Epstein,  2011;  Yoneyama  et  al.,  2012).  An

example of a large-scale embedded model is the Global Epidemic and Mobility Model

(GLEaM) (Balcan  et  al.,  2009).  The global  land surface is  decomposed into sub-

populations  based  on  Voronoi  polygons  that  enclose  IATA-indexed  airports.  The

spread  of  disease  within  a  sub-population  is  modelled  by  a  pathogen-specific,

stochastic, SEIR-based, compartmental EBM that assumes homogeneous mixing. The

spread of disease between sub-populations is driven by a two-layer mobility network.

Short-range  commuting  patterns  between  sub-populations  are  characterised  from

census data and represented by a gravity law. Longer-range air travel patterns between

sub-populations are characterised from historical IATA data on commercial air traffic

and represented by stochastic variables that follow a multinomial distribution. The

mobility  network is  multi-scale,  reflecting how the commuting flow between sub-

populations  is  an  order  of  magnitude  heavier  than  longer  haul  air  traffic  flows

between  sub-populations.  Disease  pathways  form  stochastically  between  sub-

populations as infectious individuals travel and come into contact with susceptible

individuals. Ajelli and colleagues (2010), compare the GLEaM metapopulation hybrid

model with a matched MABM. They report that GLEaM is computationally more

efficient than the MABM yet produces broadly comparable modelling outcomes.

An embedded approach is  a good match for a livestock disease model due to the

distinct dynamics of within-farm and between-farm disease spread (Carpenter et al.,

2003; Chis Ster et al., 2012; Backer et al., 2012a). Once infection is introduced into a

farm the rate of within-farm spread is dependent on the specifics of the pathogen and

the farm. Factors may include the host species, livestock density, livestock numbers,

production system, and biosecurity measures. The spread of disease between farms is

influenced by more irregular factors such as contact networks between farms (direct

and indirect), market practices, distance between farms, and environmental conditions

such  as  weather.  Embedded  models  have  been  used  to  study  a  range  of  animal

diseases, including FMD (Kim et al., 2012; LaBute et al., 2014), HPAI (Nickbakhsh et

al.,  2013;  LaBute  et  al.,  2014),  CSF  (Holmstrom,  2008),  Mycobacterium  avium
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subspecies  paratuberculosis  (Teose  et  al.,  2011),  and  swine  vesicular  disease  and

vesicular stomatitus (Eisinger, 2012).

The Davis Animal Disease Simulation (DADS) (Bates et al., 2003a) is a stochastic

model of the spread and control of FMD in Californian livestock. DADS extends the

spatial-kernel approach (Section 2.4.2.3), by embedding a Reed-Frost chain binomial

model  (Section  2.4.1.2),  to  represent  the  spread  of  disease  within  a  herd.  The

probabilities of adequate contacts between infectious and susceptible animals in the

same  herd  are  obtained  through  daily  Monte  Carlo  sampling  of  Beta-PERT

distributions that factor in herd type and transmission mode (direct, low risk indirect

and  high  risk  indirect).  Between-herd  spread  is  handled  by  a  stochastic  spatial

transmission kernel that takes into account the probability of adequate contact per

transmission mode, the infectiousness of infectious herds (as calculated by the within-

herd spread model),  and the distance between infectious and candidate susceptible

herds.  The  inter-herd  transmission  modes  are  characterised  from  realistic

direct/indirect contact rates and movement distances (Bates et al., 2001). Studies that

have used DADS include: the spread and control of FMD in Californian livestock

(Bates et al., 2003a; Bates et al., 2003b; Dickey et al., 2008); the spread of FMD from

wild pigs to Californian cattle and evaluation of control strategies (Pineda-krch et al.,

2010); the economic importance of early detection of FMD in Californian livestock

(Carpenter et al., 2011); and an evaluation of vaccination as a response to an FMD

outbreak in Switzerland (Dürr et al., 2014). 

The Multiscale Epidemiologic/Economic Simulation and Analysis (MESA) decision

support system is a national-scale model of livestock disease spread and control. It

employs an SEIR-based approach to represent the spread of disease within herds, and

an agent-based approach to model the direct and indirect spread of disease between

herds (Speck, 2008). Various control measures are incorporated including quarantine,

movement  controls,  tracing,  vaccination  and  depopulation.  An  economic  module

assesses the impact of an outbreak including the cost of control strategies and loss of
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trade. It has been used to study livestock diseases including CSF (Holmstrom, 2008)

and  FMD  (Hullinger,  2008).  The  MESA  model  is  no  longer  being  funded,

development has stopped and it has not been used for several years (P. Hullinger,

personal communication, 30 May 2015).

The Technical  University  of  Denmark -  Davis  Animal  Disease  Simulation  (DTU-

DADS) (Boklund et al., 2013) is an adaption of the DADS model to the spread and

control of FMD in Denmark. Apart from migration to the Danish livestock population

and movement patterns, DTU-DADS incorporates local spread within a 3km radius of

infectious herds and airborne spread beyond the local spread radius. Surveillance and

tracing are included, and movement restrictions, depopulation of infected herds, and

vaccination are modified to match European Union and Danish regulations.  FMD

studies that have used DTU-DADS include Boklund and colleagues (2013), Halasa

and colleagues (2013), and Halasa and colleagues (2014).

The  Netherlands  FMD  model  (Backer  et  al.,  2012a),  extends  the  spatial-kernel

approach  (Section  2.4.2.3),  by  embedding  an SEIR-based  EBM  to  represent  the

spread of disease within a herd. Between-herd spread is handled by a spatial-kernel

that is driven by the distance between infectious and susceptible herds, the infection

pressure of  an infectious  herd (as  determined by the EBM),  and the  types  of  the

infectious and susceptible herds. The spatial-kernel is parameterised with data from

the  2001 FMD outbreak in  the  Netherlands.  The model  simulates  various  control

strategies  including  stamping  out,  pre-emptive  ring  culling  and  suppressive  ring

vaccination. FMD studies that make use of the Netherlands model include Backer and

colleagues (2012b), and Bergevoet and Asseldonk (2014).

2.4.4  Summary

Section 2.4 illustrates the range of approaches used in the modelling of FMD spread,

control  and  eradication.  There  are  advantages  and  disadvantages  with  both  the

population-based  and  individual-based  approaches.  Population-based  models  are
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mathematically  based  and tend  to  be  concise,  relatively  easy  to  parameterise  and

computationally  efficient.  This  makes  them useful  for  fast  prototyping  of  disease

dynamics especially when outbreak data is scarce. Population-based models carry an

assumption that the population is homogeneous and 'well-mixed', which is a limitation

if  the  population  is  heterogeneous  and  mixes  heterogeneously.  Individual-based

models tend to be ecologically based and focus on the role and contribution of an

individual  in  the  environment.  They  have  a  natural  affinity  for  capturing

heterogeneity,  stochasticity  and  spatial  relationships.  Individual-based  models  are

often  data-driven,  have  extensive  parameterisation  and  may  not  scale  well  with

population size. A hybrid modelling approach combines the strengths of population

and individual-based approaches into a single model. 

In the next chapter a case is put forward as to why the hybrid embedded approach is a

good match for modelling FMD on a national-scale in Australia.
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3  MODEL ARCHITECTURE AND DESCRIPTION 

Chapter  2  illustrated  that  there  are  a  variety  of  approaches  to  the  modelling  of

infectious  livestock  diseases  such  as  FMD.  The  choice  of  modelling  approach  is

perhaps influenced by the background of the modellers, the availability of data, and

the purpose of the model. For example, in a situation where data is limited and there is

a  need  to  quickly  characterise  outbreak  dynamics,  a  simple  population-based

approach  is  far  more  agile  than  a  complex  individual-based  approach  (Section

2.4.1.3). As another example, the explicit simulation of individual spread pathways

and  control  measures  (Section  2.4.2.2),  provides  much  greater  flexibility  when

conducting policy-driven what-if scenarios than an aggregated mathematical approach

such  as  that  of  spatial-kernel  models  (Section  2.4.2.3).  When  deciding  upon  a

modelling approach it is important to take into account a range of factors such as

scalability for the required population size, availability and quality of data, and how

the model is to be used.

This chapter explores why a hybrid embedded modelling approach is suitable for a

national-scale  model  of  FMD  in  Australia.  Firstly,  the  most  appropriate

epidemiological  modelling  unit  of  interest  is  determined.  Secondly,  the  Australian

population  of  FMD-susceptible  animals  is  characterised  in  terms  of  the  chosen

modelling  unit  of  interest.  Thirdly,  the  AADIS  model  architecture  is  described.

Finally,  the  epidemiology,  algorithms  and  formulae  for  the  spread  and  control  of

disease are outlined.

3.1  Epidemiological unit of interest

There are three options for the modelling unit of interest: the animal, the herd and the

farm. The most granular choice is modelling on a per-animal basis, which in Australia

yields a population of over 100,000,000 individuals. This option would place AADIS

46



in the company of large scale network-based models and MABMs (Sections 2.4.2.6

and 2.4.2.7). 

It  is  theoretically possible  to construct  a national contact-network based on actual

cattle movements in Australia (Happold et al., 2010; Donald et al., 2010). The NLIS

database on cattle movements is highly accurate due to mandatory tagging of each

animal with a radio frequency identification (RFID) ear tag or rumen bolus. However,

movement data for sheep and pigs is less accurate as there are still visual and manual

components in the tracking system (Schembri et al.,  2007;  Hernández‐Jover et al.,

2009; Australian Bureau of Agricultural and Resource Economics and Sciences, 2013;

Meat and Livestock Australia, 2014b). There are also variations between jurisdictions

in the accuracy of premises data (Durr et al., 2010), and the accuracy of movement

data (Hernández‐Jover et al., 2009;  Australian Bureau of Agricultural and Resource

Economics  and  Sciences,  2013).  Inconsistencies  in  the  quality  of  premises  and

movement  data  (across  jurisdictions  and  between  species),  are  problematic  for  a

national-scale epidemiological model as they weaken the realism of simulated direct

contacts and traces.

Apart  from the  computational  burden,  modelling  disease  on a  per-animal  basis  is

arguably  overkill  for  a  livestock  model  of  national  scale. As  a  counter-example,

consider the spread of disease between humans. Each person has a distinct contact

network of family, friends, classmates, colleagues, team mates and fellow commuters.

(Colizza and Vespignani, 2010). An infectious individual can set off a chain reaction

of infection rippling across their personal contact network. Livestock, on the other

hand, are typically managed in a relatively structured way as groups that effectively

share  a  single  contact  network whilst  on  a  farm (Kostova-Vassilevska,  2004).  An

epidemiological  unit  of  interest  of  the  herd  or  the  farm  is  thus  appropriate  for

modelling the spread of livestock disease on a national scale. 
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Modelling the spread of disease on a per-herd basis captures heterogeneity within

multi-species farms. For example, farms that manage both sheep and cattle can be

modelled  as  two  independent  herds  with  distinct  disease  dynamics  and  animal

management  practices.  This  approach  allows  more  granular  modelling  of  disease

transmission than models such as AusSpread and InterSpread Plus that use the farm as

the base modelling unit. This leads to the decision for AADIS to adopt the herd as the

epidemiological unit  of interest  for disease transmission.  A herd is  assumed to be

homogeneous with respect to species and farming practices, and well-mixed from a

disease transmission point of view. This implies that any one member of a herd has

the same likelihood of contracting a disease as any other member. 

For the purposes of disease control and eradication, however, the unit of interest is the

farm  (Animal  Health  Australia,  2014a).  This  stems  from  the  policy  of  applying

control measures to all herds on a farm of interest. This leads to the innovative choice

of dual modelling units of interest for AADIS: the herd for the spread of disease, and

the farm for the control of disease.

3.2  Livestock population

Commercial animals in Australia that are susceptible to FMD include sheep, cattle,

pigs, goats, camels, alpaca, llama, deer and bison (Animal Health Australia, 2014a).

For  modelling  purposes,  the  national  livestock  population  of  FMD-susceptible

animals is simplified to only comprise sheep, cattle and pigs as they are by far the

predominant  commercial  species  (Australian  Bureau  of  Agricultural  and Resource

Economics and Sciences, 2014). Wild and feral animals that are susceptible to FMD

include  pigs,  goats,  deer,  buffalo,  camels  and  some  marsupials  (Animal  Health

Australia, 2014a). The potential role of wild and feral animals in the spread of FMD is

an  ongoing area  of  research (Doran and Laffan,  2005;  Ward et  al.,  2015).  In  the

interests of simplicity, and assuming that wild and feral populations pose a low risk of

transmitting FMD to livestock (Animal Health Australia, 2014a), the initial focus of

AADIS is commercial animals only. 
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The  Australian  population  of  over  107  million  FMD-susceptible  livestock  is

aggregated  into  herds  and  farms  based  on  species  and  farming  practices.  As  the

availability and quality of data varies between jurisdictions, the national dataset used

in this study is derived from a blend of agricultural census data, industry reports and

expert  opinion  (Department  of  Primary  Industries,  2006;  Australian  Bureau  of

Statistics, 2014; Roche, 2013; Hernández‐Jover et al., 2014). This results in a national

herd population of 235,668 herds across 10 herd types (Table 3.1). A herd has static

attributes  (ID,  type,  size,  latitude  and  longitude,  state/territory  jurisdiction,  local

government  area,  region  and  nearest  weather  station),  and  dynamic  attributes

describing infection status. The herd dataset is stored in a relational database (Section

4.2.1, and Appendices B and C).  A farm can have one or more herds, resulting in a

national farm population of 202,775 farms across 9 farm types (Table 3.1). A farm has

static attributes (ID, type and constituent herd IDs), and dynamic attributes describing

disease  control  and  eradication  status.  AADIS  spatially  identifies  a  farm  and  its

constituent herds as a single point of latitude and longitude. 

Table 3.1. AADIS farm and herd types

Farm type Number
of farms

Number of animals
mean (min - max)

Herd type Number of
herds

Extensive beef 1331 1909 (1200 – 46,575) Extensive beef 3993

Intensive beef 51,383 280 (30 – 7436) Intensive beef 51,383

Feedlot 508 1825 (100 – 39,963) Feedlot 508

Mixed beef/sheep 21,556 242 (30 – 5700) Mixed beef 21,556

Mixed sheep 21,556

Dairy 8675 298 (40 – 2742) Dairy 8675

Small pigs 1873 244 (40 – 4850) Small pigs 1873

Large pigs 333 4922 (1000 – 17,896) Large pigs 333

Sheep 22,150 1649 (20 – 44,000) Sheep 22,150

Smallholder 103,641 5 (1 – 14) Smallholder 103,641

Total 202,775 235,668
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3.3  The AADIS hybrid modelling approach

The choice of a hybrid embedded modelling approach for AADIS is driven by the

purpose  of  the  model  –  to  support  emergency livestock disease  preparedness  and

planning  in  Australia.  Spatially-explicit  microsimulations  such  as  AusSpread,

InterSpread Plus and NAADSM are highly configurable so that a range of what-if

scenarios can be conducted,  specifically  to  assist  with the development  of  animal

health policy. The explicit representation of individual spread pathways and control

measures (Section 2.4.2.2), provides a framework for detailed policy experimentation

on both a spatial and temporal basis. For example: what-if scenarios on quarantine

and movement  restriction  policies  can be conducted  and the impact  on the  direct

spread,  indirect  spread  and  saleyard  spread  pathways  assessed;  what-if  scenarios

involving biosecurity measures can be conducted and the impact on the local spread

pathway assessed; what-if scenarios involving weather variations can be conducted

and the impact on the airborne spread pathway assessed; what-if scenarios involving

seasonal/regional  variations  can  be  conducted  and  the  impact  on  the  direct  and

saleyard spread pathways assessed. This level of granularity is not available when a

model aggregates the various means by which disease spreads between herds into a

spatial-kernel (Section 2.4.2.3), or does not take into account spatial heterogeneities in

the population and environment (Section 2.4.1).

A shortcoming of the microsimulation approach is limited representation of within-

herd disease dynamics as disease spread 'policies' are typically applied upon a cohort

of farms (Section 2.4.2.2). Techniques such as 'probability of transmission'  lookup

tables (Section 5.2.3),  can provide a degree of intra-farm disease dynamics,  but a

more  complete  solution  is  the  explicit  modelling  of  within-herd  spread.  This  is  a

feature of hybrid embedded models (Section 2.4.3.2), such as DADS and DTU-DADS

where within-herd spread is  handled by a  Reed-Frost  model,  and the Netherlands

FMD model  which  employs  an  SEIR mass-action  model  to  represent  within-herd

spread. The  decoupling of within-herd spread and between-herd spread reflects the

multi-scale nature of livestock epidemics (Carpenter et al., 2003). Whereas the spread

50



of  disease  within  a  homogeneous  herd  is  governed  by  species,  pathogen  and

production  system,  the  spread  of  disease  between  farms  is  influenced  by  more

heterogeneous  and  irregular  factors  such  as  contact  networks,  market  practices,

distance between farms, geography and weather.

AADIS borrows from both the microsimulation approach of AusSpread, InterSpread

Plus,  Exodis  and  NAADSM,  and  the  embedded  approach  of  the  DADS,  MESA,

DTU-DADS and the Netherlands models. AADIS models the spread of disease within

a herd with a deterministic mass-action SEIR model. A population-based approach

such as this is well-suited to modelling the spread of disease within a herd, when the

herd can be assumed to be homogeneous and well-mixed. Whilst a herd is viewed as a

population for the purposes of within-herd disease spread (Figure 3.1), it is (somewhat

paradoxically), also viewed as an atomic individual participating in an ABM (Figure

3.2). 

The EBM generates herd-level infected, infectious and clinical prevalence which are

used by the ABM when modelling the spread of disease between herds. The ABM is

also  responsible  for  modelling  the  control  and  eradication  of  disease  –  which  is

conducted  in  the  context  of  heterogeneous  environment  of  jurisdiction-dependent

policy  and  resourcing.  An  individual-based  model  has  an  affinity  for  capturing
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Figure 3.1. Herd agent with embedded EBM Figure 3.2. Network of herd agents.



heterogeneities  in  host  species,  production  systems,  market  practices,  geography,

climate and jurisdiction-dependent policies.  The emergent behaviour of the AADIS

ABM  is  the  spatiotemporal  waxing  of  disease  across  the  population  and  the

subsequent waning due to control and eradication processes. 

The  AADIS  ABM environment  is  comprised  of  disease  spread  pathways  (direct,

indirect,  local,  airborne,  saleyard),  and  control  measures  (detection,  movement

restrictions,  surveillance, direct tracing, indirect tracing, suspect premises reporting,

infected  premises  operations  and  vaccination).  The  spread  pathways  and  control

measures can be thought of as components of the ABM environment. Each component

operates independently and concurrently. The AADIS embedded hybrid architecture is

a generalisation of the hybrid embedded approach as an ABM is the most flexible

form of  an  individual-based  model.  For  example,  an  ABM can  represent  distinct

spread pathways like a microsimulation and a network-based model,  or aggregate

spread mechanisms like a spatial-kernel model.

3.4  Within-herd disease spread

AADIS employs a non-spatial, deterministic SEIR compartmental approach to model

within-herd  spread  of  FMD  (Figure  3.3).  Although  this  introduces  additional

complexity  and  computational  overhead  compared  to  a  pure  individual-based

approach such as a microsimulation, it  captures the multi-scale nature of livestock

outbreaks (Section 3.3). For a model of national-scale it is important to be able to

distinguish between micro-level disease dynamics (for example, within an intensive

feedlot), and those on a macro-level (for example, stemming from very long range

livestock movements (Section 2.2)). 

52



Each herd is represented by an ODE-based EBM that takes into account the herd type,

herd size and the pathogen under study. The rate of animals joining a herd via births

and transfers in, is assumed equal to the rate of animals leaving a herd via natural

deaths  and  transfers  out.  The  assumption  of  a  constant  herd  size,  although  not

quantifiable, is a reasonable concession when modelling on a large-scale. Modelling

the spread of disease within a herd deterministically is reasonable for such a highly

contagious disease as FMD, that once introduced into a susceptible herd will typically

progress  unchecked  (Meyer  and Knudsen,  2001;  Carpenter  et  al.,  2003,  Kostova-

Vassilevska, 2004). 

The parameterisation of the EBM ODE system is dependent on the strain of FMD, the

relative infectiousness and susceptibility of the species, and the production system

(which  influences  the  degree  of  contact  between  animals).  The  baseline  ODE

configuration is derived from various FMD studies (Carpenter et al., 2004; Orsel et

al., 2005; Orsel et al., 2007a; Orsel et al., 2007b; Goris et al., 2009; Orsel et al., 2009;

Brito  et  al.,  2011),  taking  into  account  characteristics  of  Australian  production
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dS
dt

= μ−β I S−μ S

dE
dt

= β I S−μE−σ E

dI
dt

= σ E−μ I−γ I

dR
dt

= γ I−μ R

where S = proportion of the herd that are susceptible
E = proportion of the herd that are exposed
I = proportion of the herd that are infectious
R = proportion of the herd that are recovered
1
μ = average natural lifespan of the host, (μ  = birth rate = natural mortality rate)

β = effective contact rate (contact rate×transmission probability)
1
σ = average duration of the latent period, (σ  = progression rate from exposed to infectious)
1
γ = average duration of the infectious period, ( γ  = recovery rate)

Figure 3.3. The AADIS EBM ODE system

(3.1)

(3.2)

(3.3)

(3.4)



systems. The ODE configuration in Table 3.2 corresponds to the Ebm database table

(Section 4.2.1 and Appendices B and C).

When a susceptible herd becomes infected the ODE system is solved numerically via

a  4th-order  Runge  Kutta  method  (Cash  and  Karp,  1990),  to  yield  the  SEIR

compartmental  proportions  over  time.  The  EBM  further  divides  the  Recovered

compartment  into  the  proportion  of  animals  that  are  naturally  immune,  vaccine

immune  or  culled.  The  number  of  animals  in  a  particular  state  is  obtained  by

multiplying the compartment proportion by the herd size and rounding to the nearest

whole animal.  Infected prevalence is  defined as the proportion of the herd that is

carrying  the  virus,  i.e.,  the  sum  of  the  Exposed  and  Infectious  compartment

proportions.  Infectious  prevalence is  defined as  the proportion  of  the herd that  is

infectious, i.e., the Infectious compartment proportion. Figure 3.4 illustrates how the

EBM-generated prevalence curves vary per herd type (using example SEIR initial

values of 0.9, 0.1, 0, 0). Clinical prevalence is defined as the proportion of the herd

that is exhibiting clinical signs. The clinical prevalence curve (Figure 3.5) is derived

from the infected prevalence curve and takes into account a species-dependent lag
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Table 3.2. Sample EBM parameterisation

Herd type Effective
contact
rate (β)

Latent
period
(days)

Infectious
period
(days)

R0

(derived)
Clinical
period
(days)

Clinical
signs lag

(days)

Clinical
signs

damping

Immune
period
(days)

Extensive
beef

0.7 2 4 2.8 12 5 1 180

Intensive
beef

2 2 4 8 12 5 1 180

Feedlot 8 2 4 32 12 5 1 120

Mixed beef 2 2 4 8 12 5 1 180

Mixed sheep 0.8 2 7 5.6 5 5 0.5 180

Dairy 6 2 4 24 12 5 1 180

Small pigs 6 1 4 24 10 4 1 90

Large pigs 8 1 4 32 10 4 1 90

Sheep 0.8 2 7 5.6 5 5 0.5 180

Smallholder 2 2 5 10 9 5 0.75 180



between  infection  and  the  appearance  of  clinical  signs,  and  a  species-dependent

clinical signs damping factor (representing, for example, how sheep exhibit milder

clinical signs than cattle) (Table 3.2).
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Figure 3.4. EBM infected prevalence per herd type

Figure 3.5. EBM clinical prevalence per herd type



The SEIR ODE-based model was chosen for AADIS as it is well-understood, and

easily  solved  using  standard  numerical  techniques.  An  ODE-based  EBM  is

computationally  efficient  as  the  system  is  solved  once  to  yield  compartment

proportions over the entire solution interval. The solution remains in place up until an

external event (such as culling or vaccination), acts upon the herd. For example, if a

herd is vaccinated the EBM reacts by resolving the ODE system to reflect increasing

levels of immunity from the day of inoculation through to effective immunity.  The

EBM thus adapts and provides a dynamic representation of the within-herd infected,

infectious and clinical prevalence. 

The EBM-generated prevalence curves may be displayed for any infected herd and

depict  infected  prevalence  (heat-colours),  clinical  prevalence  (blue),  and  the

normalised infectious prevalence (red) (Figures 3.6, 3.7 and 6.3).

The prevalence curves  in  Figure 3.6 depict  the EBM solution  for  a  beef  herd  on

simulation day 37 prior to vaccination. Infection started on day 35, peaks with 53%

infected prevalence on day 48 and ends on day 69. The prevalence curves in Figure

3.7 shows the same herd, but this time with vaccination occurring on day 37 (light

purple). Susceptible animals in the herd achieve immunity on day 43 (dark purple)
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Figure 3.7. Post-vaccination prevalence curvesFigure 3.6. Pre-vaccination prevalence curves



resulting in a greatly diminished peak infected prevalence of 14% and an earlier end

to infection on day 57. 

3.5  Between-herd disease spread

The  ABM  models  the  spread  of  disease  between  herds  through  the  following

pathways:

• Direct contact spread – movement of live animals between premises,

• Saleyard spread – movement of live animals in and out of saleyards/markets,

• Indirect  contact  spread  –  movement  of  animal  products,  by-products  or

fomites, 

• Local spread – proximity-based contact (e.g., over a boundary fence),

• Airborne transmission – viral plumes conveyed on the wind.

Each spread pathway has  an independent  algorithm that  determines  on any given

simulation day whether or not disease transfers from an infectious herd to susceptible

herd(s). AADIS introduces stochasticity through Monte-Carlo sampling of probability

distribution functions (Vose, 2008). The pseudo-code provided in this section conveys

the high-level logic for each disease spread component of the ABM environment.

3.5.1  Direct contact spread

FMD  can  spread  when  a  susceptible  animal  comes  into  direct  contact  with  an

infectious animal. For example, respiratory transmission can occur between animals

sharing a paddock, yard or pen. In the context of the spread of FMD between herds,

direct contact through the relocation of live animals is often reported as the most

significant means of FMD transmission (Gibbens et al., 2001; Donaldson et al., 2001;

Kao, 2002; Green et al., 2006; Kao et al., 2006; Kao et al., 2007;  Lindström et al.,

2009; Kitching, 2011). 

The expected number, size and destination of daily movements into and out of herds,

stratified  by  month,  is  derived  from the  NLIS,  and  various  reports  and  industry
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sources (AusVet Animal Health Services,  2005 and 2006;  Kokic and Mues, 2006;

Hassall and Associates, 2006;  Cutler and Holyoake, 2007;  East and Foreman, 2011;

Hernández‐Jover et al., 2014; East et al., 2014a; Wicks and East, 2014). Movements

can occur  from farms to  abattoirs,  and between farms.  Only  movements  between

farms  are  potential  conduits  for  disease  spread,  i.e.,  movements  to  abattoirs  are

considered  'dead-ends'  with  respect  to  disease  transmission.  AADIS  only  models

movements  from infected  herds  since  it  would  be  computationally  prohibitive  to

consider all movements from all herds. For each infected herd, the daily likelihood of

a movement, the type of herd the movement is directed to, and the movement distance

and direction is determined stochastically. This is based on configuration data that

includes  movement  frequencies,  distance  distributions  and  contact  matrices.

Transmission  depends  on  the  prevalence  of  infection  in  the  source  herd  and  the

consignment size (Equation 3.5).

When a susceptible herd becomes infected an EBM is created and solved with initial

conditions  based  on  the  proportion  of  infectious  and  exposed  animals  in  the

consignment, and the size of the destination herd (Equations 3.6 to 3.9).
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          Ed = Es n / (Nd + n)                               (3.6)
          Id = Is  n / (Nd + n)                                (3.7)
          Rd = 0                                                (3.8)
          Sd = 1 - Ed - Id                                        (3.9)
where
          Ed = proportion of exposed animals in the destination herd
          Es = proportion of exposed animals in the source herd
          Id = proportion of infectious animals in the destination herd
          Is = proportion of infectious animals in the source herd
          Rd = proportion of infectious animals in the destination herd
          Sd = proportion of susceptible animals in the destination herd
          Nd = number of animals in the destination herd
          n = number of animals in the consignment

          pi = 1 – [1 – p(t)]n (3.5)
where
          pi = probability that the consignment contains at least one exposed or infectious animal
          p(t) = prevalence of infection in the source herd at time t, where prevalence is
                    defined as the proportion of infectious and exposed animals in the herd 
                    (as calculated by the source herd's EBM)
          n = consignment size



The pseudo-code for the daily processing of the Direct Spread component is presented

in Figure 3.8.
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for (each infected herd) {
        determine if one or more consignments leave the herd by sampling from a Poisson distribution
                 of the average number of daily movements for the herd type for the current month;
         for (each consignment) {
                 determine the consignment size by sampling from a Beta-PERT distribution of the expected
                         consignment size for the herd type and herd size;
                 calculate probability pi that the consignment contains at least one infected animal 
                         (Equation 3.5);
                 determine if the consignment is infected by sampling from a Binomial distribution of pi;
                 if (the consignment is infected) {
                         if (direct-driven saleyard spread is enabled (Section 3.5.5)) { 
                                 determine the destination premises type by sampling from a cumulative
                                         probability distribution of the likely destination type (abattoir, farm or
                                         saleyard) for the source herd type;
                         } else {
                                 determine the destination premises type by sampling from a cumulative 
                                          probability distribution of the likely destination type (abattoir or farm)
                                          for the source herd type;
                         }
                         if (the consigment is destined for a farm) {
                                 while (a dest herd has not been found within configurable number of attempts) {
                                         determine the destination herd type by sampling from a cumulative
                                                 probability distribution of the likely destination herd types for the
                                                 source herd type;
                                         determine the destination region by sampling from a cumulative probability
                                                 distribution of the likely destination regions for the source herd type;
                                         if (the consignment is intra-region) {
                                                 determine the movement distance for the consignment by sampling
                                                         from a Beta Pert distribution of likely distances for the source
                                                         herd type and source region;
                                                 search for a candidate destination herd in the annulus formed by the
                                                         movement distance +/- two configurable search tolerances;
                                         } else if (the consignment is inter-region) {
                                                 search for a candidate destination herd in the destination region;
                                        }
                                }
                                 if a candidate destination herd was found {
                                        transmit infection from the source herd to the destination herd (with initial  
                                                SEIR proportions of the destination herd per Equations 3.6 to 3.9);
                                 }
                        } else if (the consignment is destined for a saleyard) {
                                 determine the number of consignments leaving the saleyard by sampling from a 
                                         Beta-PERT distribution of the expected number for the source herd type;
                                 for (each outgoing consignment) {
                                         determine the consignment size by sampling from a Beta-PERT distribution
                                                 of the expected consignment size for the source herd type and size;
                                         determine if consignment is destined for a farm by sampling from a
                                                 binomial distribution of the likelihood based on the source herd type;
                                         if (the consigment is destined for a farm) {
                                                 while (dest herd not found within a configurable num of attempts) {
                                                        determine the destination herd type by sampling from a
                                                                cumulative probability distribution of likely destination herd
                                                                types for the source herd type;
                                                        determine the movement distance for the consignment by



3.5.2  Indirect contact spread

Indirect  contact  transmission  arises  from  the  movement  between  herds  of

contaminated animal products, by-products, and fomites such as equipment, people

and vehicles. Potential sources include veterinarians, shearing contractors, artificial

insemination technicians, milk tankers, and feed delivery vehicles. Indirect contacts

can  be  categorised  as  high,  medium  or  low  according  to  their  potential  for

transmitting infection (Nielen et al., 1996; Bates et al., 2001; Sanson, 2005; Nöremark

et al., 2013). In the interests of computational efficiency, AADIS only uses a single

category  of  indirect  contacts  with  a  specified  average  (baseline)  probability  of

transmission.  The  user  can  parameterise  this  to  represent  different  risk  profiles.

Compared to direct contacts, there is limited data on indirect contacts. The type and

location  of  exposed herds  is  determined stochastically  using  a  contact  matrix  and

distance distributions by herd type.  The indirect  spread pathway does  not operate

inside the local spread area (default 3km radius around each infected herd). This is

because the local spread pathway is a proximity-based catchall and aggregates various

spread mechanisms such as short-range aerosols, equipment sharing, and boundary

fences (Section 3.5.3).
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                                                                sampling from a Beta-PERT distribution of likely distances
                                                                for the source herd type and region;
                                                        search for a candidate destination herd in the annulus formed by
                                                                the movement distance +/- two configurable tolerances;
                                                 }
                                                 if a candidate destination herd was found {
                                                        transmit infection from the source herd to the destination herd
                                                                (the initial SEIR proportions of the destination herd are 
                                                                determined by Equations 3.6 to 3.9);
                                                 }
                                         }
                                 }
                        }
                }

        }

}

Figure 3.8. Daily processing for the direct spread pathway



If  a  herd  is  exposed  through  indirect  contact,  the  probability  of  transmission  pi

depends on the infectious prevalence of the source herd, the relative infectiousness of

the  source  herd  (based  on  species  and  herd  size),  environmental  conditions  that

influence  virus  survival,  biosecurity  practices,  and  relative  susceptibility  of  the

exposed herd (based on species and herd size) (Equation 3.10). 

        

Tildesley and colleagues (2012), found that a non-linear relationship between herd

size  and  infectivity/susceptibility  better  described  data  from  the  2001  UK  FMD

outbreak than a linear relationship. AADIS provides modelling flexibility with user-

configurable power law parameters Pi and Ps that specify the level of influence that a

herd's size has on infectivity and susceptibility. 

Infectivity weights depend on species and herd size, and are normalised across the

herd  population  (Equation  3.11).  The  relative  infectivity  constants  Si specify  the

infectivity of a species to FMD, relative to sheep (Risk Solutions, 2005b). They are

defined in the Species database table (Appendices B and C), with default values of

cattle = 1.82, sheep = 1, pigs = 1.3, smallholders = 1.11 (Risk Solutions, 2005b). The

infectivity powers Pi allow per-species tuning of the effect of herd size on infectivity

(0 ≤ Pi ≤ 1, where a value of 0 specifies no effect and a value of 1 specifies a linear

relationship). They are defined in the model configuration file with default values of

1. 
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          pi = Pb  p(t)  wi  ws  wb  wx                                         (3.10)
where
          pi =  probability that the indirect contact results in an infection
          Pb = baseline probability that any indirect contact results in infection
          p(t) = normalised infectious prevalence of the source herd at time t
          wi = infectivity weight of the source herd
          ws = susceptibility weight of the destination herd
          wb = biosecurity weight of the destination herd
          wx = seasonal weight

wi = (Si  nPi) / population_mean(Si 
 nPi) (3.11)

where
wi = infectivity weight
Si = species relative infectivity (configurable)
n = herd size
Pi = infectivity power (configurable)



Susceptibility weights depend on species and herd size, and are normalised across the

herd population (Equation 3.12). The relative susceptibility constants  Ss indicate the

susceptibility of a species to FMD, relative to sheep (Risk Solutions, 2005b). They are

defined in the Species database table (Appendices B and C), with default values of

cattle = 15.2, sheep = 1, pigs = 0.5, smallholders = 5.7 (Risk Solutions, 2005b). The

susceptibility  powers  Ps allow  per-species  tuning  of  the  effect  of  herd  size  on

susceptibility (0  ≤ Ps ≤ 1, where a value of 0 specifies no effect and a value of 1

specifies a linear relationship). They are defined in the model configuration file with

default values of 1. 

The  pseudo-code  for  the  daily  processing  of  the  Indirect  Spread  component  is

presented in Figure 3.9.
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ws = (Ss  n Ps ) / population_mean(Ss  nPs ) (3.12)
where

ws = susceptibility weight
Ss = species relative susceptibility (configurable)
n = herd size
Ps = susceptibility power (configurable)



When a susceptible herd becomes infected an EBM is created and solved with initial

conditions based on the estimated number of exposed animals in the destination herd

and the size of the destination herd (Equations 3.13 to 3.16).
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for (each infected herd) {
        determine if one or more indirect movements occur from the herd by sampling from a Poisson
                distribution of the average number of daily movements for the herd type for the current
                season;
        for (each movement) {
                while (a destination herd has not been found within a configurable number of attempts) {
                         determine the destination herd type by sampling from a cumulative probability
                                 distribution of the likely destination herd types for the source herd type;
                         determine the movement distance by sampling from a Beta-PERT distribution of likely
                                 distances for the source herd type and source region;
                         search for a candidate destination herd in the annulus formed by the
                                 movement distance +/- two configurable search tolerances;
                  }
                  if (a candidate destination herd was found) {
                          calculate the probability pi that the indirect contact results in an infection (Equation
                                  3.10);
                          determine whether the destination herd becomes infected by sampling from a
                                  Binomial distribution of the probability of infection pi;
                          if (infection occurs) {
                                  determine n = the number of animals infected in the destination herd by
                                          sampling from a Beta-PERT distribution of the likely number of infections; 
                                  transmit infection from the source herd to the destination herd (with initial
                                          SEIR proportions of the destination herd per Equations 3.13 to 3.16);
                          }
                  }

        }        

}

Figure 3.9. Daily processing for the indirect spread pathway

          Ed = n / Nd (3.13)
          Id = 0 (3.14)
          Rd = 0 (3.15)
          Sd = 1 – Ed (3.16)
where
          Ed = proportion of exposed animals in the destination herd
          Id = proportion of infectious animals in the destination herd
          Rd = proportion of recovered animals in the destination herd
          Sd = proportion of susceptible animals in the destination herd
          Nd = number of animals in the destination herd
          n = estimated number of exposed animals in destination herd



3.5.3  Local spread

Local spread covers the short-range transmission of disease from an infected herd to

neighbouring susceptible herds (Sanson, 1994). Local spread is an important pathway

for FMD, particular in high-density farming areas, for example, the majority of the cases

in the 2001 UK FMD outbreak were attributed to local spread (Gibbens et al., 2001).

The mechanism of local transmission is poorly understood, and could include: short-

range aerosol spread across fences; direct spread via the straying of stock; and indirect

spread  via  vehicles,  people,  surface  runoff,  and  sharing  of  equipment  between

neighbours (Gibbens et al., 2001; Kitching et al., 2006). AADIS represents local spread

with  a  spatial  kernel  that  aggregates  all  spread  mechanisms  inside  a  circular  area

enclosing each infected herd (default radius 3km). The direct, indirect, saleyard and

airborne spread pathways do not operate inside the local spread area.  All susceptible

herds inside a local spread area are deemed at-risk, with the probability of transmission

influenced by the distance between an infected herd and a susceptible herd. 

The daily processing for the Local Spread component is provided in Figure 3.10.

The  probability  of  transmission  pi from an  infected  'source'  herd  to  each  at-risk

'destination' herd is decided stochastically, taking into account: infectious prevalence

in  the  source  herd;  infectivity  of  the  source  herd  (based  on  species  and  size);
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for (each infected herd) {
        for (each susceptible herd within the local spread radius r) {
                calculate the probability pi that the local contact results in an infection (Equation 3.17);
                determine whether the destination herd becomes infected by sampling from a Binomial
                        distribution of the probability of infection pi;
                if (infection occurs) {
                        determine n = the number of animals infected in the destination herd by sampling
                                from a Beta-PERT distribution of the likely number of infections; 
                        transmit infection from the source herd to the destination herd with the initial infection
                                conditions of the destination herd determined by Equations 3.19 to 3.22.
                }

        }

}

Figure 3.10. Daily processing for the local spread pathway



susceptibility of the destination herd; biosecurity measures in place at the destination

premises; and the distance between the source and destination herd (Equation 3.17).

 

The  local  spread  radius,  and  the  probabilities  and  weights  used  to  calculate  the

probability of transmission are all configurable (Appendices C and D). Default values

are derived from published studies (Sanson, 1993; Gibbens et al., 2001; Honhold et al.,

2004;  Risk  Solutions,  2005a;  Risk  Solutions,  2005b;  Garner  and  Beckett,  2005;

Backer et al., 2012a), taking Australian conditions into account. 

Local spread can also occur between herds that are co-resident on the same farm. In

this case the baseline probability of transmission Pb (Equation 3.17), is  increased to

reflect the higher potential for local contact between herds managed on the same farm.

The influence of distance between the source herd and target herds is described by a

simple linear decay function (Equation 3.18). The closer a herd is to the source, the

greater the distance weight wd and hence the greater the probability of transmission pi

(Equation 3.17). 
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          pi = Pb  p(t)  wi  ws  wb  wx  wd  wn (3.17)
where
          pi = probability that the local contact results in an infection
          Pb = baseline probability that a local contact between farms results in infection
        p(t) = normalised infectious prevalence of the source herd at time t
          wi = infectivity weight of the source herd (Equation 3.11)
          ws = susceptibility weight of the destination herd (Equation 3.12)
          wb = biosecurity weight of the destination herd (depends on herd type)
          wx = seasonal weight (depends on herd type)        
          wd = distance weight (Equation 3.18)
          wn = detection weight (reflecting that local spread may organically dampen once
                   an outbreak has been declared due to an increased awareness of risk,
                   and decreased movements of people and vehicles)

          wd = 1 – (d / r) (3.18)
where
          wd = distance weight
          d = distance from the source herd to the destination herd
          r = local spread radius



When a susceptible herd becomes infected, an EBM is created and solved with initial

conditions based on the estimated number of exposed animals in the destination herd

and the size of the destination herd (Equations 3.19 to 3.22).

3.5.4  Airborne spread

Airborne spread is the infection of susceptible animals by virus conveyed on the wind.

Pigs pose the greatest threat for airborne spread because of their potential to excrete

large quantities of virus relative to other species (Donaldson and Alexandersen, 2002;

Alexandersen et al., 2003). The extent of a viral plume depends on the concentration

of virus in the source herd, weather conditions and the strain of virus (Donaldson et

al., 2001; Donaldson and Alexandersen, 2002; Gloster et al., 2006). 

The AADIS approach to airborne spread is similar to that taken by AusSpread (Garner

et al., 2006). The Australian Bureau of Meteorology records weather data at a range of

weather stations located across Australia (Australian Bureau of Meteorology,  2013).

These data are used to create  probabilities of the likelihood of airborne spread of

FMD per weather station, per month. The most favourable meteorological conditions

for airborne spread are: constant wind direction, wind speed of 5 metres/second, high

atmospheric  stability,  no  precipitation,  and  relative  humidity  greater  than  55%

(Donaldson et al., 2001). Only pig herds are considered capable of transmitting FMD

by airborne spread beyond the local spread area. (Aerosol transmissions within the

local spread area are captured by the local spread pathway). For each simulation day,

the  weather  station  closest  to  each  infected  pig  herd  is  queried  as  to  whether
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          Ed = n / Nd (3.19)
          Id = 0 (3.20)
          Rd = 0 (3.21)
          Sd = 1 – Ed (3.22)
where
          Ed = proportion of exposed animals in the destination herd
          Id = proportion of infectious animals in the destination herd
          Rd = proportion of recovered animals in the destination herd
          Sd = proportion of susceptible animals in the destination herd
          Nd = number of animals in the destination herd
          n = estimated number of exposed animals in destination herd



conditions are suitable for airborne spread.  For each pig herd that is deemed to be

shedding virus, a sector is constructed in the prevailing wind direction, subtended by a

configurable angle of default size 30o  (i.e., θ=15o on either side of the wind direction

vector) (Figure 3.11). 

The maximum extent  d of a plume depends on the number of infectious pigs in the

source  herd.  Equation  3.23 is  derived from data  from a  study by Donaldson and

colleagues  (2001),  that  relates  the  number  of  virus-shedding  pigs  to  the  distance

downwind that cattle and sheep are at risk. The data are based on the type O Pan Asia

strain of FMDV that caused the UK 2001 FMD outbreak. The coefficients A and B are

configurable and depend on the strain of virus being modelled. Topographical features

such as mountains, lakes and forests that might influence a plume are not considered.

Although there have been reports of FMD plumes travelling substantial distances in

ideal conditions over open water (Donaldson et al., 1982), the anticipated maximum

extent of a plume over land is in the vicinity of 10 to 20 km (Mikkelsen et al., 2003;

Gloster et al., 2006; Schley et al., 2009). The model constrains the maximum plume

distance to a configurable value M (with a default value of 20km).
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Figure 3.11. Airborne spread sector

          d = max(A eB log n, M) (3.23)
where 
          d = distance of the viral plume         
          n = the number of infectious pigs in the source herd
          A = 0.113 (configurable)
          B = 1.367 (configurable)
          M = maximum distance of the viral plume (configurable with default 20km)   



Susceptible herds within the airborne spread sector are identified,  excluding those

within the local spread area (Figure 3.11). The probability of transmission (Equation

3.24), takes into account the susceptible herd species, the size of the susceptible herd,

and the distance of the susceptible herd from the infected herd (Donaldson et  al.,

2001; Garner et al., 2006). 

The distance weight  wd represents the diffusion of a plume with distance from the

source  herds,  and  hence  the  diminishing  risk  of  transmission.  Distance  weight  is

configurable  as  having  either  linear  decay  (Equation  3.25),  or  exponential  decay

(Equation 3.26). The value of the exponential decay constant C is configurable, with a

default  value  of  -6.900776  (obtained  by  solving  Equation  3.27  for  a  weight  w

decaying over distance d).

The  pseudo-code  for  the  daily  processing  of  the  Airborne  Spread  component  is

presented in Figure 3.12.
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          wd = 1 – (h / d) (linear decay) (3.25)
          wd = e (C * d / h) (exponential decay) (3.26)
where
          wd = distance weight
          C = decay constant
          h = distance from the source herd to the destination herd
          d = extent of the viral plume (Equation 3.23)

dw
dd

=−C w                 (3.27)

          pi = [1 – (1 – Psp)n] wd (3.24)
where
          pi = probability that a susceptible herd will become infected
          Psp = probability that a single animal of the susceptible species will become
                   infected. The values are configurable with defaults cattle=0.03, sheep=0.003, 
                   pigs=0.00012 and smallholder herds=0.003 (Garner et al., 2006)
          n = size of the susceptible herd
          wd = distance weight (Equation 3.25 or Equation 3.26)



3.5.5  Saleyard spread

Markets and saleyards have the potential to greatly amplify an outbreak prior to the

disease  being  recognised  and  controls  implemented  (Gibbens  et  al.,  2001).  The

transmission of  disease is  facilitated by the stresses of  transit  and handling,  large

numbers  of  susceptible  animals,  and  the  mixing  and  partitioning  of  stock  into

consignments.  Further,  outgoing  consignments  can  potentially  carry  infection  to

widely dispersed locations (Durr et al., 2010).  The rapid escalation of the 2001 UK

FMD outbreak is attributed to the unwitting movement of infected sheep to and from

markets  (Ferguson et  al.,  2001;  Kao,  2002;  Mansley  et  al.,  2003;  Mansley  et  al.,

2011). A modelling study by Green and colleagues (2006) suggests that the number of

infected saleyards strongly influences the eventual outbreak size. 
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for (each infected pig herd) {
        retrieve the weather data for the current month from the nearest weather station;
        determine whether the pig herd is a potential source of airborne spread by sampling from
                a Binomial distribution of the probability of suitable weather conditions;
        if (weather conditions are conducive to airborne spread) {
                calculate the distance that a viral plume may reach from the infected herd (Equation 3.23);
                estimate the bearing that a viral plume may have from the infected herd (Figure 3.11) by 
                        sampling from a Beta-PERT distribution of likely bearings for the current month;
                for (each susceptible herd within the airborne spread sector) {
                        calculate the distance from the infected herd;
                        if (the susceptible herd lies within the plume distance) {
                                calculate the bearing from the infected herd;
                                if (the susceptible herd lies within the plume bearing +/- configurable tolerance) {
                                        calculate the probability pi that transmission occurs (Equation 3.24);
                                        determine whether the destination herd becomes infected by sampling 
                                                from a Binomial distribution of the probability of infection pi;
                                        if (infection occurs) {
                                                determine n = the number of animals infected in the dest herd by
                                                        sampling from a Beta-PERT distribution of the likely number
                                                        of infections; 
                                                transmit infection from the source herd to the destination herd with
                                                        initial infection conditions per Equations 3.19 to 3.22;
                                        }
                                }
                        }
                }

        }

}

Figure 3.12. Daily processing for the airborne spread pathway



Selling animals through saleyards is an important feature of livestock production in

Australia,  especially  for  cattle  and  sheep  (Hassall  and  Associates,  2007).  AADIS

saleyard spread is driven by simulated sales of livestock at individual saleyards. The

type, frequency and timing of sale events are derived from industry reports (Hassall

and Associates, 2007; Durr et al., 2010) and are thus realistic. If a sale happens to

involve an infected herd, then a series of stochastic decisions are made to determine

the  number  of  outgoing infected  consignments,  the  consignment  destination  types

(herd, feedlot or abattoir),  and destination locations. Infection is transmitted to the

destination herds with a force relative to the viral load in the consignment. 

The  pseudo-code  for  the  daily  processing  of  the  Saleyard  Spread  component  is

presented in Figure 3.13. The vendor 85% catchment is the area relative to a saleyard

(in terms of distance and direction), in which 85% of vendor herds are located. The

vendor 100% catchment is the area relative to a saleyard (in terms of distance), in

which 100% of vendor herds are located. The buyer catchment is the area relative to a

saleyard  (in  terms  of  distance  and  direction),  in  which  100% of  buyer  herds  are

located.
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AADIS also provides a simplified means of simulating saleyard spread when there is

insufficient  saleyard  or  sale  data  to  explicitly  represent  individual  sales.  The

simplified module is part of the direct spread pathway (Section 3.5.1), and takes into

account the frequency and destination of consignments leaving different herd types.

On any given day the likelihood that an infected herd sends animals to a saleyard is

determined stochastically. Each infected consignment to a saleyard generates multiple

infected outgoing consignments based on Beta-PERT distributions.  This takes into

account disease spread that may occur at  the saleyard as well  as the splitting and

mixing of incoming consignments containing infected animals. 
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retrieve the set of sales scheduled for the current day;
for (each sale) {
        search for potential vendors in the vendor 85% catchment area;
        if (insufficient vendors were found) {
                search for potential vendors in the vendor 100% catchment area;
        }

        for (each potential vendor, up until the maximum potential vendors for the current sale) {
                if (the vendor is infected) {
                        determine if the potential vendor contributes animals to the sale by sampling from a 
                                binomial distribution based on total number of vendors in the catchment area;
                        if (the vendor contributes animals to the sale) {
                                determine the destination premises type by sampling from a cumulative
                                        probability distribution of the likely destination type (abattoir, farm,
                                        feedlot) for the sale;
                                if (the destination premises type is farm or feedlot) {
                                        determine the number of outgoing consignments for the sale by 
                                                sampling from a Beta-PERT distribution of the likely number 
                                                for the source herd type;
                                        for (each outgoing consignment) {
                                                randomly choose a buyer in the buyer catchment area;
                                                transmit infection from the consignment to the destination herd using
                                                        initial SEIR proportions from the vendor herd;
                                        }
                                }        
                        }                      
                }
        }
}

Figure 3.13. Daily processing for the saleyard spread pathway



3.6  Disease control and eradication

AADIS has been designed to incorporate the range of control measures defined in

Australia's FMD strategy AUSVETPLAN (Animal Health Australia, 2014a; Section

2.3). The ABM models the control and eradication of disease in farms through the

following components:

• First IP detection – detection and reporting of the index case,

• Movement  Restrictions  –  establishment  of  the  national  livestock standstill,

quarantine and controlled areas,

• Surveillance – inspection of DCPs, SPs, TPs and ARPs close to IPs in order to

identify infection, 

• Tracing  –  identification  of  potentially  infectious  movements  on  and  off

infected premises of interest,

• SP Reporting  –  adhoc  reporting  of  suspicious  clinical  signs  by  owners  or

inspectors,

• IP Operations – depopulation of infected premises, disposal of carcasses and

decontamination of premises,

• Vaccination – suppressive vaccination of susceptible animals in infected areas

or protective vaccination of susceptible animals in non-infected areas,

• Resources – dynamic allocation of surveillance, culling, disposal, disinfection

and vaccination teams on a per jurisdiction basis.

Each control measure component has an independent algorithm that determines on

any given simulation day whether or not a control or eradication action is required.

The pseudo-code provided in this section conveys the high-level logic for each control

measure component of the ABM environment.

3.6.1  First IP detection

The control and eradication phase of an outbreak commences after the declaration of

the first infected premises. First IP detection is the means by which AADIS transitions
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from the 'silent spread' of disease to the control phase. There are two modes of first IP

detection: fixed and passive. Fixed first IP detection is pre-set to occur on a fixed day

at a specific or randomly selected farm. Passive first IP detection uses pre-configured

probabilities  of  reporting  by  herd  type,  and  clinical  prevalence  to  stochastically

determine  the  first  day  of  the  detection.  Daily  processing  for  first  IP  detection

(Figures 3.14 and 3.15), only occurs up until the first IP has been detected.

3.6.1.1  Fixed detection

Fixed first IP detection occurs on a configured simulation day. This option is useful

when comparing alternate control strategies. The detected herd can be: 

• specified by ID,

• chosen randomly from all clinically prevalent herds, or 

• chosen randomly from a prioritised set of clinically prevalent herds based on

species.

Fixed first IP detection is configured via the model configuration file (Appendix D).
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3.6.1.2  Passive Detection

Passive first IP detection comprises two stochastic processes: detection and reporting.

Detection is defined as inspecting stock (on a farm, at a saleyard or in an abattoir),

noticing  clinical  signs  and  consulting  a  veterinarian.  An  infected  herd  is  only  a

candidate for detection if it meets the minimum clinical prevalence level configured

for the herd type.  Reporting is defined as a veterinarian suspecting FMD, sending

samples to a lab, FMD being confirmed and the Chief Veterinary Officer (CVO) being

notified.  The  detection  and  reporting  probabilities  are  defined  per  herd  type,  per
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if (the fixed detection day has been reached and fixed detection has not yet occurred) {
        if (fixed detection is via herd ID) {        
                if (the configured herd is or was infected) {
                        set the herd's farm classification to IP;
                } else {
                        display an error message;
                }
        } else if (fixed detection is via species) {
                build a prioritised herd type list per the configured species priorities;
                while (a target herd has not yet been selected) {
                        for (each herd type) {
                                if (there are clinically prevalent herds of the desired type) {
                                        randomly select a target herd;
                                        break;
                                }
                        }
                }
                if (a target herd has not yet been selected) {
                        randomly select a target herd from the set of clinically prevalent herds;
                }
                if (a target herd has not yet been selected) {
                        randomly select a target herd from the set of recovered herds;
                }
                if (a target herd was not selected) {
                        display an error message;
                }
        } else {
                randomly select a target herd from the set of clinically prevalent herds;
                if (a target herd has not yet been selected) {
                        randomly select a target herd from the set of recovered herds;
                }
                if (a target herd was not selected) {
                        display an error message;
                }
        }
}        

Figure 3.14. Daily processing for fixed first IP detection



premises type, in the Passive Reporting database table (Appendices B and C). There is

a  configurable  lag  (in  days),  between  the  start  of  the  reporting  phase  and  the

declaration of the premises as an IP. The confirmation lags are defined in the model

configuration file (Appendix D).

3.6.2  Movement restrictions

A national livestock standstill (minimum of three days), is implemented immediately

following detection of the first IP (Animal Health Australia, 2014a). AADIS models

livestock standstill by throttling the direct and saleyard spread pathways. The level of

restriction depends on standstill status, type of control area, and the spread pathway

being throttled.  A compliance percentage for each pathway is defined in the AADIS

configuration  data  to  allow  for  the  possibility  of  illegal  movements  during  the

standstill. The AADIS configuration data defines the length of the national standstill

by  jurisdiction.  This  reflects  how individual  jurisdictions  may  extend  a  standstill

beyond the initial three-day national period. 
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if (passive detection has not yet occurred) {
        while (not all of the premises types (farms, saleyards, abattoirs) have been checked) {
                randomly choose one of the premises types;
                // NB: detection at an abattoir or saleyard is conditional on animals from an infected
                // herd having being sent there, whereas detection on a farm is a simple daily probability.
                assemble the set of candidate herds exhibiting the minimum clinical prevalence;
                shuffle the set of candidate herds;
                for (each candidate herd) {
                        look up the probability of detection for the herd type in the database;
                        decide if detection occurs by sampling from a binomial distribution; 
                         if (clinical signs are detected){
                                look up the probability of reporting for herd type in the database;
                                decide if reporting occurs by sampling a binomial distribution;
                        if (the case is reported) {
                                look up the confirmation lag in the model configuration file;
                                confirmation day = today + a configurable confirmation lag;
                                schedule the transition of the herd's farm to IP;
                        }
                }
        }
}

Figure 3.15. Daily processing for passive first IP detection



Controlled areas are established around each infected premises in order to restrict the

movement of livestock, products and other material. The controlled areas are defined

and enforced per-jurisdiction, and may be designated areas (e.g., local government,

state/territory),  or  radius-based  around  each  IP.  There  are  two  levels  of  control:

Restricted Areas (RAs) that immediately enclose IPs, and Control Areas (CAs) that

enclose RAs. RAs have the highest level of control while CAs have a lower level of

control (Animal Health Australia, 2014a). AADIS models the imposition of controlled

areas in a staged manner.

When IPs are clustered a meta-RA and meta-CA are formed from the union of the

constituent  RAs  and  CAs  (Figure  3.16).  Premises  inside  an  RA and  not  already

classified as an IP, DCP, SP or TP, are designated as ARPs. Premises inside a CA (but

outside an RA), and not already classified as an IP, DCP, SP or TP, are designated as

PORs (Section 2.3). Spread pathway throttling is described in Figure 3.17. Although

the throttling rates are user configurable via the Movement Restrictions database table

(Appendices B and C), specific values are used to assist readability. 
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Figure 3.16. Controlled areas enclosing IPs

Larger  controlled  areas  are

enforced  at  the  start  of  an

outbreak.  As  the  control

program  progresses,  the

dimensions of the controlled

areas are reduced according

to  configured  preferences.

Radius-based  controlled

areas  are  clipped  to  fall

within  the  jurisdictional

boundaries of the subject IP. 



The Movement Restrictions component is responsible for:

• declaration of the start/end of the national livestock standstill,

• declaration and maintenance of RAs and CAs,

• designation of premises as ARPs and PORs,

• enabling/disabling of movement restrictions.

The pseudo-code for the daily processing of the Movement Restrictions component is

provided in Figure 3.18.
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if (jurisdiction has controlled areas) {
if (RA) {

throttle direct spread pathway by 98%;
throttle indirect spread pathway by 85%;
throttle saleyard spread pathway by 100%;

} else if (CA) {
throttle direct spread pathway by 98%;
throttle indirect spread pathway by 50%;
throttle saleyard spread pathway by 100%;

} else { // OA
if (SP or TP or DCP or VP) {

throttle direct spread pathway by 98%;
throttle indirect spread pathway by 50%;
throttle saleyard spread pathway by 100%;

} else if (standstill in effect) {
throttle direct spread pathway by 98%;
throttle indirect spread pathway by 0%;
throttle saleyard spread pathway by 100%;

}
}

} else { // non-infected jurisdiction
if (SP or TP or DCP or VP) {

throttle direct spread pathway by 98%;
throttle indirect spread pathway by 50%;
throttle saleyard spread pathway by 100%;

} else if standstill in effect {
throttle direct spread pathway by 98%;
throttle indirect spread pathway by 0%;
throttle saleyard spread pathway by 100%;

}
}

Figure 3.17. Spread pathway throttling



When IP operations  have  completed  on  an  IP it  transitions  to  an  RP.  Movement

restrictions are retained for an RP for a  configurable period defined in  the model

configuration file (Appendix D).

3.6.3  Surveillance

Surveillance  is  the  process  by  which  new  infections  are  identified  and  declared.

During an FMD outbreak, surveillance is used to detect new outbreaks, define the

extent  of  infection,  and  demonstrate  freedom in  uninfected  areas  (Animal  Health

Australia, 2014a).  The Surveillance component carries out visits to DCPs, SPs, TPs

and local ARPs. An ARP is local when it is within a configurable distance of an IP

(per the model configuration file). The process is labour intensive and is typically

limited  by  the  available  resources  –  especially  during  an  extensive  outbreak.

Resources  in  demand  may  include  veterinarians,  assistants,  laboratories  and

laboratory staff.
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for (each declared IP) {
if (this is the first declared IP) {

declare national standstill with duration per database table;
initiate movement restrictions per database table;

}
create/update RAs around each IP per database table;
create/update CAs around each RA per database table;
assign all non-declared premises inside RAs as ARPs;
assign all non-declared premises outside RAs and inside CAs as PORs;
if (national standstill has expired) then {

flag end of national standstill;
lift movement restrictions for non-infected jurisdictions per database table;
// note that individual jurisdictions may continue a standstill beyond this point

}
}
for (each declared RP) {

if (movement restrictions are due to be lifted per the configurable 'RP lifting delay') {
remove the RA/CA enclosing the RP;

}
}

Figure 3.18. Daily processing for movement restrictions



Premises that require surveillance are identified through tracing, reporting of suspect

premises,  and  active  inspection  of  premises  within  RAs.  Surveillance  visits  are

prioritised according to risk (Animal Health Australia, 2014a). In AADIS, the priority

of a visit is determined by the premises classification and the declared area, and is

defined in the Surveillance database table  (Appendices B and C). The priority can

change dynamically if the status of a premises changes or a pending visit reaches an

overdue  threshold  (defined  in  the  model  configuration  file).  AADIS  maintains

resource-constrained prioritised queues of premises awaiting a surveillance visit. If

multiple premises have the same priority,  then arbitration is based on how long a

premises has been waiting for a visit. The visit duration (based on herd type), visit

frequency (based on priority),  and overall  surveillance  period  are  configurable.  If

laboratory samples are required then the result of the surveillance visit is delayed by a

configurable period.

AADIS also models the active inspection of premises within RAs. All farms within a

designated distance of IPs are subject to a configurable inspection schedule (number

and  frequency  of  inspections).  The  pseudo-code  for  the  daily  processing  of  the

Surveillance component is provided in Figure 3.19.
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for (each surveillance visit currently in progress) { // check for completion
        if (the visit is due to complete today) {
                if (the clinical prevalence of any herd meets the configurable minimum OR any herd
                        has been infected for at the least the configurable minimum days) {
                        set the premises classification to IP;
                } else {
                        if (the subject premises is an SP or DCP) {
                                assign premises as ARP/POR/UP per its declared area;
                        } else if (the subject premises is a TP) {
                                if (today is still within the configurable surveillance period) {
                                        schedule the next surveillance visit;
                                } else {
                                        assign premises as ARP/POR/UP per declared area;
                                }
                         }
                }
                return the surveillance team to the resource pool;
        }
}

for (each premises queued for a surveillance visit) { // perform queue housekeeping
        if (the premises is now an IP, POR, UP, RP, VP or non-local ARP) {
                remove the premises from the pending list;
        } else if (the premises' current priority has changed) {
                update the premises current priority (and thus where it is in the queue);
        } else if (the premises has been waiting longer than the configurable threshhold) {
                if (the premises is a DCP, SP or TP) {
                        increase the premises current priority (and thus where it is in the queue);
                } else if (the premises is an ARP) {
                        remove the premises from the pending list;
                }
        }
}

for (each DCP, SP, TP and local ARP) { // check if surveillance is required
        if (the premises is not already under surveillance and not undergoing IP operations) {
                determine the visit priority and frequency per the configuration data;
                schedule a surveillance visit (by adding the premises to the pending queue); 
        }
}

while (there are pending visits queued AND a surveillance team is available) { // start visits
        retrieve the highest priority pending visit from the queue;
        request a surveillance team from the resource pool;
        calculate the visit completion date per configuration data;
        update the premises surveillance status as 'visit in progress';
}

Figure 3.19. Daily processing for surveillance



3.6.4  Tracing

Tracing is the process of identifying movements on to and off IPs in order to ascertain

where infection may have come from, or gone to (Durr et al., 2010). AUSVETPLAN

provides minimum periods over which tracing should be carried out (Animal Health

Australia,  2014a).  Tracing  includes  animals,  products,  equipment,  vehicles  and

people. Traced premises may be true cases (and thus infected), or false (not infected).

AADIS  can  readily  identify  true  traces  by  following  infection  chains  during  a

simulation,  allowing  for  variable  tracing  effectiveness  by  herd  type  and  pathway

(direct contact versus indirect contact), and tracing duration. False forward traces are

obtained by applying the direct and indirect spread pathways to a premises of interest

within the forward tracing window. False backward traces are obtained by reversing

the  direct  and indirect  spread  pathways  over  the  backwards  tracing  window (i.e.,

modelling movements on to the premises of interest). This approach results in a set of

plausible false traces, i.e.,  premises of a suitable type and location that could well

have been sources or destinations of movements of concern. TPs that are considered

to  represent  a  high  risk  of  having  become infected  are  designated  as  DCPs,  and

depending  on  the  control  policy  may  be  pre-emptively  culled  or  put  under

surveillance (Section 3.6.3).

The pseudo-code for the daily processing of the Tracing component is provided in

Figure 3.20.
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for (each IP, DCP and RP) {
if (the subject premises has not already been traced) {

determine the trace duration in days (Beta-PERT distribution based on species);
determine the trace effectiveness (binomial distribution based on species);
// conduct true backwards tracing
if (infection was via the direct/indirect spread pathways AND 

the 'movement on' occurred inside the backwards tracing window AND
the trace was effective) {
set the classification of the source premises to true TP;

} 

// conduct true forwards tracing
if (the subject premises infected other premises via the direct/indirect pathways

AND the 'movement off' occurred inside the forwards tracing window
AND the trace was effective) {
set the classification of the destination premises to true TP;

}

// conduct false backwards tracing
while (number of trace days < backwards tracing window)) {

stochastically decide if the subject premises received a movement;
if (a movement occurred) then {

stochastically choose a source herd type, source region and 
movement distance;

find all candidate source herds within the chosen distance;
stochastically choose a source herd from the candidate herds;
flag the source premises as a false TP;
set the source premises as the new subject premises;

}
number trace days++;

}

// conduct false forwards tracing
                            reset number of trace days;

while (number of trace days < forwards tracing window)) {
stochastically decide if the subject premises initiated a movement;
if (a movement occurred) then {

stochastically choose a destination herd type, destination region
and movement distance;

find all candidate destination herds within the chosen distance;
stochastically choose a destination herd from the candidate herds;
flag the destination premises as a false TP;
set the destination premises as the new subject premises;

}
number trace days++;

}
}

}

Figure 3.20. Daily processing for tracing 



3.6.5  SP reporting

AADIS models  the  ad  hoc  reporting  of  suspect  cases  by  owners,  inspectors  and

others. This represents one of the most important mechanisms for identifying new IPs

(McLaws et al., 2007). AADIS commences suspect case reporting the day after the

first IP has been declared and allows for both true positive and false positive reports.

True  reports  are  generated  stochastically  based  on  an  infected  herd's  clinical

prevalence, the probability of reporting and the expected time to report. The latter two

parameters are defined per herd-type in the SP Reporting database table (Appendices

B and C). False reports pertain to herds that are showing clinical signs but are not

actually infected with FMD. The number of false reports generated is proportional to

an n-day (default 3), moving average number of true reports. The ratio of false to true

reports  is  defined  in  the  model  configuration  file  with  a  default  value  of  2.34

(McLaws et al., 2007). False reports are assigned to random non-infected herds. The

location mix of the false reports is user configurable, for example, 60% in RAs, 30%

in CAs and 10% in the OA.

The modelling of both true and false reports allows for more realistic modelling of

surveillance.  It  reflects  how team resources are consumed regardless of whether a

surveillance visit yields a positive assessment or not. 

The pseudo-code for the daily processing of the SP Reporting component is provided

in Figure 3.21.
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3.6.6  IP operations

IP Operations  is  comprised  of  the  valuation,  destruction  and  disposal  of  animals

(stamping out), and decontamination of premises. Stamping out is Australia's default

initial policy for controlling an outbreak of FMD (Animal Health Australia, 2014a). It

is  considered  the  fastest  way  to  reduce  viral  excretions  on  IPs  and  thus  dampen

spread. Stamping out is implemented on all IPs, and potentially on DCPs, subject to

risk assessment. 

Premises  undergoing  IP  Operations  transition  through  the  following  states:  cull

pending,  cull  in  progress,  disposal  pending,  disposal  in  progress,  decontamination

pending, decontamination in progress, and resolved. Each jurisdiction has separate

pools of teams for culling, disposal and decontamination. When a pool is exhausted
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if (control has commenced) {
        assemble and shuffle the set of candidate herds with clinical prevalence > 0;
        for (each candidate herd) {
                // conduct true SP processing
                if ((the herd is not on an SP, IP or DCP) and (the herd is not undergoing  
                        vaccination or IP operations)) {
                        lookup min, mode and max 'days taken to report' for herd type in db table;
                        calculate reporting probability by sampling a triangular distribution;
                        lookup reporting proportion for herd type in the db table;
                        decide if reporting occurs by sampling a binomial distribution;   
                        if (the case was reported) {
                                set the herd's farm classification to true SP;
                        }
                }
        }
        // conduct false SP processing
        calculate the n-day moving average number of true SPs per configuration data;
        calculate today's expected number of false reports per configuration data;
        calculate today's actual number of false reports by sampling from a Poisson distribution;
        apportion the false reports to RA/CA/OA per configuration data;
        assemble candidate ARPs that are not undergoing vaccination or IP operations;
        randomly assign the required number of RA-located false SPs; 
        assemble candidate PORs that are not undergoing vaccination or IP operations;
        randomly assign the required number of CA-located false SPs;
        assemble candidate UPs that are not undergoing vaccination or IP operations;
        randomly assign the required number of OA-located false SPs;
}

Figure 3.21. Daily processing for SP reporting 



(i.e., all of the teams are on assignment), pending jobs are held in a queue. Visits to

premises are prioritised based on premises classification, herd/species priority, herd

size,  time in queue,  and proximity to  an IP.  The times required for a premises to

undergo culling, disposal and decontamination are defined by herd type in the Herd

Type database table (Appendices B and C). The decision on whether to conduct pre-

emptive culling of DCPs and/or premises contiguous to IPs is defined per jurisdiction

in the IP Operations database table (Appendices B and C). 

The pseudo-code for the daily processing of the IP Operations component is provided

in Figure 3.22.
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for (each IP Ops job currently in progress) { // check for completion
        if (the job is due to complete today) {
                if (the job is a cull) {
                        add the premises to the pending disposal queue;
                } else if (the job is a disposal) {
                        add the premises to the pending disinfection queue;
                } else if (the job is a disinfection) {
                        transition the premises classification to RP;
                }
                return the IP Ops team to the resource pool;
        }
}
for (each IP) { // check if IP operations is required
        if (IP Ops is configured for all IPs AND the IP is not already undergoing IP Ops) {
                add the premises to the pending culling queue;
                if (IP Ops is configured for adjacent premises) {
                        assemble the set of premises within the configured radius of the IP;
                        for (each adjacent premises) {
                                if (the premises is not already undergoing IP Ops) {
                                        add the premises to the pending culling queue;
                                }
                        }
                }
                if (IP Ops is configured for local SPs) {
                        assemble the set of SPs within the configured radius of the IP;
                        for (each local SP) {
                                if (the premises is not already undergoing IP Ops) {
                                        add the premises to the pending culling queue;
                                }
                        }
                }
        }
}
if (IP Ops is configured for DCPs) {
        for (each DCP) {
                if (the premises is not already undergoing IP Ops) {
                        add the premises to the pending culling queue;
                }
        }

}                
while (there are pending jobs queued AND an IP Ops team is available) { // start new jobs
        retrieve the highest priority job from the queue;
        request an IP Ops team from the resource pool;
        calculate the job completion day per configuration data;
        update the premises IP Ops status as 'job in progress';
}

Figure 3.22. Daily processing for IP operations 



3.6.7  Vaccination

Vaccination  is  one  of  the  available  options  to  support  stamping  out  of  an  FMD

outbreak (Bouma et al., 2003; Backer et al., 2012a; Roche et al., 2014; Roche et al.,

2015).  The decision  to  vaccinate  and the  specific  role  of  vaccination in  an FMD

response varies according to the outbreak scenario (Animal Health Australia, 2014a).

Vaccination strategies include:

• Suppressive – vaccination is carried out inside known infected areas (RAs) in

order  to  suppress  virus  production  in  at-risk  and  exposed  herds  to  reduce

further spread. 

• Protective – vaccination is carried out outside known infected areas in order to

protect susceptible animals from infection.

• Mass – vaccination is  carried out  across  a  broad area to  large numbers  of

animals. This strategy can be applied if an outbreak is not under control and

there is a risk of spread escalating.

AADIS  provides  two  triggers  for  commencing  a  vaccination  program:  on  a

configurable day into the control program, or once a configurable number of IPs has

been declared. AADIS models all vaccination policies with an annulus of configurable

inner  and  outer  radii.  The  inner  radius  is  set  to  zero  for  suppressive  and  mass

vaccination. A vaccination annulus is established around each target IP, and eligible

premises inside the annulus are scheduled for vaccination. The user can select to only

vaccinate around IPs found on or after the day the vaccination program begins, or

around all new and previously identified IPs. The vaccination candidates inside each

annulus can be prioritised according to herd type,  herd size,  and proximity to the

nearest  IP.  It  is  also  possible  to  omit  certain  herd  types  from  vaccination.  The

direction of vaccination is configurable from the outside in, or from the inside out.

The  effect  of  vaccination  is  to  increase  herd  immunity  (i.e.,  reduce  a  herd’s

susceptibility to infection) over time. When a partially immune herd is exposed to
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infection, the virus production profile generated by the EBM reflects that some of the

animals  have  protective  immunity.  Figure  3.23  illustrates  how a  fully  susceptible

herd's immunity level increases from 0% to 100% over a configurable number of days

(default 6), after vaccination is completed.

As  with  surveillance  and  IP  operations,  the  ability  to  implement  a  vaccination

program  depends  on  the  availability  of  resources  (vaccination  teams).  Each

jurisdiction has a separate pool of vaccination teams. When a pool is exhausted (i.e.,

all  of  the  teams  are  on  assignment),  pending  jobs  are  held  in  a  queue.  Visits  to

premises  can  be  prioritised according to  herd type,  herd size,  time in queue,  and

proximity to an IP. The time required for a premises to undergo vaccination is defined

by herd type in the AADIS configuration data.

The pseudo-code for the daily processing of the Vaccination component is provided in

Figure 3.24.
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Figure 3.23. Herd attaining immunity over time



3.6.8  Resources

The resources required to manage an emergency animal  disease outbreak include:

personnel  (including  veterinarians,  animal  health  officers,  control  centre  staff  and

security staff); equipment (including vehicles and pen-side diagnostic tests); facilities

(including laboratories, rendering plants and landfill/burial  sites); and consumables

(including vaccine and disinfectant). Some aspects of disease control and eradication
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if (the control program has commenced and the vaccination program has not yet commenced) {
        if (vaccination is configured to start by control day) {
                if (today is greater than or equal to the first IP detection day + 
                        the configured vaccination start day) {
                        flag the commencement of the vaccination program;
                } 
        } else if (vaccination is configured to start by IP count) {
                if (the cumulative number of IPs is greater than or equal to the configured
                        vaccination start IP count) {
                        flag the commencement of the vaccination program;
                } 
        }
}
if (the vaccination program has commenced) {
        for (each vaccination visit currently in progress) { // check for completion
                if (the visit is due to complete today) {
                        set the premises vaccination state to vaccinated but not immune;
                        return the vaccination team to the resource pool;
                }
        }
        for (each IP) { // check if vaccination is triggered
                if (vaccination is configured for all IPs OR (vaccination is configured for new
                        IPs only AND the IP was declared on or after the start of the vaccination
                        program) AND the IP has not already triggered a vaccination) {
                        determine the vaccination annulus dimensions per database configuration data;
                        find all candidate ARPs, PORs and UPs inside the annulus that are in the
                                same jurisdiction as the IP AND are not already undergoing 
                                vaccination AND are not undergoing IP operations;
                        schedule vacc visits (by adding candidate premises to pending queue);
                }
        }
        while (there are pending visits queued AND a vacc team is available) { // start visits
                retrieve the highest priority pending visit from the queue;
                request a vaccination team from the resource pool;
                calculate the visit completion date per configuration data;
                update the premises vaccination status as 'visit in progress';
        }
}

Figure 3.24. Daily processing for vaccination 



are resource-intensive and shortfalls can severely hamper the response to an outbreak

(Bourn, 2002; Anderson, 2002;  Matthews, 2011; Garner et al.,  2014;  Roche et al.,

2014). During the UK 2001 FMD control program, the backlog of animals awaiting

culling peaked at 622,000 and the backlog of carcasses awaiting disposal peaked at

over 230,000 (Anderson, 2002).

AADIS models the personnel resources required for the key operational activities of

surveillance, culling, disposal, decontamination and vaccination. As state and territory

governments are responsible for their  own emergency animal disease management

(Animal Health Australia, 2014a), the teams are organised into pools by jurisdiction

(i.e., each jurisdiction has five pools). It is anticipated that resource levels ramp up

over time, so initially the pools are small and increase in a linear manner up to a

maximum size  (Figure  3.25).  The  initial  pool  size,  duration  of  the  ramp-up,  and

maximum pool size are defined in the Resources database table  (Appendices B and

C), by resource type and by jurisdiction. 

AADIS  tracks  the  availability  and  allocation  of  resources  to  provide  immediate

feedback as to whether/where the control program is resource constrained. Resource

backlogs are recorded (Appendix E), and this allows the resource requirements for a

particular scenario to emerge as a modelling outcome (as opposed to a pure top-down
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Figure 3.25. Dynamic allocation of resources



approach that prescribes resourcing levels ahead of time).  The pseudo-code for the

daily processing of the Resources component is provided in Figure 3.26.

3.7  Summary

This chapter first reviewed the three options for the modelling unit of interest for an

FMD model of national-scale: the animal, the herd and the farm. AADIS takes the

novel approach of modelling the spread of disease on a per-herd basis and the control

and eradication of disease on a per-farm basis. The Australian population of over 107

million FMD-susceptible livestock was then characterised into  235,668 herds of ten

types, located on 202,775 farms.

The  AADIS  hybrid  architecture  was  presented  whereby  each  herd  agent  has  an

embedded  mass-action  EBM  that  deterministically  models  the  spread  of  disease

within the herd. The EBM is specialised for the herd type, herd size and strain of

FMD, and generates infected, infectious and clinical prevalence predictions over time.

The  herd  agents  participate  in  an  ABM  that  stochastically  models  the  spread  of

disease  between  herds,  and  the  control  and  eradication  of  disease  on  farms.  The
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while (the current simulation day is in progress) {
        if (a component requests a team) {
                if (a team is available for the requested jurisdiction) {
                        decrement the number of available teams in the applicable pool;
                        advise the component that a team has been dispatched;
                } else
                         advise the component that no teams are available;
                }
        }
        if (a component releases a team) {
                increment the number of available teams in the applicable pool;
        }
}
for (each jurisdiction) {
        update the pool sizes per the ramping algorithm;
}

Figure 3.26. Daily processing for resources 



epidemiology,  algorithms  and  formulae  for  each  of  the  ABM spread  and  control

components were described.

This chapter illustrated the complexities involved in modelling the spread and control

of FMD in Australia on a national scale. One of the aims of the project is the ability to

conduct  complex  national-scale  simulations  on  a  standard  desktop  computer.

Compounding this  challenge  is  the  need for  a  stochastic  model  to  re-run a  given

scenario  hundreds,  if  not  thousands  of  times  to  allow  outcome  distributions  to

stabilise.  The  next  chapter  presents  highlights  of  the  software  design  and

implementation that has made this possible. 
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4  SOFTWARE DESIGN AND IMPLEMENTATION

Chapter 3 described the extensive functionality required for a model to support FMD

policy and planning.  An Australian national model of livestock disease spread and

control  must  handle  a  population  of  over  100  million  animals  spread  across

approximately  236,000  herds.  It  has  to  capture  heterogeneities  of  species,

environment,  region, production systems and marketing systems that  influence the

spread of FMD, and provide highly configurable disease management  and control

measures,  taking  into  account  jurisdictional  heterogeneities  in  both  policy

implementation and resourcing. Further, the model must be computationally efficient

such that it is feasible to run a given scenario perhaps thousands of times on a desktop

computer. The NetLogo, Repast and Mason modelling frameworks (Section 2.4.2.5),

were reviewed at the commencement of the PhD project. At that point in time they

were not capable of supporting a model that potentially had over 100 million discrete

agents. It was decided that a high level of control would likely be needed over the

model  architecture,  software  architecture  and  implementation.  As  such,  a  custom

development  was  undertaken  in  lieu  of  employing  an  off-the-shelf  agent-based

modelling framework.

AADIS is written in Java (Oracle, 2015) and runs under either Linux™ or Windows™.

AADIS employs open-source products such as  SQL Power Architect (SQL Power

Group, 2015), PostgreSQL (PostgreSQL, 2015), Log4j (Apache, 2012) and OpenMap

(BBN, 2015). Natively compiled languages with low-level memory management such

as C and C++ are popular language choices for applications that are computationally

intense  and/or  have  real-time  processing  requirements.  Although  AADIS  is

computationally  intense,  it  does  not  have  real-time  processing  requirements.  Java

offers platform-independence courtesy of the Java Virtual Machine (JVM) and a rich

collection of utility libraries. The delegation of low-level memory management to the

JVM results  in a development environment that is 'safer'  from subtle bugs arising
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from memory mismanagement.  Parker  and Epstein (2011) describe how the Java-

based GSAM pandemic model scales up to 6.5 billion agents distributed across a 32-

node HPC cluster.

This chapter provides an overview of the static architecture, dynamic architecture and

implementation highlights. AADIS is a substantial piece of software, comprising over

28,000  lines  of  code  across  271  classes.  As  such,  only  the  key  design  and

implementation themes are presented. 

4.1  Agent-based model

At the heart  of the AADIS architecture is  a custom ABM comprising lightweight

agents  and  an  active  concurrent  environment.  Each  spread  pathway  and  control

measure is a component of the ABM environment.

4.1.1  Active ABM environment

An ABM is comprised of autonomous agents that interact with each other, and with

the environment. The relative complexity of the agents and the environment depends

on  the  modelling  domain.  An  ABM  environment  can  be  as  simple  as  a  two-

dimensional lattice or as complex as a nation. An agent can be as simple as a cell, or

as complex as the resident of a large city. A livestock epidemic exists in a complex,

heterogeneous  and  irregular  environment  (with  respect  to  climate,  geography,

biosecurity  levels  on  individual  farms,  production  systems,  market  systems,  and

jurisdiction-dependent disease control policies and resourcing).  In a similar spirit to

Claude Bernard's counter to Louis Pasteur's germ theory, that the 'pathogen is nothing,

the terrain is everything' (Longmore et al., 2014), an agent outside the context of an

environment  is  'effectively  useless'  (Odell  et  al.,  2003).  If  you  'remove'  the

environment from an outbreak you are left with a disconnected meta-population of

susceptible  herds  that  will  never  interact  with  virus  carrying  animals,  plumes  or

fomites, and thus never become infected. The importance of the outbreak environment

is  reflected in  the AADIS design  priority  of  a  detailed  ABM environment  that  is
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spatial,  stochastic,  active  and  concurrent,  and herd  agents  that  are  simplified  and

lightweight. 

At  the  start  of  a  simulation  day  the  environment  components  independently  and

concurrently proceed with their daily processing, making various stochastic decisions

on  the  spread  and  control  of  disease  amongst  the  herd  population.  During  the

simulation day all data accesses to the cohort of herd agents are read-only. As each

component finishes its daily processing a set of herd/farm update requests are sent

asynchronously to the ABM ‘scheduler’ where they are queued. When all updates for

the day have been received, they are collated and submitted to the cohort of herd

agents.  If,  for  example,  a  herd  agent  receives  a  vaccination  message  it  reacts  by

resolving  its  EBM  ODE  system  which  yields  updated  predictions  for  infected,

infectious and clinical prevalence. Once all the queued herd/farm updates have been

processed the new herd/farm reality is released back into the environment for the start

of the next simulation day. 

4.1.2  Component coordination via the blackboard pattern

As the environment components are independent and concurrent it is inevitable that at

some  stage  one  or  more  components  will  send  update  messages  for  the  same

herd/farm. It is the job of the ABM scheduler to arbitrate in this case and choose a

particular  update  to  succeed.  The  arbitration  may  be  random  or  rule-based.  For

example, if the direct and indirect spread pathways both attempt to infect the same

herd on the same day then the scheduler randomly selects one pathway to succeed. On

the  other  hand,  if  for  example,  the IP Operations  component  and the Vaccination

component both attempt to control the same farm on the same day, then the scheduler

always  gives  priority  to  IP  Operations.  There  are  parallels  between  the  ABM

architecture and the blackboard design pattern that is sometimes employed in artificial

intelligence applications (Corkhill, 1991; Buschmann et al., 1996; Dong et al., 2005;

Bandini et al., 2009). Each ABM component is an independent 'knowledge source' for

a specific aspect of an FMD epidemic. The cohort of herds/farms is the 'blackboard'

from which the knowledge sources obtain their  view of the problem domain.  The
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knowledge sources work independently and concurrently on their sub-problem with

no  knowledge  of,  or  assistance  from,  other  knowledge  sources,  and  iteratively

contribute partial  solutions  to the overall  problem onto the blackboard.  The ABM

scheduler is the blackboard 'controller' and arbitrates when knowledge sources submit

conflicting partial solutions. Over time, a solution to the greater problem emerges on

the  blackboard.  In  the  case  of  an  FMD  epidemic,  the  emergent  'solution'  is  the

spatiotemporal spread and control of disease in the population of herds/farms. 

The blackboard pattern stems from the analogy of multiple professors (knowledge

sources),  working  on  a  complex  problem  and  sharing  a  single  chalkboard.  Each

professor works on the problem purely from the point of view of their  individual

specialities. Whilst individual professors cannot solve the problem alone, the iterative

sharing  of  partial  solutions  on  the  blackboard  contributes  to  the  group's  overall

understanding of the problem (Figure 4.1). 
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4.1.3  Lightweight agents

Agents in  an ABM are autonomous and in a simple software implementation this

usually  equates  to  an  agent  having  its  own  thread  of  execution.  This  approach

however does not scale well for large populations as platform thread/process limits

are quickly reached (Bellifemine et al., 2001; Shi et al., 2014). In the absence of a

specialised parallel hardware platform it is simply not feasible to have large numbers

of  threads/processes.  Large populations  can  be handled  through strategies  such as

lightweight agents that share pools of threads (Kim et al.,  2007),  custom memory

management (Parker and Epstein, 2011), and aggregated 'super-individuals' (Parry and

Evans,  2008).  Each AADIS herd agent has autonomous state  and logic but is  not

threaded. All updates to herd agents are carried out on the ABM Scheduler's thread at

the end of each simulation day.

4.1.4  Advantages of concurrent processing

The  AusSpread  microsimulation  simulates  the  spread  and  control  of  disease  in

discrete time steps of a day. The constituent tasks of a simulation day are carried out

sequentially, i.e.,  disease is given the opportunity to spread in turn over the local,

direct, indirect, saleyard and airborne pathways, and then the surveillance, stamping

out, tracing, vaccination and movement restrictions control measures are conducted.

Even though the order of these may be randomised, they still occur sequentially. The

execution time of a simulation day is largely the sum of the times needed for each

constituent  task.  AADIS also operates  in  discrete  time steps  of  a  day,  but  has  an

asynchronous architecture that supports concurrent processing. All ABM environment

components have an independent thread of execution and the constituent tasks of a

simulation day occur concurrently. This approach is computationally efficient as it

takes  advantage  of  the  inexpensive  parallelism available  on  a  multi-core  desktop

computers. The execution time of a simulation day is effectively only limited by the

longest time taken by any one component. A benefit of each component executing on

its  own thread is  that it  allows computationally intensive components to be easily

identified and potentially assigned higher runtime thread priorities.
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Components  have  varying  day-to-day  computational  demands  depending  on  the

nature  of  the  scenario  and  the  particular  simulation  day.  Daily  runtimes  per

component are (optionally) written into the AADIS log file. Table 4.1 presents the

average daily runtime in milliseconds for each ABM component over the course of

1000 runs. The times are taken from the comparison study of AADIS with AusSpread

in Section 5.2. Only the silent spread (SS) and stamping out with suppressive ring

vaccination (SORV) scenarios are used – refer to Section 5.2 for definitions. The table

shows that on average, the Indirect Spread and Local Spread components are more

computationally intense than the Direct Spread and Airborne Spread pathways. (The

Saleyard Spread component runtimes are included in the Direct Spread runtimes as

the comparison employs the simpler non-sale-based saleyard spread pathway). The

table also shows that the Movement Restrictions and Surveillance components are the

most computationally intensive control measures. This type of information is useful

from  a  development  and  test  perspective  as  computational  bottlenecks  are  easily

identified. For example, given the concurrent architecture, there is not much value in

improving the runtime efficiency of the Direct, Local and Airborne components as the

predominant daily computational drain is generally the Indirect component. 

A concurrent modelling approach also reflects the epidemiological reality that spread

and control proceed independently and in parallel during an outbreak.
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Table 4.1. Average daily runtimes of the ABM components

Scenario

Name

Direct

Spread 1

Indirect

Spread 1

Saleyard

Spread 1,2

Local

Spread 1

Airborne

Spread 1

First

Detection 1

Movement

Restrictions 1

SP

Reporting 1

Tracing 1 Surveillance 1 IP

Operations 1

Vaccination 1

42189 SS 1.148 4.663 N/A 2.092 0.400 N/A N/A N/A N/A N/A N/A N/A

7779 SS 1.728 5.305 N/A 2.032 0.398 N/A N/A N/A N/A N/A N/A N/A

33812 SS 1.767 4.285 N/A 2.120 0.001 N/A N/A N/A N/A N/A N/A N/A

98 SS 0.021 0.203 N/A 0.058 0.003 N/A N/A N/A N/A N/A N/A N/A

315 SS 0.299 0.752 N/A 0.589 0.000 N/A N/A N/A N/A N/A N/A N/A

42189 SORV 1.251 2.592 N/A 2.589 0.122 0.00 2.831 0.000 0.008 0.281 0.030 0.100

7779 SORV 1.711 2.792 N/A 3.066 0.168 0.000 4.331 0.003 0.013 0.361 0.068 0.171

33812 SORV 1.232 2.012 N/A 2.226 0.003 0.000 2.527 0.002 0.002 0.189 0.008 0.063

98 SORV 0.012 0.019 N/A 0.032 0.000 0.001 0.004 0.001 0.004 0.000 0.001 0.000

315 SORV 0.190 0.306 N/A 0.462 0.002 0.002 0.212 0.001 0.011 0.011 0.000 0.001

Mean 0.936 2.293 N/A 1.527 0.110 0.001 1.981 0.001 0.008 0.169 0.021 0.067

1 average daily runtime in milliseconds

2 the Saleyard Spread component runtimes are included in the Direct Spread runtimes as the scenarios employed direct-driven saleyard spread (Section 3.5.5)
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4.2  Subsystems

Figure  4.2 depicts  the  major  AADIS subsystems and some important  control/data

flows between them.  The diagram is  a  high-level  summary of  the  key functional

software areas – there is no implied sequencing information. Individual subsystems

are described in subsequent sections with UML class diagrams (Fowler and Scott,

2000). 
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Figure 4.2. Main AADIS subsystems



4.2.1  Database subsystem

A relational database (PostgreSQL, 2015) is used to store data that typically does not

change  often  and  may  be  large  with  cross-dependencies.  This  includes  the  herd

population, weather data, movement patterns and pathogen specific parameters. An

example of a cross-dependency is the Herd table which contains references to several

other tables (herd type, farm type, region, weather station and local government area

(LGA)).  To ensure referential  integrity,  any change to  a  table  requires  a  database

rebuild.  The  Database  subsystem  provides  offline  database  creation  and  online

database access.

4.2.1.1  Database creation

AADIS database creation is comprised of three distinct activities (Figure 4.3).
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Figure 4.3. AADIS database creation

• Database schema design - The SQL

Power Architect data modelling tool

(SQL Power Group, 2015) is used to

create  and  maintain  the  relational

database schema (Appendix B), and

generate  the  corresponding  data

definition language (DDL) script.

• Dataset  creation –  A  Comma-

Separated  Values  (CSV)  input  data

file  is  created  for  each  relational

table  defined  in  the  schema

(Appendix C).

• Database creation  and population –

The  AADIS  database  builder  uses

the DDL script and CSV data files to

create and populate the database. 



4.2.1.2  Database classes

The classes in the Database subsystem are presented in Figure 4.4.

The database builder is a standalone program included in the DbBuilder class. It uses

the DDL script and CSV data files to create and populate the database from scratch.

The builder also provides a simple check as to whether the database is synchronised to

the DDL and CSV input files. The check compares the size and modification date of

each  input  file  with  that  recorded  at  the  time  of  the  last  database  build.  The

DbManager class  interfaces  to  the  PostgreSQL database  via  the  Java  database

connectivity (JDBC) application programming interface. It is responsible for database

connections, general table operations (such as create, update, clear, and drop), and

execution  of  arbitrary  Structured  Query  Language  (SQL)  commends/queries.  The

database dumper is a standalone test program included in the  DbDumper class. It

accesses and dumps database tables via the  DbManager class in the same way that
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the model accesses the database. The Table and Row abstract classes provide generic

access to any database table. The concrete classes (e.g., HerdTable and HerdData),

capture table and row specifics. The concrete classes are simplified due to inheritance

and polymorphism provided by the Table and Row abstract classes. This means that

adding new tables  and new table  columns  is  primarily  declarative.  The cohort  of

Table and Row concrete classes form a simple in-memory database.

4.2.1.3  In-memory database

During  model  initialisation  all  data  is  retrieved  from  the  disk-based  relational

database  and  cached  in  a  custom  in-memory  database.  The  in-memory  database

provides access based on primary or secondary keys in terms of microseconds (rather

than in terms of milliseconds through SQL exchanges with the PostgreSQL server).

As  AADIS caches all database tables, there are no further accesses to the database

after  model  startup.  When  a  spread  pathway  requires  the  distance  and/or  bearing

between two herds, mathematical calculations are performed on points of latitude and

longitude (as opposed to issuing geospatial SQL queries into the relational database).

There is no requirement to dynamically write AADIS data back into the database.

Epidemiological  outputs  are  written  to  CSV files  for  external  statistical  analysis.

AADIS uses the database purely as an offline organizational aid for large datasets and

to ensure relational consistency between tables. 

4.2.2  Configuration subsystem

The classes in the Configuration subsystem are presented in Figure 4.5.
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The  ConfigFile abstract class provides generic access to key/value pairs in a Java

properties file (i.e., string, double, integer and Boolean values for a specified key).

The SystemConfigFile,  PlatformConfigFile and ModelConfigFile concrete classes

provide  access  to  the  AADIS  system,  platform  and  model  configuration  files

respectively.  Clients  retrieve  configuration  data  on  a  functional  basis  from  the

ControlConfig, DbConfig,  GuiConfig, ScenarioConfig and SpreadConfig classes.

Clients are insulated from the specifics of how and where configuration data is stored.

4.2.3  Model subsystem

The classes in the Model subsystem are presented in Figure 4.6.
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Figure 4.5. Classes in the Configuration subsystem



Model is  the  top-level  class  (i.e.,  has  a  linkable  main),  and  initialises  all  other

subsystems. The  Model class is the overall coordinator of a simulation. The ABM

Scheduler class coordinates disease spread and control processing on a per-day basis.

The History class saves a snapshot of the simulation to disk at the end of each run.

This facilitates a visual review of each outcome of a multi-run simulation via the GUI.

4.2.4  Herds subsystem

The classes in the Herds subsystem are presented in Figure 4.7.
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Figure 4.7. Classes in the Herds subsystem



During model  initialisation the  HerdManager  creates  the  cohort  of  Herd agents.

Each Herd agent has its own EBM which in turn is implemented with an SEIR ODE

system. There is a single cache of Herd agents and several lookup tables of Herd IDs,

for  example,  herds per type,  herds  per  grid cell  (Figure 4.10),  infected herds and

clinical herds. Whilst the herd cohort is derived from the database, the farm cohort is

derived from the herd cohort during model initialisation. This is possible as each herd

database record contains a farm ID and a farm type. A farm object references one or

more herd objects.

4.2.5  Grid subsystem

4.2.5.1  The need for spatial-indexing

AADIS is a data-driven computational model that makes constant and intensive use of

the underlying data. The disease spread pathways and control measures issue spatial

queries concerning herds, farms, weather stations, saleyards, jurisdictions and regions.

Examples of spatial queries are: 'locate all susceptible herds inside a specific search

area',  and  'calculate  the  distance  and  bearing  between  an  infected  herd  and  a

susceptible herd'. The incorporation of spatially-referenced data enhances the realism

of a model, but this comes with increased computational complexity (Kennedy et al.,

2009). One dimensional indexing techniques such as primary and secondary keys, do

not extend naturally to higher-dimensional geographic data (Guttman, 1984). A spatial

query  may  involve  data  not  explicitly  stored  in  the  database,  for  example,  the

intersection of spatial objects (Samet, 1995). Spatial queries in the absence of some

form  of  spatial-indexing  such  as  an  R-Tree  (Guttman,  1984),  can  result  in  the

sequential scanning of database records. The performance of spatially-based models

then becomes heavily dependent on the size of the underlying population.

An  alternative  approach  to  spatial-indexing  is  to  satisfy  spatial  queries  through

'neighbour lists' (Dominguez et al., 2010). For example, all neighbouring herds within

3km, 10km, 50km and 100km can be precomputed for every herd. This approach may

be appropriate when there is  limited variability  of distance in  spatial  queries,  and
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when populations are moderately sized. However for highly stochastic models with

large populations this approach is memory intensive and not particularly granular.

AusSpread is  an  example  of  a  traditional  approach to  spatially-explicit  modelling

whereby the storage and querying of spatial objects is delegated to an underlying GIS

platform (in this case MapInfo which employs R-Tree spatial-indexing). In the case of

AADIS, the PostGIS (OSGeo,  2015) extension to PostgreSQL provides a  R-Tree-

over-GiST  (R-Tree-based  Generalised  Search  Tree)  spatial-indexing  system.

However, AADIS, employs a novel grid-based spatial-indexing system developed for

this project, that provides an eight-fold improvement in spatial query response time

over the PostGIS R-Tree-over-GiST spatial-indexing system. This in turn yields a two

to three-fold overall improvement in the mean runtime of a scenario (Section 5.1).

Moreover, a uniform grid-based spatial-indexing is easily understood and maintained

with just a basic knowledge of Java and simple mathematics. 

During model initialisation the entire relational database is cached in the in-memory

database (Section 4.2.1.3). As there is no need to access the database for non-spatial

queries, it is a natural extension to not access the database for spatial queries as well.

This is possible through the elimination of all spatial objects from the database. Herds

and  farms  are  represented  as  points  rather  than  polygons.  This  simplifies  spatial

queries  from  polygon  intersections  to  simple  distances  and  bearing  calculations.

Weather stations, saleyards, LGAs, states and territories are also not represented as

spatial objects. Each herd has attributes identifying the IDs of its jurisdictional area,

LGA and closest weather station. A spatial query as to whether a herd is in a particular

state/LGA is thus simplified from the intersection of a point with an irregular area to a

simple herd attribute read. When, for example, the model determines if an infected

herd poses an airborne threat to a susceptible herd on a particular day, the prevailing

weather conditions at the closest weather station are a simple indexed lookup based

on the weather station ID. As part of this ID cross-referencing scheme, the model
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maintains  various  lookup  tables  that  map  LGA IDs  to  lists  of  herd  IDs,  and

jurisdiction IDs to lists of farm IDs. 

All AADIS spatially-referenced data (herds, farms, saleyards and weather stations)

pertain to stationary entities. Although consignments of animals may move between

herds, abattoirs and saleyards, herds are considered to be of a fixed size at a fixed

location. Stationary spatial objects suit the simplicity of a uniform grid-based spatial-

indexing scheme, as there is no need to dynamically maintain the grid. When spatial

objects  are  mobile  a  dynamic  indexing  scheme is  needed  that  efficiently  updates

object location mappings without impacting overall database performance (Kwon et

al.,  2002;  Xia  and  Prabhakar,  2003;  Lee  et  al.,  2003).  The  AADIS  approach  of

eliminating  spatial  objects  is  possible  as  the  entire  database  is  easily  cached  in

memory  and  spatial  entities  are  stationary.  Models  with  larger  populations,  more

complex spatial  requirements  and/or  the need to  dynamically  update  data  may be

better suited a more database-centric approach to spatial processing.

A criticism of uniform grid-based spatial-indexing is non-efficient handling of skewed

population densities (Lettich et al., 2014). The AADIS herd population mapped onto a

uniform grid indeed presents highly variable density. The default grid cell dimensions

of 10km x 10km result in herd densities ranging from 0 to 264 with a median of four

herds per cell. Further, of the 167,028 total cells approximately 86% of the cells are

devoid of herds. The desire to efficiently handle variable population densities  led to

the development of variable grid cell size schemes such as quad trees (Finkel and

Bentley, 1974). High density cells are disaggregated into four sub-cells, and so on,

until all populated cells are in the desired density range. The downside of variable cell

sizes is an increase in the complexity of cell addressing and grid search schemes. A

uniform grid with contiguous IDs is accessed via simple arithmetic. It is trivial to

calculate the home grid cell for any given latitude and longitude, and also to identify

the  extended Moore neighbourhood cells  of  any given cell  (Section  4.2.5.2).  The
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AADIS grid-based spatial-indexing scheme is in effect a generalisation of neighbour

lists with granularity determined by the configured cell size.

4.2.5.2  Implementation

The  classes  in  the  Grid  subsystem  are  presented  in  Figure  4.8.  During  model

initialisation  the  GridManager constructs  a  national  grid  based  on  configurable

latitude and longitude boundaries, and cell dimensions (default 10km x 10km).

In  effect,  a  cellular  automata-style  lattice  is  superimposed  over  the  continuous

geographical environment (Figure 4.23). The grid cells are numbered in row-major

order  and  each  herd  is  assigned  a  home  grid  cell  according  to  its  latitude  and

longitude. Figure 4.9 depicts the Moore neighbourhood with radius r = 1 (Weisstein,

2015) of cell ID 13. The red dots represent herds located in the cells.

The HerdManager constructs a grid lookup table (Figure 4.10) that maps the ID of

each populated cell to a list of the constituent herd IDs. The empty cells contain Java
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Figure 4.8. Classes in the Grid subsystem



null  references  and  are  effectively  just  place-markers  in  the  addressing  scheme

described below.

As the cells are uniform and the IDs contiguous, the Moore neighbourhood for any

cell is derived through simple arithmetic on the cell ID. For any cell ID i, the cell IDs

of the immediate Moore neighbourhood (r = 1) are given by:

Equations 4.1 to 4.8 in Figure 4.11 are used as primitives to obtain the IDs of cells in

the extended Moore neighbourhood (r > 0). Figure 4.12 illustrates how, for example,

the northerly neighbours of cell  i within radius  r are determined by simply iterating

over r in a northerly direction.
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Figure 4.10. The grid lookup table maps grid cell IDs to lists of herd IDs.

        west(i) = i – 1 (1 < i ≤ n,  i mod c ≠ 1) (4.1)

        east(i) = i +1 (1 ≤ i < n,  i mod c ≠ 0) (4.2)

        north(i) = i – c (c < i ≤ n) (4.3)

        south(i) = i + c (1 ≤ i ≤ n – c) (4.4)

        northwest(i) = i – c – 1 (c < i ≤ n,  i mod c ≠ 1) (4.5)

        northeast(i) = i – c + 1 (c < i ≤ n,  i mod c ≠ 0) (4.6)

        southwest(i) = i + c – 1 (1 ≤ i ≤ n – c,  i mod c ≠ 1) (4.7)

        southeast(i) = i + c + 1 (1 ≤ i ≤ n – c,  i mod c ≠ 0) (4.8)

where

        n = number of cells in the grid

        c = number of columns in the grid

Figure 4.11. Primitives for deriving the Moore neighbourhood of a grid cell 



Consider, for example, the spatial query 'find all herds within  x km of a particular

infected herd'. The AADIS grid-based spatial-indexing scheme addresses this with a

blend of table lookups and simple arithmetic:

1) An extended Moore neighbourhood is defined for the home cell of the infected

herd that fully encloses the circular search area (Figure 4.13). The required

radius r of the neighbourhood is easily determined as the cells are uniform.

2) The herd IDs corresponding to all cells in the Moore neighbourhood of radius

r are retrieved from the grid lookup table. 

3) The herds that lie outside the circle but inside the Moore neighbourhood are

discarded from the set.  Distances between herds are dynamically calculated

using the Haversine formula on the points of latitude and longitude (Williams,

2011). 

4) The set of candidate herd IDs is returned to the client. The client then uses the

herd IDs to retrieve herd data as required from the herd cache.

The performance of the grid-based spatial-indexing system is described in Section

5.1. 

It  is  possible  that AADIS will  upgrade to raster-based weather  data in the future.

Interpolated weather conditions could then be directly mapped to cells of the grid-

based spatial-indexing scheme. This would provide finer granularity than the current
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create a list to hold the neighbouring cell IDs;

int neighbour = i;

for (int row = 0; row < r; row++) {

neighbour = north(neighbour);

add neighbour to the list;

}

Figure 4.12. Deriving the extended Moore

neighbourhood of a grid cell 

Figure 4.13. Moore neighbourhood enclosing a

spatial query search radius.



weather-station-based  approach  in  the  determination  as  to  whether  conditions  are

conducive to the airborne spread of FMD (Section 3.5.4). 

4.2.6  Spread subsystem

The classes in the Spread subsystem are presented in Figure 4.14.

The  Spread class  provides  general  disease spread pathway functionality.  Pathway

specifics are implemented in the  AirborneSpread,  DirectSpread,  IndirectSpread,

LocalSpread and  SaleyardSpread concrete  classes.  Each  spread  concrete  class

inherits a thread and two mailboxes from the  Spread superclass. The inbox is for

receiving  command events  from the  Scheduler.  The  outbox is  for  sending result

events  back  to  the  Scheduler.  All  spread  pathways  operate  independently  and

concurrently. AADIS is extensible to any number of spread pathways. 
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4.2.7  Control subsystem

The classes in the Control subsystem are presented in Figure 4.15.

The Control class provides general control measures functionality. Control specifics

are  implemented  in  the  DirectTracing,  FirstDetection,  IndirectTracing,

IpOperations, MovementRestrictions, Resources, SpReporting, Surveillance and

Vaccination concrete classes. Each control concrete class inherits a thread and two

mailboxes from the Control superclass. The inbox is for receiving command events

from the Scheduler. The outbox is for sending result events back to the Scheduler.

All control measures except Resources operate independently and concurrently. The

Resources control measure is a special case as other control measures are dependent
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on  it  to  obtain  team  resources.  AADIS  is  extensible  to  any  number  of  control

measures. 

4.2.8  Graphical User Interface / Visualisation subsystem

The  GUI  subsystem  is  responsible  for  all  user  interaction  with  the  model  and

visualisation of model outcomes.  The classes in the GUI subsystem are presented in

Figure 4.16.

The  Display class is  responsible  for initialising  OpenMap and creating the model

window frame. OpenMap layers are defined in the OpenMap configuration file and

implemented as client Java classes (e.g., SusceptibleHerds). The RunPanel contains

the scenario control buttons (run, step, pause, stop, reload and save), and buttons to

invoke various popups such as the  EpidemicCurve.  Standard OpenMap graphical

tools (including zoom, pan, layer selection and screen capture), are accessed via the

OpenMap Tool Menu or the OpenMap Tool Panel. The user can also interact directly

with layers (e.g., InfectedHerds), via specialised popup menus (e.g., HerdPopup).
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Figure 4.16. Classes in the GUI subsystem



4.2.9  Reports subsystem

The classes in the Reports subsystem are presented in Figure 4.17.

The ReportManager class is responsible for writing all report files. The Report class

provides general functionality for writing a CSV file. Specific report file structures

are defined in the concrete classes, for example,  HerdSummaryReport. AADIS is

extensible to any number of report files. 

4.2.10  Logging subsystem

AADIS uses the open source  Log4j (Apache, 2012) logging system. This provides

granular tailoring of logging density via the log4j configuration file (Appendix D).
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Figure 4.17. Classes in the Reports subsystem



4.3  Dynamic architecture

4.3.1  Threads, events and mailboxes

The  AADIS  asynchronous  architecture  is  implemented  with  threads,  events  and

blocking queues. For a class to participate it must have its own thread and one or

more event mailboxes (inbox and/or outboxes). A mailbox has a blocking queue that

can hold a number of events simultaneously. The asynchronous means by which two

classes can communicate is illustrated in Figure 4.18. Class A sends an event to class

B by synchronously calling the post() method in class B. This places the event in the

inbox of the receiving class under the thread of the sending class A. The event is

harvested from the inbox by the thread of the receiving class B. Class A can register

interest in return events from class B, by attaching its inbox via the attach() method in

class B. Class B maintains a list of outboxes (i.e., the inbox of each attached listener).

Class B multicasts an event to the attached listeners by invoking the post() method of

each mailbox in the outbox list. 
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Figure 4.18. The AADIS mailbox mechanism



4.3.2  Simulation flow

The overall scenario logic is implemented as a finite-state machine (FSM) (Figure

4.19). The FSM is driven by GUI events (play,  step,  pause,  stop and  reload), and

internal model events (e.g.  runSimDay,  simDayCompleted,  herdsLayerUpdated).  At

the start of a simulation day the Model sends a  runSimDay event to the Scheduler.

The  Scheduler coordinates  all  intra-day  simulation  processing  by  the  spread

pathways.  When  all  pathways  have  completed  the  current  simulation  day,  the

Scheduler updates the Herd cohort and sends a simDayCompleted event back to the

Model  (Figure 4.20). The  Model then coordinates the updating of the visualisation

via the GUI subsystem. When the scenario has completed, the Model class writes to

the scenario report files.
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Figure 4.19. The model finite-state machine



The Scheduler class is responsible for coordinating all spread and control activities

per simulation day (Figure 4.20). Simulating in discrete time steps of a day means that

there  is  no  need  for  herd/farm updates  to  be  applied  as  they  occur.  This  greatly

simplifies the level of synchronisation between competing updaters.  All  Herd agent

updates are processed on the Scheduler's thread of execution. 

The Model class is responsible for coordinating the refreshing of the GUI after all

spread pathways have completed and the herd cache has been updated. This is done

by calling the  refresh() method in the  Display class (Figure 4.21). GUI updates are

carried out under the standard Java event dispatch thread.  When all  display layers

have been updated, the  Display class notifies the  Model via a  herdsLayerUpdated

event. This triggers the  Model to initiate processing for the next simulation day (as

per the Model FSM). 

119

Figure 4.20. Intra-day coordination of spread and control



4.4  Configuration

The relational database is used to store project-specific configuration data such as

population datasets and contact structures (Appendices B and C). This data may be

large and is typically not changed very often.

A Java  properties  text  file  is  used  to  store  scenario-specific configuration  data

(Appendix D). Whenever a parameter is changed in the model configuration file the

program must be re-invoked at the OS level. There is also a system configuration file

and platform configuration file that are typically not modified by the user.

The graphical user interface is used for temporary configuration that is only required

during the current program invocation.

4.5  Model Outputs

The formal outputs of an AADIS simulation are CSV files. All model output files are

prepended with the scenario name.  The files report a range of metrics at the herd,

farm and scenario level (Table 4.2). Appendix E contains the field structure of each

file.
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Figure 4.21. Visualisation refresh



4.6  User interface and visualisation

This section presents examples of the user interface to help illustrate the key features

of the model. 

The Run Panel (Figure 4.22) is located at the top of the main AADIS window (Figure

4.23), and is the primary means of interacting with the model. 

The  dynamic  grid  used  for  spatial-indexing  (Section  4.2.5),  can  be  temporarily

displayed in the AADIS window for development and test purposes (Figure 4.23). 
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Figure 4.22. Run Panel

Table 4.2. AADIS output files

Report name Primary contents Writing frequency

Startup Primary cases (scenario seed herds) Once at start of scenario

Farm Summary Cumulative counts of declared premises per farm type At the end of each run

Farm Daily Cumulative counts of declared premises per day At the end of each run

Herd Infected herds (day and source of infection) At the end of each run

Saleyard Infected consignments into and out of saleyards At the end of each run

Spread Contacts and infections per spread pathway At the end of each run

Control Index case and control measures resource usage summary At the end of each run

Resources Detailed control measures resource usage At the end of each run

Config Scenario configuration and overrides Once at start of scenario
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Figure 4.23. AADIS dynamic outbreak visualisation



4.6.1  Browsing the herd population
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Figure 4.24. Find Dialog

The  Find  Dialog  (Figure  4.24)  is

invoked  via  the  Run  Panel.  Individual

herds, farms, weather stations and saleyards

can be searched for by ID and highlighted

on the display. 

Temporary  graphical  displays  such

as  'found'  objects  are  dismissed  via  the

Clear button located on the Run Panel.

Figure 4.25. Herd Type Locator Dialog

The  Herd  Type  Locator  dialog

(Figure 4.25) is invoked via the Run Panel.

The  10  herd  types  can  be  individually

highlighted in contrasting colours against the

back drop of susceptible herds (Figure 4.26).

This  provides  insight  into  the  distribution

and  density  of  the  herd  population  and  is

useful  for  choosing  herds  to  be  'seeds'  of

infection in what-if scenarios (for example, a

medium sized pig herd that is close to a dairy

herd).
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Figure 4.26. Pig herds located via the Herd Type Locator Dialog



The Herd Popup (Figure 4.27) is invoked via a left mouse click on any herd (Herd

Infectivity and Spread Pathway visualisation modes only – refer to Section 4.6.5). It

displays a range of static attributes (such as herd size, type, location, region), and

dynamic attributes (such as prevalence, and first and last days of infection). Graphical

utilities such as the Prevalence Curve, Infection Route, Infection Fan and Infection

Network are invoked via the Herd Popup. The Farm Popup (Figure 4.28) is invoked

via  a  left  mouse click  on any farm (Declared  Farms visualisation  mode only).  It

displays a range of static attributes (such as farm size, type, location and region), and

dynamic attributes (such as premises classification and declared area).
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Figure 4.27. Herd Popup

Figure 4.28. Farm Popup



4.6.2  Browsing weather stations

4.6.3  Browsing saleyards
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The  Weather  Station  Popup  (Figure  4.30)  is

invoked via a left mouse click on any weather

station.  It  displays static station attributes (ID,

name,  latitude,  longitude)  and  dynamic

attributes pertaining to the likelihood of airborne

spread (current probability that relative humidity

and  wind  speed  is  conducive  to  the  airborne

spread of  FMD, and the  likely  range of  wind

bearings (min, most likely, max)).

The  Weather  Station

Locator  Dialog  (Figure  4.29)  is

invoked via the Run Panel and is

used to search for specific weather

stations  by  ID,  or  to  display  all

weather stations.
Figure 4.29. Weather Station Locator Dialog

Figure 4.30. Weather Station Popup

The  Saleyard  Locator  Dialog

(Figure 4.31) is invoked via the Run Panel

and is used to search for specific saleyards

by  ID,  or  to  display  all  saleyards.  The

Saleyard  Popup (Figure  4.32)  is  invoked

via a left mouse click on any saleyard. It

displays  static  saleyard  attributes:  ID,

name, location, region, state, IDs of sales

that occur at the saleyard, and buyer and

seller catchment areas.

Figure 4.31. Saleyard Locator Dialog

Figure 4.32. Saleyard Popup



4.6.4  Running a scenario

 The Scenario Dialog (Figure 4.33) is invoked via the Run Panel. 
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Scenario parameters are defined in

the  model  configuration  file  but

can be temporarily overridden via

the Scenario Dialog. This includes:

scenario  name,  number  of  runs,

scenario  end  mode  and  the

enabling/disabling  of  specific

spread  pathways  and  control

measures. The number of days in a

scenario runs is dictated by the end

mode:

• Detection –  the  scenario

ends  on  the  day  that  the

first IP is detected.

• Fixed –  the  scenario  ends

after  a  fixed  number  of

days.

• Control-based –  the

scenario  ends  when  the

outbreak  is  under  control

(no  infected  premises  and

no  outstanding  control

actions  (e.g.  surveillance

visits)).  To  prevent  run-

away  outbreaks  a  scenario

will automatically end once

the  maximum  length  has

been reached.

Figure 4.33. Scenario Dialog

• Earliest – earliest  of the fixed length

and control-based modes.



When all scenario runs have completed the end-states of each run can be browsed.

Display the previous run of a completed scenario.

Display the next run of a completed scenario.
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Figure 4.34. Model Status Panel

Scenario run controls are located in the Run Panel.

 Run the scenario from start to finish.

Step through the scenario a day at a time.

Pause the running scenario.

Stop the running scenario.

Reload the scenario.

The run status  of  the scenario is  provided in  the

Model Status Panel (Figure 4.34).



4.6.5  Visualisation

AADIS provides three modes for visualising an outbreak in progress:  herd

infectivity, spread pathway and declared farms. The Change Visualisation button on

the Run Panel cycles through the modes. 

Herd Infectivity  Visualisation depicts  the  level  of

infection within each herd. Herds may be susceptible,

infected,  naturally  immune,  vaccine  immune  or

culled.  The  prevalence  within  an  infected  herd  is

visualised as heat-colours ranging from yellow (low

prevalence)  to  red (high  prevalence).  This  provides

insight into the state of within-herd spread of disease

(driven by a  herd's  EBM).  The visualisation  key is

shown in Figure 4.35. Figure 4.35. Herd infectivity
visualisation key

Spread Pathway Visualisation depicts the means by

which an infected herd contracted the disease.  This

provides an insight into the between-herd spread of

disease (driven by the ABM). The visualisation key is

shown in Figure 4.36.
Figure 4.36. Spread pathway

visualisation key

Declared  Farms  Visualisation depicts  the  current

declared  classification  of  a  premises.  This  provides

insight  into  the  impact  of  control  measures  on  the

outbreak  (driven  by  the  ABM),  and  represents  a

disease  managers  perception  of  the  outbreak.  The

visualisation key is shown in Figure 4.37. Figure 4.37. Declared farms
visualisation key

The national set of herds can be viewed abstractly as nodes in a network (Dubé et al.,

2011a; Nöremark et al.,  2011). Over time a network topology forms as the spread
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pathways create edges. The topology takes the form of a directed acyclic graph, until

such time as recovered herds lose their immunity. Network paths can subsequently be

traversed  forward  to  determine  the  downstream  impact  of  an  infected  herd,  and

backward to trace the historical infection route. The network topology thus captures

the spatiotemporal history of the outbreak. 

The infection network (Figure 4.38) is displayed via the Vector Mode button

on the Run Panel.  The vector  colour  corresponds to  the spread pathway that  was

responsible for the transmission (Figure 4.36). 

 

The Epidemic Curve popup (Figure 4.39) is invoked via the Run Panel.  The

Epidemic Curve dynamically depicts the number of infected farms (in orange) and the

number of declared infected farms (in red) for each day of the scenario run. This

provides  real-time  visualisation  of  the  progress  of  the  control  program.  The  Tear

130

Figure 4.38. Infection network visualisation



button on the Epidemic Curve 'tears off'  a copy of the current curve.  This allows

multiple epidemic curves to be retained on the screen for comparative purposes.

The map is panned by selecting the Pan button on the Run Panel and then

dragging and dropping as desired. (This is standard OpenMap functionality.)

Panning mode is exited via the Gestures button on the Run Panel.

The map is zoomed by selecting the Zoom In/Out buttons on the Run Panel or

via the mouse scroll wheel (if available). (This is standard OpenMap functionality.)
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The  distance  measuring  tool

(Figure 4.40) is invoked via the Distance

button on the Run Panel. Distances are

measured by selecting the starting point

(with  a  left  mouse  click)  and  then

moving  the  mouse  cursor  to  the

destination  point.  Distance  measuring

mode  is  exited  by  double  clicking

anywhere on the map. (This is standard

OpenMap functionality.)

Figure 4.39. Epidemic Curve Popup

Figure 4.40. Distance measuring tool



The latitude and longitude of the starting point, and the distance and bearing to the

destination  point  are  dynamically  displayed at  the  bottom left  hand corner  of  the

model. 

The distance  measuring  tool  is  exited  via  the  Gestures  button  on  the  Run

Panel.
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Figure 4.41. Location/distance display



4.6.6  Adjusting control measures

Control  measures  are  configured  and  resourced  on  a  per-jurisdiction  basis

(Appendices  B and C).  For  convenience  it  is  possible  to  override  per-jurisdiction

configurations with national-level configurations through the GUI.

Fixed first IP detection is configured via the model configuration file (Appendix D),

which can be temporarily overridden via the First IP Detection Dialog (Figure 4.42)

invoked via the Run Panel. 

Movement restrictions are configured per jurisdiction in the database (Appendices B

and C).  They can be temporarily  overridden with a single national  policy via  the

Movement Restrictions Dialog (Figure 4.43) invoked via the Run Panel.
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Figure 4.42. First IP Detection Dialog



 The Surveillance Monitor (Figure 4.44) is invoked from the Resources Dialog

(Figure 4.54) via the Run Panel. It depicts the dynamic reprioritisation of surveillance

visits over time according to premises classification, declared area type, herd type and

the time waiting for a visit. The yellow bar depicts the number of surveillance visits in

progress while the red bars represent the dynamic priority queues of visits (q1 is the

highest priority). The backlog highwater is the largest number of pending surveillance

jobs at any time during a run. 

134

Figure 4.43. Movement Restrictions Dialog

Figure 4.44. Surveillance Monitor
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Figure 4.45. Surveillance Dialog

 The  tracing  Dialog  (Figure

4.46) is invoked via the Run Panel.

All  backward  and  forward  trace

routes are displayable (Figure 4.47).

The  colour  of  the  trace  vector

corresponds  to  the  type  of  trace

(yellow for an indirect trace and red

for a direct trace).
Figure 4.46. Tracing Dialog

The  Surveillance  Dialog

(Figure  4.45)  is  invoked  from  the

Run  Panel.  It  provides  a  means  of

temporarily  overridding  the

surveillance configuration defined in

the model configuration file. 
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 The SP Reporting Dialog (Figure

4.48) is invoked via the Run Panel. The

configuration  for  false  reporting  is

defined in the model configuration file

and  can  be  temporarily  overridden  via

the SP Reporting Dialog.

Figure 4.48. SP Reporting Dialog

Figure 4.47. Optional display of trace routes
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 The IP Operations Dialog (Figure 4.50) is invoked from the Run Panel. The

default policy is the immediate culling of confirmed infected premises (subject to

available  resources).  Pre-emptive  culling  is  configured  per  jurisdiction  in  the

database however these values can be temporarily overridden with a national policy

via the IP Operations Dialog.

Figure 4.50. IP Operations Dialog

 The  IP Operations  Monitor

(Figure 4.49) is invoked from the

Resources  Dialog  (Figure  4.54)

via the Run Panel. It dynamically

shows  the  number  of  culling,

disposal  and  disinfection  jobs  in

progress and the backlog (in red),

per  jurisdiction.  The  backlog

highwater is the largest number of

pending  IP operation  jobs  at  any

time during a run. 

Figure 4.49. IP Operations Monitor
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Figure 4.52. Vaccination Monitor

 The  Vaccination  Dialog

(Figure 4.51) is invoked from the

Run  Panel.  Vaccination  is

configured per jurisdiction in the

Vaccination  database  table

however  these  values  can  be

temporarily  overridden  with  a

national  policy  via  the

Vaccination Dialog.

The  Vaccination  Monitor

(Figure 4.52) is invoked from the

Resources  Dialog  (Figure  4.54)

via the Run Panel. It dynamically

shows the number of vaccination

jobs in progress and the backlog

(in  red)  per  jurisdiction.  The

backlog highwater  is  the  largest

number  of  pending  vaccination

jobs at any time during a run.

Figure 4.51. Vaccination Dialog
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Figure 4.53. Resources Monitor

 The  Resources  Monitor

(Figure 4.53) is invoked from

the  Resources  Dialog  (Figure

4.54)  via  the  Run  Panel.  It

dynamically  shows  the

numbers  of  free  and  busy

teams,  and  the  busy  teams

highwater.  The  grey  bars

represent  pool  capacity  (per

team  type  per  jurisdiction),

and  the  superimposed

coloured  bars  represent

current  pool  usage.  The

highwater  is  the  largest

number of pending jobs at any

time during a run.

 The  Resources  Dialog

(Figure  4.54)  is  invoked  via

the Run Panel. Resources are

allocated  per-jurisdiction  in

the  Resources  database  table

(Appendices  B  and  C),  and

can  be  overridden  with

national  values  via  the

Resources Dialog. This allows

quick  experiments  as  to  how

resource bottlenecks influence

the  efficacy  of  the  control

program.  Disabling  resources

means  there  are  unlimited

teams available.
Figure 4.54. Resources Dialog



5  MODEL VERIFICATION AND VALIDATION

When developing a model, particularly one that will assist with the development of

policy, it is essential that the model is verified as constructed correctly and validated

as fit for purpose (Taylor, 2003; Garner and Hamilton, 2011). 

Verification

Verification is the process of ensuring that a model has been implemented correctly

(Dent  and Blackie,  1979;  Sargent,  2013).  It  targets the mechanics  of the software

development process, as to whether 'the product has been built right', as opposed to

validation that looks at the bigger operational picture, as to whether 'the right product

has been built' (Siviy et al., 2007). Verification can include static testing such as peer

reviewing of code, and dynamic testing such as software testing at the unit, module

and  system  level  (Booch,  1994;  Sargent,  2013).  A unit  test  is  a  self-contained

repeatable means of verifying a piece of software in isolation from the rest of the

system. In the context of object-oriented programming, a class is a typical candidate

for a unit test (Booch, 1994). A module test verifies a logical group of classes such as

a subsystem. The AADIS software is verified through a combination of unit tests and

module tests. For example, the  DbManager class in the Database subsystem has a

built-in unit test that verifies atomic database operations such as server connections,

table  creation/dropping  and  general  SQL  queries.  Another  example  is  the

HerdManager class unit test that verifies the accuracy of spatially-based herd queries

(Figure 5.1).
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The  testing  of  the  grid-based spatial-indexing  module  (which  spans  the  Grid  and

Database subsystems), is presented in Section 5.1 as an example of verification. The

test  compares  the  AADIS  grid-based  spatial-indexing  scheme  with  an  industry

standard  R-Tree-based  spatial-indexing  system,  both  in  terms  of  accuracy  and

computational performance.

Validation

Validation is the process of ensuring that a model is operationally fit for purpose, i.e.,

it is functionally appropriate and accurate for the intended domain (Dent and Blackie,

1979;  Sargent,  2013).  Validation  activities  may  include:  comparisons  with  other

models (Dubé et al., 2007b; Connell et al., 2009; Gloster et al., 2010; Sanson et al.,

2011; Reeves et al., 2011); independent assessments by a third party (Sargent, 2013);

testing against data not used in the construction process (Green and Medley, 2002;

Taylor, 2003); adapting the model for a different country (Dubé et al., 2011b);  and

sensitivity  analysis  of  parameters  (Green  and  Medley,  2002;  Bates  et  al.,  2003b;

Owen et al., 2011). A model should make biological and epidemiological sense, both

statically (formulae and algorithms), and dynamically (model outputs that reflect the
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Figure 5.1. Output snippet from the HerdManager unit test



underlying datasets  and parameterisation  (Miller,  1976;  Taylor,  2003;  Dubé et  al.,

2007b). 

The validation of AADIS is ongoing. Activities performed thus far are: 

• comparison  with  the  well-published  Australian  regional  FMD  model

AusSpread (Section 5.2), 

• comparison with the well-published New Zealand FMD model  InterSpread

Plus (Section 5.3), thus adapting AADIS for a different country and using data

not involved in the model construction,

• a parameter sensitivity analysis (Section 5.4),

• extensive independent  use during an international  FMD workshop (Section

5.5),

• a formal independent assessment (Section 5.6).

5.1  Verification of grid-based spatial-indexing

5.1.1  Method

The results and response time of spatial queries using grid-based spatial-indexing was

compared to that of the R-Tree-over-GiST spatial-indexing provided in the PostGIS

extension  to  PostgreSQL.  When  AADIS  (optionally)  employs  R-Tree-over-GiST

spatial-indexing, PostGIS geometric point objects are precomputed for each herd and

spatial queries are carried out via SQL exchanges with the PostgreSQL server. When

AADIS employs grid-based spatial-indexing the location of a herd is defined by a

point of latitude and longitude, and the PostgreSQL database is not involved in spatial

queries. R-Tree-over-GiST spatial-indexing was used as a baseline for verifying, and

assessing the performance and scalability of the grid-based spatial-indexing system.

To illustrate the importance of spatial-indexing, the response time of PostGIS spatial

queries with no spatial-indexing was also recorded.
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The test scenario was an outbreak of FMD starting in a medium-sized pig herd that

spreads undetected for 21 days. The scenario was re-run 100 times for each of the

three  spatial  query  approaches  (no  spatial-indexing,  R-Tree-over-GiST  and  grid-

based).  This  was  repeated  across  10 herd  populations  ranging from 21,617 up to

235,668 FMD-susceptible herds. The test hardware platform was a quad-core laptop

with 16GB RAM running 64-bit Kubuntu Linux™.

The  Stata/IC  statistical  package  (Stata,  2015)  was  used  to  check  for  significant

differences between the following key model outputs for each of the three spatial-

indexing methods:

• total number of infected premises,

• number  of  infections  by  disease  spread  pathway  (direct,  indirect,  local,

saleyard, airborne),

• size of the infected area based on the convex hull of all infected premises.

Data  sets  were imported  into  Stata/IC and checked for  normality.  Non-parametric

statistical methods were used throughout this analysis as some data sets were non-

normal  and  could  not  be  transformed  to  normality  by  standard  transformation

techniques. The number of infected premises, convex hull area, spatial query response

time,  and  scenario  run  time  were  analysed  using  the  Kruskal-Wallis  test  for

comparison of multiple independent groups of data (UCLA, 2015a). Post hoc analysis

to identify differences between strategies was conducted using the Kruskal-Wallis test

with  the  significance  level  adjusted  per  the  Bonferroni  correction  for  multiple

pairwise comparisons. Data for the proportion of disease spread events occurring by

each of the five spread pathways were compared using Pearson’s chi-squared test

(UCLA, 2015b). 
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5.1.2  Results
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Figure 5.3. R-Tree vs. grid-based spatial-indexing.

Figure 5.2 illustrates that the mean

response  time  of  spatial  queries  in

the absence of spatial-indexing was

O(n), i.e., linearly dependent on the

size  n of  the  population.  This  is

because each spatial query triggered

a  sequential  scan  over  all  herd

records. Figure 5.2 also shows how

R-Tree-over-GiST  spatial-indexing

improved the mean response time of

spatial queries to O(log n). 
Figure 5.2. Spatial-indexing vs. no spatial-indexing.

Figure  5.3  illustrates  how  the

AADIS  grid-based  spatial-indexing

scheme provided  approximately  an

eight-fold  improvement  in  mean

spatial query response time over the

PostGIS  R-Tree-over-GiST  spatial-

indexing  scheme,  and  was  less

sensitive  to  changes  in  the  size  of

the herd population.



Figure  5.4  illustrates  how  grid-based  spatial-indexing  provided  a  three-fold

improvement in the mean runtime of a 21-day outbreak across all population sizes.

Over the course of 100 runs of a 21-day outbreak across the national herd population,

approximately 80,000 spatial queries were made. The runtime performance of AADIS

is  dependent  on  the  response time of  spatial  queries.  AADIS took three  hours  to

complete the entire simulation when spatial-indexing was not employed. The same

task took 10 minutes when R-Tree-over-GiST spatial-indexing was used,  and only

three minutes when grid-based spatial-indexing was used. A more complex scenario

(not shown), that included control measures, made approximately 2,000,000 spatial

queries over the course of 1000 runs. In this case, AADIS took approximately six

hours  to  complete  the  simulation  using  R-Tree-over-GiST  spatial-indexing,  and

approximately three hours using grid-based spatial-indexing.

The effects of spatial-indexing method on outbreak metrics are shown in Figures 5.5

to 5.7. There were no significant differences (p > 0.05), in total number of infected

premises, spread pathway mix, and size of the infected area.
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Figure 5.4. Scenario run times for R-Tree-over-GiST vs. grid-based
spatial-indexing
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Figure 5.5. Effect of spatial-indexing method on disease spread mechanism

Figure 5.6. Effect of spatial-indexing method on the number of infected premises.



5.1.3  Discussion

The AADIS grid-based spatial-indexing scheme provided approximately an eight-fold

improvement in mean spatial query response time over the R-Tree-over-GiST spatial-

indexing scheme, with no impact on scenario outcomes. This in turn yielded a two to

three-fold improvement in the overall time taken to run the test disease spread and

control simulation.

The spatial  query response time of PostgreSQL/PostGIS could likely be improved

through techniques such as server optimisation and server prepared SQL statements.

However,  the optimisation of  relational  databases,  servers  and SQL for  geospatial

efficiency is quite a specialised area. The AADIS uniform grid-based spatial-indexing
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Figure 5.7. Effect of spatial-indexing method on the area of infection 



scheme  is  simple  to  implement,  test  and  maintain,  and  requires  no  specialised

knowledge of mathematics, PostgreSQL and PostGIS. Although AADIS is overall a

complex piece of software, keeping components as simple as possible contributes to

software longevity and low ongoing maintenance costs (Banker et al., 1993). 

5.2  Comparative study with AusSpread

In  addition  to  underpinning  many  FMD studies  (Section  2.4.2.2),  AusSpread  has

taken part in model comparison and relative validation studies with the NAADSM,

InterSpread Plus, Exodis and the Netherlands models (Dubé et al., 2007b; Garner et

al., 2007; Sanson et al., 2011; Roche et al., 2015). Participants in these studies have

included  veterinary  epidemiologists  from  the  'Quadrilateral'  group  of  countries

(Australia,  Canada,  New  Zealand  and  the  United  States),  as  well  as  Ireland,  the

United Kingdom and the Netherlands. As AusSpread is a well published and validated

model it was used in a structured model comparison to see whether AADIS produces

broadly similar results. 

As AusSpread is a regional model it was necessary to tailor AADIS to accommodate

the  comparison.  This  was  achieved  with  a  reduced  population  of  42,217  herds,

representing  the  livestock  population  of  the  state  of  Victoria.  As  the  AusSpread

modelling unit of interest for disease spread is the farm, in this study AADIS treated a

herd as equivalent to a farm. The model comparison initially involved disease spread

only, i.e., the pre-detection silent spread phase with no control measures. The models

were subsequently compared with control measures enabled.

5.2.1  Silent spread

5.2.1.1  Method

FMD was introduced into five different herd types (small  pig,  medium pig,  dairy,

sheep  and  beef),  and  allowed  to  spread  without  detection  for  21  days.  The  five

scenarios were run 1000 times under AADIS and 100 times under AusSpread. AADIS

is  inherently more stochastic than AusSpread (Section 4.1.4),  and more runs were
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necessary  to  adequately  represent  outcome  distributions  (see  Section  6.2). The

following outputs were compared: 

• cumulative number of infected herds,

• proportion of spread attributable to each pathway.

The test hardware platform was a quad-core desktop with 16GB RAM running 64-bit

Microsoft  Windows  7™.  Model  outcomes  are  expressed  as  medians  with  90%

probability intervals and represented with standard box plots (Tukey, 1977).

5.2.1.2  Results

AADIS and AusSpread produced quite similar numbers of infected herds for each of

the five silent spread scenarios (Table 5.1 and Figure 5.8). The proportions of infected

herds attributable to the various disease spread pathways were also broadly similar.

Local spread was generally the predominant pathway in both models, followed by

direct  contact  spread  (including  saleyards),  indirect  spread  and  airborne.  The

contribution of airborne spread increased when the outbreak commenced on a pig

farm. AusSpread tended to generate less direct and saleyard spread than AADIS.

There was greater statistical error in the AusSpread results, with the sampled mean

number of IPs within 8%, 20%, 8%, 48% and 13% respectively of the theoretical

population means (with 95% confidence). AADIS on the other hand generated sample

means that were within 7%, 6%, 6%, 24% and 9% respectively of the theoretical

population means. This can be explained in terms of the number of runs completed

per scenario for each of the models – 100 for AusSpread and 1000 for AADIS. The

convergence of the AusSpread sample means would be improved with increased runs;

however,  the  slow  runtime  effectively  precluded  this.  AADIS  completed  1000

stamping out scenario runs in under six minutes whereas AusSpread would have taken

up to 30 hours to complete 1000 runs.
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Table 5.1. AADIS vs AusSpread: silent spread 

Small pig herd (ID=42189,
size=110)

Medium pig herd
(ID=7779, size=1945)

Dairy herd
(ID=33812, 

size=256)

Sheep herd 
(ID=98, 

size=3065)

Beef herd 
(ID=315, 
size=532)

Model AADIS AusSpread AADIS AusSpread AADIS AusSpread AADIS AusSpread AADIS AusSpread

Number of runs 1000 100 1000 100 1000 100 1000 100 1000 100

Mean infections 16.69 18.88 23.73 20.04 14.93 10.99 0.28 0.18 4.57 3.8

Std error of mean1 0.64 0.77 0.77 2.06 0.43 0.45 0.03 0.04 0.20 0.25

Convergence2 7% 8% 6% 20% 6% 8% 24% 48% 9% 13%

Median infections3 8(0-65) 18(4-37) 13(4-80) 13(6-56) 8(0-53) 10(3-24) 0(0-1) 0(0-1) 2(0-16) 3(1-11)

Local spread 50% 78% 45% 43% 43% 69% 53% 33% 68% 73%

Direct spread 12% 5% 11% 5% 15% 7% 6% 17% 8% 7%

Indirect spread 4% 4% 6% 13% 3% 6% 20% 39% 3% 5%

Saleyard spread 24% 9% 24% 9% 39% 18% 21% 11% 21% 15%

Airborne spread 10% 4% 14% 30% 0% 0% 0% 0% 0% 0%

Total runtime 5.7 mins 179 mins 5.8 mins 176 mins 5.7 mins 178 mins 3.2 mins 167 mins 3.3 mins 168 mins

Av. time per run 0.3 secs 1.8 mins 0.4 secs 1.8 mins 0.3 secs 1.8 mins 0.2 secs 1.7 mins 0.2 secs 1.7 mins

1 standard deviation of the sample mean / square root of the number of runs

2 sample mean convergence with 95% confidence (zc = 1.96). See Section 6.2 for definition.

3 median with 90% probability interval
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The  spatial  distributions  of  the  outbreak  for  the  medium  pig  herd  scenario  are

provided in Figure 5.9 for illustrative purposes only. The AADIS spatial distribution is

broadly similar to the AusSpread distribution (for comparative purposes, 100 runs are

shown for both models). It would be possible to conduct a more quantitative analysis

by superimposing a lattice and comparing cell counts of IPs, however this was not

pursued due to the inherent differences between the two models (Section 5.2.3).
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Figure 5.8. AADIS vs. AusSpread: number of infected herds after silent spread

Figure 5.9. AADIS (left) vs AusSpread (right): spatial distribution comparison



5.2.2  Control measures

5.2.2.1  Method

FMD was introduced into five different herd types (small  pig,  medium pig,  dairy,

sheep and beef), and allowed to spread up until fixed detection on the 21st day. The

following control measures were trialed for each of the five outbreak scenarios:

• stamping out of infected premises (SO),

• stamping out of infected premises plus suppressive ring vaccination (SORV),

• stamping  out  of  infected  premises  plus  pre-emptive  contiguous  culling

(SOCC).

The  control  scenarios  were  run  1000  times  under  AADIS  and  100  times  under

AusSpread, and the following outputs compared:

• duration of the outbreak (defined as the simulation day when the last infected

premises was declared),

• cumulative number of infected premises,

• cumulative number of culled premises,

• cumulative number of vaccinated premises.

Selected parameter settings for the control strategies are provided in Table 5.2. 

The test hardware platform was a quad-core desktop with 16GB RAM running 64-bit

Microsoft  Windows  7™.  Model  outcomes  are  expressed  as  medians  with  90%

probability intervals and represented with standard box plots (Tukey, 1977).
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Table 5.2. AADIS vs AusSpread: selected control parameter settings

Control Parameter Value

Day that the first infected premises is detected 21

National livestock standstill length 3 days

Controlled area radii RA = 3km, CA = 10km (around each IP) 

Reduction of direct movements during control 95% inside RAs, 85% inside CAs, 80% in OA

Reduction of indirect movements during control 90% inside RAs, 75% inside CAs, 70% in OA

Tracing window 14 days backwards, 14 days forwards

Time needed for a direct trace 0 to 4 days (species-dependent)

Time needed for an indirect trace 1 to 5 days (species-dependent)

Effectiveness of direct tracing 70% to 100% (species-dependent)

Effectiveness of indirect tracing 70% to 90% (species-dependent)

Surveillance visit duration 0.5 to 1 day (herd type-dependent)

Probability of reporting suspect premises 70% to 100% (herd type-dependent)

Time to report SPs after clinical signs 0 to 19 days (herd type-dependent)

Ratio of false SP reports to true reports 2.34:1

Number of surveillance teams (per jurisdiction) 1 on control day 1, ramping up to 60 by day 30

Number of culling teams (per jurisdiction) 1 on control day 3, ramping up to 30 by day 30

Number of disposal teams (per jurisdiction) 10 on control day 10, ramping up to 500 by day 31

Number decontamination teams (per jurisdiction) Not limited

Number of vaccination teams (per jurisdiction) 10 on control day 10, ramping up to 500 by day 31

Contiguous culling radius 1 km

Days to cull a herd 1 to 3 (herd type-dependent)

Days to dispose a herd 0 (not limited)

Days to decontaminate a premises 0 (not limited)

Start of vaccination program 10th day of the control program

Days to vaccinate a herd 0.2 to 1 (herd type-dependent)

Vaccination annulus radii (km) inner=0, outer=3

Vaccination retrospectivity and direction New IPs only, outside-in
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5.2.2.2  Results

AADIS  and  AusSpread  produced  broadly  similar  outbreaks  for  each  of  the  five

stamping out scenarios (Table 5.3, Figure 5.10 and Figure 5.11). There was greater

statistical error in the AusSpread results, with the sampled mean number of IPs within

18%, 126%, 15%, 12% and 34% respectively of the theoretical  population means

(with 95% confidence). AADIS on the other hand generated sample means that were

within 12%, 9%, 9%, 14% and 12% respectively of the theoretical population means.

This can be explained in terms of the number of runs completed per scenario for each

of the models – 100 for AusSpread and 1000 for AADIS. The convergence of the

AusSpread  results  would  have  improved  with  increased  runs;  however,  the  slow

runtime effectively  precluded this.  AADIS completed  1000 stamping out  scenario

runs in under 23 minutes whereas AusSpread would have taken up to five days to

complete 1000 runs.
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Table 5.3. AADIS vs AusSpread: stamping out 

Small pig herd

(ID=42189, size=110)

Medium pig herd

(ID=7779, size=1945)

Dairy herd 

(ID=33812, size=256)

Sheep herd 

(ID=98, size=3065)

Beef herd 

(ID=315, size=532)

Model AADIS AusSpread AADIS AusSpread AADIS AusSpread AADIS AusSpread AADIS AusSpread

Number of runs 1000 100 1000 100 1000 100 1000 100 1000 100

Outbreak length1,2 51(21-100) 54(39-97) 52(27-109) 47(31-88) 47(21-104) 51(31-101) 21(21-29) 22(22-28) 29(21-68) 36(22-64)

Median IPs2 15(1-127) 31(14-118) 19(4-124) 18(8-126) 12(1-98) 20(5-65) 1(1-2) 1(1-2) 3(1-21) 4(2-23)

Mean IPs3 33 +/- 2 40 +/- 4 36 +/- 2 90 +/- 58 25 +/- 1 24 +/- 2 1 +/- 0 1 +/- 0 6 +/- 1 8 +/- 1

Convergence4 12% 18% 9% 126% 9% 15% 14% 12% 12% 34%

Num culled farms2 15(1-127) 31(14-118) 19(4-124) 18(8-126) 12(1-98) 20(5-65) 1(1-2) 1(1-2) 3(1-21) 4(2-23)

Elapsed runtime 23 mins 755 mins 21 mins 683 mins 19 mins 718 mins 5 mins 376 mins 8 mins 526 mins 

Av. time per run 1.4 secs 7.55 mins 1.3 secs 6.83 mins 1.2 secs 7.18 mins 0.3 secs 3.76 mins 0.5 secs 5.26 mins

1 day that last IP is declared

2 median with 90% probability interval

3 sample mean +/- standard error of the mean

4 sample mean convergence with 95% confidence (zc = 1.96). See Section 6.2 for definition.

155



AADIS  and  AusSpread  produced  broadly  similar  outbreaks  for  each  of  the  five

suppressive  ring  vaccination  scenarios  (Table  5.4,  Figure  5.12  and  Figure  5.13).

AusSpread tended to produce longer outbreaks with higher numbers of IPs and culled

premises.  There  was  greater  statistical  error  in  the  AusSpread  results  due  to  the

smaller  number  of  runs  completed  compared  to  AADIS.  The  convergence  of  the

AusSpread results would have improved with increased runs.
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Figure 5.11. AADIS vs. AusSpread: number of IPs with stamping out

Figure 5.10. AADIS vs. AusSpread: outbreak duration with stamping out



Table 5.4. AADIS vs AusSpread: stamping out plus suppressive ring vaccination 

Small pig herd

(ID=42189, size=110)

Medium pig herd

(ID=7779,size=1945)

Dairy herd 

(ID=33812,size=256)

Sheep herd 

(ID=98, size=3065)

Beef herd 

(ID=315, size=532)

Model AADIS AusSpread AADIS AusSpread AADIS AusSpread AADIS AusSpread AADIS AusSpread

Number of runs 1000 100 1000 100 1000 100 1000 100 1000 100

Outbreak length1,2 38(21-77) 50(39-85) 42(28-79) 47(31-90) 38(21-72) 48(31-83) 21(21-27) 22(22-28) 29(21-52) 36(22-60)

Median IPs2 10(1-78) 28(14-85) 15(4-93) 19(8-116) 9(1-63) 18(5-47) 1(1-2) 1(1-2) 3(1-16) 4(2-20)

Mean IPs3 21 +/- 1 35 +/- 3 29 +/- 1 36 +/- 6 18 +/- 1 20 +/- 1 1 +/- 0 1 +/- 0 5 +/- 0 7 +/- 1

Convergence4 10% 15% 9% 33% 8% 12% 6% 12% 9% 26%

Culled farms2 10(1-78) 28(14-85) 15(4-93) 19(8-116) 9(1-63) 18(5-47) 1(1-2) 1(1-2) 3(1-16) 4(2-20)

Vaccinated farms2 27(0-241) 55(14-240) 36(0-293) 29(0-224) 29(0-253) 52(0-154) 0(0-0) 0(0-0) 0(0-51) 2(0-49)

Total runtime 18 mins 696 mins 21 mins 655 mins 18 mins 667 mins 5 mins 400 mins 8 mins 600

Av. time per run 1.1 secs 6.96 mins 1.2 secs 6.55 mins 1.1 secs 6.67 mins 0.3 secs 4.0 mins 0.5 secs 6.0 mins

1 day that last IP is declared

2 median with 90% probability interval

3 sample mean +/- standard error of the mean

4 sample mean convergence with 95% confidence (zc = 1.96). See Section 6.2 for definition.
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Figure 5.13. AADIS vs. AusSpread: number of IPs with vaccination

Figure 5.12. AADIS vs. AusSpread: outbreak duration with vaccination



AADIS and AusSpread  produced  broadly  similar  outbreaks  for  each  of  the  three

contiguous culling  scenarios  (Table  5.5,  Figure  5.14 and Figure  5.15).  AusSpread

tended to produce longer outbreaks with higher numbers of IPs and culled premises. 

Table 5.5. AADIS vs AusSpread: stamping out plus contiguous culling 

Small pig herd

(ID=42189, size=110)

Medium pig herd

(ID=7779, size=1945)

Dairy herd 

(ID=33812, size=256)

Model AADIS AusSpread AADIS AusSpread AADIS AusSpread

Number of runs 1000 100 1000 100 1000 100

Outbreak duration1,2 38(21-70) 54(38-99) 43(26-75) 55(33-97) 38(21-74) 56(34-88)

Median number of IPs2 9(1-81) 19(6-91) 14(3-95) 18(6-108) 10(1-61) 16(4-50)

Mean number of IPs3 21 +/- 1 33 +/- 5 29 +/- 1 53 +/- 24 18 +/- 1 20 +/- 1

Convergence of mean4 13% 31% 9% 88% 8% 14%

Num culled farms2 21(5-166) 111(35-373) 27(5-179) 89(19-388) 21(1-134) 91(25-241)

Total elapsed runtime6 47 mins 735 mins 49 mins 635 mins 42 mins 575 mins

Average time per run6 2.8 secs 7.35 mins 2.9 secs 6.35 mins 2.5 secs 5.75 mins

1 day that the last IP is declared

2 median with 90% probability interval

3 mean +/- standard error of the mean

4 with 95% confidence (zc = 1.96). See Section 6.2 for definition
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Figure 5.14. AADIS vs. AusSpread: outbreak duration with contiguous cull



5.2.3  Discussion

It was reassuring that AADIS and AusSpread produced broadly similar outbreaks for

both silent spread and control scenarios. Minor outcome variations between the two

models are  to  be expected given the differences in  the way the spread of disease

within a herd/farm is handled. AADIS explicitly models within-herd spread with an

SEIR mass-action EBM that takes into account herd type and size (Section 3.3). The

probability of transmission for an infectious consignment depends on the prevalence

of  the  source  herd  and  the  consignment  size  (Equation  3.5  in  Section  3.5.1).

AusSpread on the other hand does not explicitly model the spread of disease within a

farm.  An  infected  farm  transitions  through  atomic  infection  states  according  to

durations sampled from probability distributions. Relative infectivity varies over time

according to a simple step function that applies to all farm types, and does not take

outgoing consignment  size  into  account.  The different  approaches  are  depicted  in

Figure 5.16 where the probability of transmission curves for the AADIS intensive

beef, sheep and small pig herd types (derived using Equation 3.5 in Section 3.5.1 for

average herd size n), contrast with the AusSpread stepped relative infectivity function.

The AADIS probabilities  incorporate  herd prevalence,  herd type and consignment

size, and are thus more granular than the AusSpread generalised stepped probabilities.
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Figure 5.15. AADIS vs. AusSpread: number of IPs with contiguous cull



The AusSpread probabilities of infection are generally lower than those of AADIS,

which will influence the direct contact and saleyard pathways. This is consistent with

the results in Table 5.1 where AADIS generally produced higher levels of direct and

saleyard spread than AusSpread. 

Figure 5.17 compares the normalised infectious prevalence for the AADIS intensive

beef, sheep and small pig herds (generated by the EBM for average herd sizes), with

the  AusSpread  relative  infectivity  step  function.  This  suggests  that  AusSpread  is

underestimating prevalence early in the infectious cycle for cattle and pigs relative to

AADIS, which may introduce differences in the levels of indirect and local spread

between the two models (Table 5.1). 
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Figure 5.16. AADIS vs. AusSpread: probability of transmission over time

Figure 5.17. AADIS vs. AusSpread: normalised infectious prevalence 



Figure 5.18 compares the infectious prevalence for AADIS small and large pig herds

(based on average  herd  sizes),  with  the  AusSpread prevalence  step  function.  The

AADIS prevalence curves peak earlier and slightly higher than AusSpread which may

have contributed to variation in the levels of airborne spread between the two models

(Table 5.1). 

Variation in scenario outcomes between AADIS and AusSpread may also be due to

the  substantial  differences  in  software  architecture.  The  AADIS  concurrent

architecture  is  radically  different  to,  and  inherently  more  stochastic  than,  the

AusSpread sequential architecture (Section 4.1.4). As the epidemiological principles

underpinning AADIS and AusSpread are similar, the fact that scenario outcomes are

comparable provides confidence in the AADIS concurrent approach. 

This model comparison study also highlights the performance advantage that AADIS

provided over AusSpread. AADIS completed the 18 Victorian test scenarios between

130 and 800 times faster than AusSpread, and was on average 412 times faster.
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Figure 5.18. AADIS vs. AusSpread: infectious prevalence of pig herds



5.3  Comparative study with InterSpread Plus

In addition to underpinning many FMD studies (Section 2.4.2.2), the New Zealand

model InterSpread Plus has also featured in several multi-model comparison studies

with  the  NAADSM,  AusSpread,  Exodis,  DTU-DADS  and  the  Netherlands  FMD

models (Dubé et al., 2007b; Garner et al., 2007; Gloster et al., 2010; Sanson et al.,

2011; Halasa et al., 2014; Roche et al., 2015). 

A model comparison involving AADIS and InterSpread Plus was undertaken as part

of a  Centre of Excellence for Biosecurity Risk Analysis (CEBRA) funded research

project. CEBRA is a research agreement between the University of Melbourne, the

Australian  Department  of  Agriculture  and Water  Resources  and the  New Zealand

Ministry  for  Primary  Industries.  Project  1404D  ('Using  decision  support  tools  in

emergency animal disease planning and response: foot-and-mouth disease'), aims to

assess the utility of epidemiological information available early in an FMD outbreak

as a predictor of eventual outbreak size, and to evaluate the effectiveness of disease

management  approaches  taking  into  account  multiple  management  objectives

(CEBRA, 2014). The project includes configuring AADIS to simulate the spread and

control of FMD in New Zealand, and configuring InterSpread Plus to simulate the

spread and control of FMD in Australia. This provides an opportunity for a model

comparison and relative validation study. Using AADIS to model FMD outbreaks in

New Zealand  (Figure 5.20),  satisfies  the recommendation by Taylor  (2003) that  a

model's validation should include data that was not part of its construction. Dubé and

colleagues  (2011b)  note  that  adapting  a  model  to  operate  in  the  context  of  an

alternative region/country can also be beneficial for validation purposes. At the time

of writing, the project is still in progress and only interim results are available for

simulating outbreaks without control (i.e., silent spread).

The  New  Zealand  simulations  were  carried  out  using  the  national  population  of

81,912 FMD-susceptible herds. The Australian simulations were carried out with a
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reduced national herd population of 199,956 that took into account the farm-based

approach of InterSpread Plus.

5.3.1  Method

FMD was introduced into selected herds and allowed to spread without detection for

28 days: 

• Pastoral livestock herd of 1400 animals in Canterbury, New Zealand,

• Lifestyle herd of 16 animals in Taranaki, New Zealand,

• Small pig herd of 210 animals in the Goulburn Valley, Victoria, Australia,

• Small pig herd of 132 animals in Toowoomba, Queensland, Australia.

The four scenarios were run 1000 times for AADIS and 100 times for InterSpread

Plus and the following outputs compared: 

• cumulative number of infected herds,

• proportion of spread attributable to each pathway.

The AADIS simulations were conducted on a quad-core laptop with 16GB RAM 

running 64-bit Kubuntu Linux™. The InterSpread simulations were conducted on a 

quad-core machine with 8GB RAM running 64-bit Microsoft Windows 7™. Model 

outcomes are expressed as medians with 90% probability intervals and represented 

with standard box plots (Tukey, 1977).

5.3.2  Results

AADIS and InterSpread Plus produced similar outbreaks for the Taranaki, Goulburn

Valley  and  Toowoomba  scenarios  (Table  5.6  and  Figure  5.19).  AADIS  produced

larger  outbreaks  with  more  variation  than  InterSpread  Plus  for  the  Canterbury

scenario. The proportions of infected herds attributable to the various disease spread

pathways were comparable, although AADIS had a tendency to produce more local

spread and less indirect spread than InterSpread Plus. 
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Table 5.6. AADIS vs. InterSpread Plus: silent spread 

Pastoral livestock herd

Canterbury, NZ

(ID=58600, size=1400)

Lifestyle herd in Taranaki,

NZ 

(ID=36369, size=16)

Small pig herd in

Goulburn Valley, AUS

(ID=108284, size=210)

Small pig herd in

Toowoomba, AUS

(ID=107717, size=132)

Model AADIS InterSpread AADIS InterSpread AADIS InterSpread AADIS InterSpread

Num herds in population 81,912 81,912 81,912 81,912 199,956 199,956 199,956 199,956

Number of runs 1000 100 1000 100 1000 100 1000 100

Mean infections/run1 100 +/- 3 57 +/- 5 107 +/- 3 97 +/- 7 23 +/- 1 20 +/- 2 15 +/- 1 21+/- 1

Convergence of mean2 6% 17% 6% 13% 11% 19% 10% 12%

Median infections/run3 71(16-299) 42(12-145) 80(3-309) 81(15-229) 8(1-105) 13(2-64) 8(1-48) 19(4-42)

Local spread 41% 27% 52% 50% 51% 13% 49% 19%

Direct spread 6% 15% 10% 12% 10% 42% 11% 38%

Indirect spread 51% 53% 37% 35% 12% 13% 13% 9%

Saleyard spread 1% 3% 1% 2% 12% 27% 13% 28%

Airborne spread 0% 0% 0% 0% 11% 5% 8% 0%

Total elapsed runtime 8.3 mins 9.4 mins 12.0 mins 8.0 mins 14.3 mins 3.7 mins 14.2 mins 3.6 mins

Average time per run 0.50 secs 5.66 secs 0.72 secs 4.82 secs 0.86 secs 2.20 secs 0.85 secs 2.13 secs

1 sample mean +/- standard error of the mean

2 sample mean convergence with 95% confidence (zc = 1.96). See Section 6.2 for definition.

3 with 90% probability interval
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Figure 5.19. AADIS vs. InterSpread Plus: number of infected herds after silent spread
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Figure 5.20. AADIS running a disease spread and control scenario for New Zealand



5.3.3  Discussion

It was reassuring that AADIS and InterSpread Plus produced quite similar outbreaks

for three of the four test scenarios. Outcome variations between the two models are to

be expected given the differences in the way the spread of disease within a herd/farm

is handled. Whereas AADIS explicitly models within-herd spread with an SEIR mass-

action EBM that takes into account herd type and size (Section 3.3), InterSpread Plus

is closer to AusSpread in this regard and does not explicitly model within-herd spread.

InterSpread Plus uses a prevalence profile per farm class which does not take into

account the number of animals on the farm. This means that AADIS is less likely to

generate significant spread from an infected herd with few animals. InterSpread Plus

applies averaged prevalence profiles across a farm class, which means a farm with

few animals has the same likelihood of generating spread as a large farm.

AADIS accounts for herd size in local and indirect spread such that farms with more

animals are more likely to spread infection. This tends to produce greater variation in

the outcomes. In contrast, InterSpread Plus does not assume a relationship between

herd size and local/indirect spread. 

A possible  explanation  for  AADIS  generally  producing  more  local  spread  than

InterSpread Plus is differences in the implementation of the local spread pathways

between the two models. The AADIS local spread pathway is a catch-all in that all

types  of spread within the 3km local spread radius around each infected herd are

classified as local. The InterSpread Plus local spread pathway, on the other hand, does

not include indirect spread within the local spread radius.

The  AADIS  and  InterSpread  Plus  comparison  is  still  in  progress  and  model

configuration, results and discussion will be reported in a later paper.
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5.4  Sensitivity Analysis

Sensitivity  analysis  is  a  technique  of  systematically  varying  model  parameters  in

order to gauge their relative influence on scenario outcomes. It is particularly useful

for assessing the influence of parameters that are naturally variable, subject to chance,

or uncertain due to inadequate data (Taylor, 2003). It is important that modellers and

the users of models know how the quality of specific data influence model outcomes.

This helps funnel effort into improving the quality of important data, in lieu of data

that  does not  materially  impact  the key model  outputs  (Green and Medley,  2002;

Taylor,  2003).  The  identification  of  parameters  that  strongly  influence  scenario

outcomes is also useful from an epidemiological perspective, for example, a delay in

the initial detection of FMD can lead to significantly longer outbreaks (Bates et al.,

2003b;  Owen  et  al.,  2011).  This  information  can  then  inform  planning  and

preparedness activities, such as a cost benefit analysis of proactive surveillance.

This  section  provides  a  high-level  sensitivity  analysis  of  parameters  pertaining  to

three functional areas:

• The transmission of FMD. Control measures are disabled for this analysis in

order to isolate the effects of spread mechanisms.

• The control and eradication of FMD. Resourcing is disabled for this analysis

in order to better isolate the effects of control mechanisms. The disabling of

resources has the effect of providing control measures with unlimited team

resources. This means that the impact of control parameters is not influenced

by the adequacy of resources to implement control.

• The impact of resource constraints on the control and eradication of FMD.

Owing to  the  breadth  of  AADIS  parameterisation  (Appendices  B,  C  and  D),  the

sensitivity analyses are of selected parameters only. As such, it is only a first-pass

analysis and a precursor to more focused studies. The test hardware platform for each
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of  the  studies  was  a  quad-core  laptop  with  16GB RAM running  64-bit  Kubuntu

Linux™. 

5.4.1  FMD transmission

5.4.1.1  Method

FMD was introduced into a medium-sized pig farm and allowed to spread undetected

for 21 days. Baseline EBM parameter settings are provided in Table 3.2. Selected

parameters pertaining to the spread of FMD were varied one at a time by first halving

and then doubling the default value. The exception to this was the relative infectivity

and relative susceptibility parameters. As these parameters are defined relative to the

sheep  species  (see  Section  3.5.2),  only  the  non-sheep  values  were  varied.  The

simulation was run 500 times for each parameter variation. The median number of

infected  herds  (with  90%  probability interval),  was  recorded  for  each  run.  The

parameters and values used (with default values underlined), were:

• baseline probability of local spread: {0.024, 0.048, 0.096},

• baseline probability of spread between co-resident herds: {0.25, 0.5, 1.0},

• baseline probability of indirect spread: {0.025, 0.05, 0.1},

• airborne spread maximum plume distance (km): {10, 20, 40},

• airborne spread wind bearing tolerance (degrees): {7, 15, 30},

• infectivity powers1: {0.5, 1.0, 2.0},

• susceptibility powers2: {0.5, 1.0, 2.0},

• relative infectivity3: {(0.91, 1, 0.65, 1), (1.82, 1, 1.3, 1), (3.64, 1, 2.6, 1)},

• relative susceptibility3: {(7.6, 1, 0.25, 1), (15.2, 1, 0.5, 1), (30.4, 1, 1, 1)},

• EBM beta parameters: {Table 3.2 values halved,  Table 3.2, Table 3.2 values

doubled}.

1the  infectivity  powers  are  used  in  the  calculation  of  the  per-species  infectivity

weights, and allow tailoring of the effect of herd size on infectivity (Section 3.5.2). 
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2the susceptibility powers are used in the calculation of the per-species susceptibility

weights, and allow tailoring of the effect of herd size on susceptibility (Section 3.5.2).

3per  species  (cattle,  sheep,  pigs,  smallholders) relative to sheep  – refer  to  Section

3.5.2.

5.4.1.2  Results

Table 5.7 shows the median number of infected herds for each parameter of interest.

Table 5.7. Sensitivity analysis of selected spread parameters

Parameter Num infected

herds for low

parameter values1

Num infected

herds for default

parameter values1

Num infected

herds for high

parameter values1

Local spread baseline probability 24(10-53) 35(17-68) 55(30-104)

Coresident herd local spread probability 32(16-62) 35(17-68) 34(16-66)

Indirect spread baseline probability 31(15-61) 35(17-68) 40(19-75)

Airborne spread maximum plume distance 34(16-65) 35(17-68) 34(16-73)

Airborne spread wind bearing tolerance 24(12-53) 35(17-68) 48(24-88)

Infectivity powers 42(17-80) 35(17-68) 22(11-50)

Susceptibility powers 44(23-84) 35(17-68) 18(7-57)

Relative infectivity 27(13-57) 35(17-68) 42(21-85)

Relative susceptibility 34(17-66) 35(17-68) 34(17-68)

EBM beta parameters 28(15-56) 35(17-68) 43(19-86)

1 median with 90% probability interval

Figure 5.21 is a tornado diagram showing the sensitivity of the median number of

infected herds to variations  of  each of the parameters of interest  (in  terms of the

percentage  deviation  from  the  default  value).  The  diagram  illustrates  how,  for

example, in this particular scenario, the model outcome was very sensitive to changes

in the value of the local spread baseline probability, and was not very sensitive to

changes in the value of the airborne spread plume maximum distance. 
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5.4.1.3  Discussion

The number of infected herds was very sensitive to the baseline probability of local

spread occurring (Table 5.7 and Figure 5.21). The local spread pathway accounted on

average for 43%, 59% and 71% of infected herds in the low, default and high value

scenarios  respectively  (not  shown).  Given  the  typical  predominance  of  the  local

spread pathway it  is  consistent  that  the  local  spread baseline  probability  strongly

influences  model  outcomes.  The  number  of  infected  herds  was,  however,  less

sensitive to the baseline probability of indirect spread occurring. The indirect spread

pathway accounted on average for 4%, 7% and 12% of infected herds in the low,

default and high value scenarios respectively (not shown). Given the typical weak

contribution of the indirect spread pathway it is consistent that the baseline probability

does not strongly influence outcomes. 

The number of infected herds was very sensitive to the wind bearing tolerance of

airborne spread but not the maximum plume distance (Table 5.7 and Figure 5.21).
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This is intuitive as when the plume angle increases, some of the additional susceptible

herds at risk are potentially close to the virus-shedding pig herd where the plume

strength is  higher and risk of infection increases (Figure 3.11).  In contrast,  as the

plume distance increases, the additional susceptible herds at risk are all further away

from the virus shedding pig herd where the plume strength is lower and the risk of

infection decreases. As the outbreak started in a medium-sized pig herd there were

likely higher levels of airborne spread than if the outbreak had started in a non-pig or

small-pig herd. This in turn may have influenced the sensitivity of parameters used by

the  airborne  spread  pathway.  To  investigate  this  further  a  secondary  sensitivity

analysis could be conducted over a range of outbreak scenarios with varying seed

herd types and sizes.

The number of infected herds was very sensitive to the susceptibility and infectivity

powers (Table 5.7 and Figure 5.21). This implies that care needs to be taken when

configuring the relationship between herd size and susceptibility/infectivity (Section

3.5.2).  A secondary  sensitivity  analysis  could  investigate  this  further  by  varying

susceptibility and infectivity powers on a per-species basis. The ability to tailor the

effect of herd size on susceptibility/infectivity is useful when modelling a livestock

population such as Australia's that has herds ranging in size from under 50 animals on

a smallholding up to tens of thousands of animals on an extensive cattle farm or cattle

feedlot. 

The number of infected herds was moderately sensitive to variations of the EBM beta

values  (Table  5.7  and  Figure  5.21).  This  supports  the  AADIS  design  decision  to

explicitly model the within-herd spread of disease. A secondary sensitivity analysis

could investigate this further by varying beta values on a per-herd type basis, and

perhaps  other  EBM  parameters  as  well  such  as  the  latent  periods  and  infectious

periods (Table 3.2).
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5.4.2  FMD control and eradication

5.4.2.1  Method

FMD was introduced into a medium-sized pig farm with detection of the index case

occurring 21 days  after  the primary infection.  The baseline EBM configuration is

provided  in  Table  3.2.  A single  control  strategy  was  employed:  stamping  out  of

infected premises plus suppressive ring vaccination. Baseline parameter settings for

the control strategy are provided in Table 6.1. Resourcing was disabled which equates

to  the  control  program  being  implemented  with  an  unlimited  number  of  disease

control  operational  teams.  The  simulation  was  run  500  times  for  each  parameter

variation.  The median number of infected herds and outbreak duration (with 90%

probability interval), was recorded for each run. The parameters and values used (with

default values underlined), were: 

• time to detection (days): {10, 21, 42},

• movement control areas (CA, RA) radii (km): {(3, 1), (10, 3), (20, 6)},

• vaccination outer radius (km): {1, 3, 6},

• direct tracing effectiveness1: {(0.5, 0.35, 0.42, 0.35), (1, 0.7, 0.85, 0.7), (1, 1,

1, 1)},

• indirect tracing effectiveness1: {(0.45, 0.35, 0.42, 0.35), (0.9, 0.7, 0.85, 0.7),

(1, 1, 1, 1)}.

1per species (cattle, sheep, pigs, smallholders), where a value of 1 indicates 100% tracing effectiveness
– refer to Section 3.6.4.

5.4.2.2  Results

Table 5.8 shows the median outbreak duration and median number of IPs for each

parameter of interest.
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Table 5.8. Sensitivity analysis of selected control parameters

Parameter   Low parameter

values

Default parameter

values

High parameter

values

Num IPs2 Duration1,2 Num IPs2 Duration1,2 Num IPs2 Duration1,2

Time to detection 16(9-30) 33(21-64) 34(15-79) 50(33-87) 94(34-221) 83(60-130)

CA/RA radii 32(14-82) 58(35-102) 34(15-79) 50(33-87) 33(16-83) 49(32-82)

Vaccination outer radius 43(17-108) 57(38-105) 34(15-79) 50(33-87) 31(15-66) 42(32-69)

Direct tracing effectiveness 33(13-77) 51(34-83) 34(15-79) 50(33-87) 33(13-72) 50(32-82)

Indirect tracing effectiveness 34(14-71) 49(33-92) 34(15-79) 50(33-87) 32(14,81) 50(33-89)

1 day that last IP is declared
2 median with 90% probability interval

Figure 5.22 is a tornado diagram showing the sensitivity of the median number of IPs

to variations of each of the parameters of interest (in terms of the percentage deviation

from the default value).

Figure  5.23  is  a  tornado diagram showing the  sensitivity  of  the  median  outbreak

duration to variations of each of the parameters of interest (in terms of the percentage

deviation from the default value).
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Figure 5.22. Sensitivity of number of IPs to control parameters
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5.4.2.3  Discussion

The size and duration of an outbreak were very sensitive to when infection is first

detected. This is intuitive and consistent with previous studies (Carpenter et al., 2011).

The case study in Section 6.1 looks at this phenomena in more detail. 

The size and duration of an outbreak were somewhat sensitive to the size of the outer

vaccination radius. This is intuitive given that resources were not constrained, and is

broadly consistent with previous studies (Roche et al., 2014). A follow-up study could

look at the sensitivity of model outcomes to the individual parameters that govern

vaccination. This includes the starting day of a vaccination program, vaccination inner

radius, vaccination direction (inside-out or outside-in), vaccination priorities (by herd

type)  and  vaccination  retrospectivity  (all  IPs  or  new  IPs  only)  (Section  3.6.7,

Appendices B, C and D).

The  size  and  duration  of  an  outbreak  were  somewhat  sensitive  to  the  size  of

movement control areas, but were relatively insensitive to the effectiveness of tracing.

Although  not  shown  in  the  results,  the  median  number  of  TPs  in  an  outbreak
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Figure 5.23. Sensitivity of outbreak duration to control parameters
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correlated with the effectiveness of tracing. This implies that the tracing mechanism in

the  model  was  reacting  appropriately  to  the  effectiveness  parameter.  The  lack  of

impact on outbreak size and duration perhaps implies that other control measures such

as  routine  surveillance  and  SP reporting  compensated  for  the  variation  in  tracing

effectiveness. Another  potential  reason  for  the  lack  of  sensitivity  to  tracing

effectiveness  is  that  tracing  is  based  on  direct  and  indirect  contacts,  and  in  this

scenario the dominant spread mechanism was local spread.

5.4.3  The  impact  of  resource  constraints  on  FMD  control  and

eradication

5.4.3.1  Method

FMD was introduced into a medium-sized pig farm with detection of the index case

occurring 21 days  after  the primary infection.  The baseline EBM configuration is

provided  in  Table  3.2.  A single  control  strategy  was  employed:  stamping  out  of

infected premises plus suppressive ring vaccination. Baseline parameter settings for

the control strategy are provided in Table 6.1. Resourcing profiles (Section 3.6.8),

were  standardised  to  1  on  the  first  day  of  control,  increasing  linearly  up  to  the

maximum numbers specified below (baseline values are underlined). The simulation

was run 200 times for each of the parameter variations. All scenarios were configured

to end at the earliest of either a controlled outbreak or 1000 elapsed simulation days.

• maximum number of surveillance teams: {5, 20, 100},

• maximum number of culling teams: {5, 20, 100},

• maximum number of disposal teams: {5, 20, 100},

• maximum number of decontamination teams: {5, 20, 100},

• maximum number of vaccination teams: {5, 20, 100}.

5.4.3.2  Results

Table 5.9 shows the median outbreak duration and median number of IPs for each

parameter of interest.
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Table 5.9. Sensitivity analysis of selected resourcing parameters

Parameter Low parameter values Default parameter values High parameter values

Num IPs1 Last IP1,2 Last control1,3 Num IPs1 Last IP1,2 Last control1,3 Num IPs1 Last IP1,2 Last control1,3

Max surveillance teams 60(16-862) 291(84-1000) 330(127-1000) 42(12-266) 86(51-242) 121(86-345) 36(16-80) 55(37-96) 94(76-131)

Max culling teams 44(15-236) 88(55-327) 122(90-353) 42(12-266) 86(51-242) 121(86-345) 39(11-182) 83(50-230) 117(87-279)

Max disposal teams 44(14-157) 86(57-216) 120(88-255) 42(12-266) 86(51-242) 121(86-345) 42(14-212) 84(55-254) 118(89-348)

Max decontamination teams 43(14-137) 87(55-204) 123(89-241) 42(12-266) 86(51-242) 121(86-345) 41(14-156) 84(54-198) 117(88-254)

Max vaccination teams 47(16-238) 92(56-305) 126(92-347) 42(12-266) 86(51-242) 121(86-345) 41(17-157) 86(58-222) 121(94-249)

1 median with 90% probability interval
2 day that the last IP is declared
3 day that the last IP/DCP/SP/TP/ARP/POR is resolved
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Figure 5.24. Sensitivity of number of IPs to resourcing levels
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Figure 5.24 is a tornado diagram showing the

sensitivity  of  the  median  number  of  IPs  to

variations  in  resourcing  levels  (in  terms  of

the  percentage  deviation  from  the  default

value).



Figure  5.25  is  a  tornado diagram showing the  sensitivity  of  the  median  outbreak

duration (based on the day that the last IP is declared), to variations in resourcing

levels (in terms of the percentage deviation from the default value).

Figure  5.26  is  a  tornado  diagram  showing  the  sensitivity  of  the  median  control

program  duration  (based  on  the  day  that  the  last  IP/DCP/TP/SP/ARP/POR  is

resolved), to variations in resourcing levels (in terms of the percentage deviation from

the default value).
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Figure 5.25. Sensitivity of outbreak duration to resourcing levels

Figure 5.26. Sensitivity of control program duration to resourcing levels
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5.4.3.3  Discussion

The sensitivity analysis in Section 5.4.2 did not constrain the resourcing of control

measures,  i.e.,  each  jurisdiction  had  unlimited  teams  at  their  disposal.  The

introduction of default resource levels in this study resulted in a 24% increase in the

median number of IPs and a 72% increase in the median outbreak duration.  This

variation  illustrates  the  usefulness  of  being  able  to  conduct  what-if  scenarios  on

resource constraints that may well hamper the efficacy of the response to an outbreak

(Roche et al., 2014). 

The size and duration of an outbreak were very sensitive to the number of surveillance

teams available per jurisdiction. Reducing the number of teams from the default level

to a minimal level resulted in a 48% increase in the median number of IPs, a 338%

increase in the median outbreak duration, and a 2700% increase in the number of

uncontrolled  (after  1000  days)  outbreaks.  In  the  default  model  set-up,  IPs  are

confirmed by a surveillance team visit. This means that while a suspect infection may

be reported or a high risk farm identified through tracing, subsequent IP operations

(valuation, destruction, disposal and decontamination), won't occur until infection has

been confirmed. It is thus consistent that the effectiveness of the control program is

sensitive to the availability of surveillance teams. In an actual outbreak, one approach

to  managing  a  surveillance  resource  shortage  might  be  to  change  the  policy  for

declaring  IPs.  Another  factor  contributing  to  the  model  sensitivity  to  surveillance

resourcing is that AADIS generates false SPs and false TPs (Sections 3.6.5 and 3.6.4),

which also require surveillance visits. A follow-up study could look at the sensitivity

of  model  outcomes  to  the  individual  parameters  that  influence  surveillance.  This

includes: surveillance visit priorities, frequencies, periods and durations, the need for

laboratory confirmation of disease, delays in laboratory results affect the timeliness of

assessing premises, and the ratio of false SP reports to true SP reports (Appendices B,

C and D).
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The size and duration of an outbreak were mildly sensitive to the number of culling

and vaccination teams available per jurisdiction. As the model was very sensitive to

surveillance resourcing, a follow-up study could isolate the sensitivity to culling and

vaccination resourcing by setting unlimited surveillance resourcing.

The size and duration of an outbreak were not sensitive to the number of disposal and

decontamination teams available per jurisdiction. This is an intuitive outcome as once

the animals on an IP are destroyed, the risk of disease transmission is negated. As the

model was very sensitive to surveillance resourcing, a follow-up study could isolate

the  sensitivity  to  disposal  and  decontamination  resourcing  by  setting  unlimited

surveillance resourcing.

5.4.4  Conclusions

AADIS has extensive parameterisation (Appendices B, C and D), and it is important

for users of the model to know which parameters strongly influence model outcomes

and  thus  need to  be  set  with  care.  Examples  of  this  are  the  herd  infectivity  and

susceptibility power parameters that allow a user to tailor whether the size of a herd

has a strong or weak influence on herd infectivity and susceptibility (Section 5.4.1). 

Sensitivity analyses are also an important part of model testing. For example, as part

of testing the local spread pathway, all parameters that influence local spread can be

systematically varied and model outcomes assessed. The AADIS ABM architecture

allows individual components to be easily enabled and disabled. This means that there

is  also  the  option  of  conducting  targeted  sensitivity  analysis  on  components  in

isolation from the rest of the model.

Further sensitivity analyses will  be conducted as part  of the ongoing validation of

AADIS.
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5.5  EuFMD modelling workshop

Another important part of validating a model is to ensure that the outcomes make

biological  sense (Taylor,  2003).  An opportunity arose for AADIS to feature in  an

FMD modelling workshop sponsored by the European Commission for the Control of

Foot-and-mouth Disease (EuFMD), within the Food and Agriculture Organisation of

the United Nations. The workshop was designed to expose participants to the use of

epidemiological models for FMD contingency planning and response, and ran from

29th September to 3rd October 2014 in Frascati Italy. The workshop was attended by

veterinary  epidemiologists,  animal  health  policy  specialists  and  researchers  from

Albania,  Austria,  Bosnia  and  Herzegovina,  Canada,  Denmark,  Greece,  Estonia,

Hungary,  Italy,  the Netherlands,  Norway,  Slovenia,  Spain,  Sweden and the United

Kingdom.  AADIS  was  used  intensively  by  participants  over  the  course  of  the

workshop to model a variety of FMD outbreak and control scenarios (Figure 5.27). 
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Figure 5.27. AADIS in use at a UN FMD modelling workshop (EuFMD, 2014)

http://www.fao.org/ag/againfo/commissions/eufmd/commissions/eufmd-home/en/


The EuFMD workshop served as a useful informal validation of AADIS. The model

performed  well  over  a  variety  of  outbreak  scenarios  and  control  strategies,  and

feedback was positive. Participants considered the model to be user friendly, flexible

and intuitive, with outputs valuable for supporting disease management and decision-

making.  A number  of  the  participants  commented  that  the  dynamic  visualisation

provided useful insights into outbreak dynamics. An interesting comment was made

on the potential applicability of the AADIS per-jurisdictional modelling approach in a

European  context.  In  the  same  way  that  Australian  states  are  responsible  for

administering their own control program under national policy, European countries

are independent,  yet guided by OIE policies (OIE, 2012; OIE, 2013).  Further,  the

AADIS ABM has the potential to model the spread of disease on a per-jurisdiction

basis. For example, individual spread pathways could be employed for a country with

detailed livestock movement data, while a simpler aggregated spatial-kernel approach

could be employed for a country with poor livestock movement data.

5.6  Independent review by the University of Melbourne

An independent  assessment  of  a  model  is  an important  aspect  of  verification and

validation  (Taylor,  2003).  This  helps  to  ensure  that  an  epidemiological  model  is

performing as intended and fit for purpose to be used by animal health authorities, and

also  to  build  end-user  confidence  in  the  model.  The  Australian  Department  of

Agriculture and Water  Resources  commissioned the Faculty of  Veterinary Science

within  the  University  of  Melbourne  to  conduct  an  independent  review of  AADIS

including:

 a review of the model structure and functionality,

 simulations to assess whether the model is fit for purpose,

 sensitivity and/or statistical analyses to assess the influence and suitability of

input parameters on the outputs,

 statistical analysis to assess the appropriate number of simulations to run for

convergence.
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The assessment is still in progress and at this stage only an interim report is available

containing  a  review  of  the  model  structure,  and  a  basic  validation  of  the  spread

pathway mechanisms (refer to Appendix F). 

The report concluded that:

• The frequency of simulated direct movement events and the distance range of

simulated direct movement events are consistent with the input values for each

of these settings configured by the user.

• The frequency of simulated indirect movement events and the distance range

of simulated indirect movement events are consistent with the input values for

each of these settings configured by the user.

• The density of local spread infected herds is relatively high at short distances

from the seed herd and declines with distance from the seed herd.

• The density of windborne spread infected herds as a function of distance from

the  seed  herds  is  biologically  plausible  (the  density  of  infected  herds  is

negligible 0 to 4 km from the source herd, reaching a maximum at 4 to 5 km

and then tapering off to zero by 10 km).

The preliminary findings of the external assessment were encouraging. The observed

direct movement frequencies and distances (Section 3.5.1), strongly correlated with

the model configuration. The observed indirect movement frequencies and distances

(Section 3.5.2), also strongly correlated with the model configuration. The observed

linear decay in  the spatial  distribution of infections arising from local  spread was

consistent  with the  spatial-kernel-based local  spread pathway (Section  3.5.3).  The

spatial distribution of infections from airborne spread was consistent with the airborne

spread pathway operating in linear decay mode (Section 3.5.4). The observed absence

of airborne spread close to source herds was consistent with the design of the airborne

spread pathway to not operate inside the (3km radius) local spread area.
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6  CASE STUDIES

In this Chapter the application of AADIS from a user perspective is explored through

three  case  studies.  The  first  case  study  is  taken  from  Bradhurst  and  colleagues

(2015a). It compares a control strategy of stamping out with a strategy of stamping

out plus suppressive ring vaccination. It provides an example of how AADIS can be

used to address policy issues, in this case, whether the adoption of vaccination will

improve the management of an FMD outbreak. This case study also illustrates the

three AADIS dynamic visualisation modes. 

The  second  case  study addresses  the  question  of  how many runs  are  required  to

provide a reliable estimate of the number of infected herds in a scenario simulation.

This is done by performing a large number of simulations and testing for convergence

of the sample mean within a desired statistical tolerance. 

The  third  case  study  looks  at  the  runtime  performance  of  AADIS  conducting  a

national-scale simulation compared to a regional-scale simulation.

6.1  Control strategy comparison 

6.1.1  Outbreak scenario

The south-east of Australia is an agriculturally intensive area that has previously been

identified as vulnerable to an FMD outbreak (East et al., 2013). The Goulburn Valley

is a 14,287 km2 sub-region of Victoria with significant cattle and horticultural sectors

(Regional Development Victoria, 2010). The dairy industry in this region comprises

around  3000  farms  and  accounts  for  approximately  13%  of  Australia's  milk

production  (Department  of  Environment  and  Primary  Industries,  2015).  Other

livestock-based sectors in the region include beef, wool, sheepmeat and pigs. 
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The case study scenario is an outbreak of FMD in a medium-sized Goulburn Valley

pig farm. The farm has a population of 3209 pigs and there are 20 neighbouring farms

within  a  3km  radius.  The  outbreak  occurs  in  May  when  the  usual  cool  weather

favours the survival of FMDV outside a host. Detection of the index case occurs 21

days after  the  primary infection.  Table 3.2 lists  some of  the  key EBM parameter

values. Two strategies for controlling the outbreak were assessed:

• stamping out of infected premises (SO),

• stamping out of infected premises plus suppressive ring vaccination (SORV).

Selected parameter settings for the control strategies are provided in Table 6.1. 

Table 6.1. Selected control program parameter settings

Control Parameter Value

National livestock standstill 3 days

Restricted area (RA) Circle of 3km radius enclosing each IP 

Controlled area (CA) Circle of 10km radius enclosing each IP

Num days to report suspect premises after clinical signs 0 to 19 days (herd type-dependent)

Probability of reporting suspect premises 70% to 100% (herd type-dependent)

Ratio of false suspect premises reports to true reports 2.34:1

Tracing window 14 days backwards, 14 days forward

Time needed for a direct trace 0 to 4 days (species-dependent)

Time needed for an indirect trace 1 to 5 days (species-dependent)

Effectiveness of direct tracing 70% to 100% (species-dependent)

Effectiveness of indirect tracing 70% to 90% (species-dependent)

Non-compliance with direct movement controls 2% inside RAs, 2% inside CAs

Reduction of indirect movements 15% inside RAs, 50% inside CAs

Surveillance visit duration 0.5 day (herd type-dependent)

Max number of surveillance teams 20 per jurisdiction

Max number of culling teams 20 per jurisdiction

Max number of disposal teams 20 per jurisdiction

Max number of decontamination teams 20 per jurisdiction
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Control Parameter Value

Max number of vaccination teams 200 per jurisdiction

Days to cull a herd 0.5 to 14 (herd type-dependent)

Days to dispose a herd 0.5 to 18 (herd type-dependent)

Days to decontaminate a premises 1 to 28 (herd type-dependent)

Start of vaccination program 7th day of the control program

Days to vaccinate a herd 0.5 to 7 (herd type-dependent)

Vaccination annulus radii (km) 1, 3

Vaccination direction Outside-in

6.1.2  Method

The simulation was run 500 times for each control strategy and the following outputs

compared:

• duration of the outbreak (defined as the number of days from when the index

case was declared to when the last infected premises was resolved), 

• cumulative number of infected premises,

• cumulative number of culled premises,

• cumulative number of culled animals,

• cumulative number of vaccinated premises,

• cumulative number of vaccinated animals.

In addition, a simple sensitivity analysis was carried out on selected parameters under

strategy  SO.  The  following  parameters  were  varied  (the  baseline  values  are

underlined):

• time to first detection (7, 14, 21 and 28 days),

• duration of the national standstill (0, 3, 7, 10 days).

The test hardware platform was a quad-core laptop with 16GB RAM running 64-bit

Kubuntu Linux™.  The Stata/IC statistical package (Stata, 2015) was used to analyse
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the distributions of the key model outputs.  Data sets were imported into Stata and

checked for normality. Non-parametric statistical methods were used throughout this

analysis as some data sets were non-normal and could not be transformed to normality

by standard transformation techniques. The number of infected premises,  outbreak

duration, number  of culled animals, number of vaccinated premises and number of

vaccinated animals were analysed  using the Kruskal-Wallis  test  for comparison of

multiple independent groups of data (UCLA, 2015a). Post hoc analysis to identify

differences between strategies was conducted using the Kruskal-Wallis test with the

significance  level  adjusted  per  the  Bonferroni  correction  for  multiple  pairwise

comparisons.  Model  outcomes  are  expressed  as  medians  with  90%  probability

intervals.

6.1.3  Results

Figures 6.1 to 6.3 illustrate the three AADIS visualisation modes on day 21 of run

number 1 of 500, of the baseline stamping out scenario. 
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Figure 6.1 illustrates how within-herd spread is represented as heat-colours reflecting

infected prevalence levels generated by the EBM of each infected herd. The primary

case (seed herd) is blue and susceptible herds are light grey. Figure 6.1 also illustrates

the optional display of the convex hull area of infection, in this case 33 km2. 
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Figure 6.2 shows the infection network generated by the ABM, with colour-coded

vectors  reflecting  the  particular  spread  pathway  that  was  triggered.  Each  herd  is

labelled with the simulation day on which infection occurred.  At this stage in the

outbreak there was only local (green) and airborne (cyan) spread emanating from the

primary case pig herd. 
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Figure 6.3 shows the outbreak on day 21 from a disease management point of view.

Despite there being 13 infected herds, there was only one known infected premises

(red). Figure 6.3 also shows two optional popup windows: the prevalence curves for a

herd (in this case the index case), and the epidemic curve depicting declared infected

premises versus actual infected premises. 

Strategy SORV was effective in reducing both the size and duration of an outbreak

when  compared  to  the  baseline  SO  strategy.  There  were  significantly  less  IPs,

significantly shorter outbreaks, and significantly less culled animals than stamping out

alone  (p  <  0.05)  (Figure  6.4  and  Table  6.2).  SORV was  particularly  effective  in

reducing  the  likelihood  of  a  very  large  outbreak,  which  could  be  an  important

consideration for a disease manager.
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The sensitivity analyses  showed that findings were significantly influenced by the

time to first detection. Varying the time to detection for strategy SO produced strongly

correlated changes to the number of IPs,  outbreak duration,  and number of culled

animals (p < 0.05) (Table 6.2). The findings were less sensitive to the duration of the

national  livestock  standstill  with  only  a  0-day  standstill  and  a  10-day  standstill

producing  significantly  different  outcomes  (p  <  0.05).  This  suggests  that  for  the

outbreak scenario, there is perhaps not a significant advantage in extending the default

three-day standstill.
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Table 6.2. Control strategy comparison case study results

Control

Strategy

Detection 

Day

Standstill 

duration (days)

Outbreak duration 

(days) 3,4,5

Number of IPs 4,5 Number of culled 

animals 4,5

Number of 

vaccinated 

farms 4

Number of 

vaccinated animals 4

Scenario 

runtime 

(seconds) 4

SO 1 21 3 89(60-220) a 49(18-231) a 38875(9838-185996) a 0 0 5.5(3.3-16.1)

SORV 2 21 3 77(55-129) b 32(13-95) b 26388(7688-118036) b,c 192(70-561) 51102(15442-153972) 4.8(3.1-9.6)

Sensitivity analysis of the time to detection

SO 7 3 73(51-107) b 20(9-48) b 13385(7201-61081) b 0 0 3.0(2.0-4.8)

SO 14 3 78(57-146) b 32(14-98) b 19323(7448-92393) b 0 0 4.3(2.9-8.6)

SO 1 21 3 89(60-220) a 49(18-231) a 38875(9838-185996) a 0 0 5.5(3.3-16.1)

SO 28 3 103(63-380) c 78(23-732) c 72275(13314-738018) d 0 0 7.5(4.0-46.6)

Sensitivity analysis of the duration of the national livestock standstill

SO 21 0 90(61-215) a 53(19-241) a 45683(10163-208485) a 0 0 5.6(3.3-17.0)

SO 1 21 3 89(60-220) a 49(18-231) a 38875(9838-185996) a 0 0 5.5(3.3-16.1)

SO 21 7 86(59-184) a 48(17-184) a 37111(9919-165532) a 0 0 6.1(3.9-15.1)

SO 21 10 85(60-189) a 46(19-176) a 39130(10754-148028) a 0 0 5.2(3.4-13.7)

1 Baseline stamping out policy

2 Baseline vaccination policy (stamping out plus suppressive ring vaccination)

3 Time from detection of index case to resolution of final IP

4 Median (90% probability interval)

5 Within each column, numbers with a different superscript are significantly different
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6.1.4  Discussion

This  case study illustrated how AADIS can be used to  support  FMD contingency

planning and response.  The study strongly suggests that  augmenting stamping out

with suppressive ring vaccination reduces the size and duration of an outbreak. The

study did not include a cost-benefit analysis, so although vaccination resulted in less

culled  animals,  the  cost  of  the  vaccination  program,  and  the  return-to-market

implications  of  adopting  vaccination  were  not  taken  into  account  (Animal  Health

Australia, 2014a).

The  case  study  also  illustrated  the  three  AADIS  dynamic  visualisation  modes.  A

disease manager's limited view of an outbreak (Figure 6.3) was contrasted with the

physical reality of infected herds in the population (Figures 6.1 and 6.2). Dynamic

visualisation is generally not required when conducting epidemiological scenarios, as

outcomes  are  written  to  CSV  files  for  subsequent  statistical  analysis.  However,

dynamic  visualisation  is  very  useful  for  conveying what  the  model  is  doing,  and

illustrates the potential of AADIS as a training tool for disease managers.

6.2  Convergence

Stochastic  models  that  employ  Monte  Carlo  methods  generate  distributions  of

outcome variables (Hamra et al., 2013). An important question for model users is how

many runs are needed to provide a reasonable representation of a scenario outcome

(Byrne, 2013). The central limit theorem implies that for a sufficiently large number

of samples of a random variable, the cumulative sample mean of the variable will tend

towards the population mean (Vose, 2008). A model thus requires a certain number of

runs for the sample mean of a given outcome variable to converge within a desired

range of  the  theoretical  population  mean.  The variability  of  the  outcome variable

distribution (as measured by the coefficient of variation), influences the rate at which

convergence of the sample mean occurs. This study investigates how many runs of an

AADIS scenario are required to achieve a desired convergence.
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6.2.1  Method

The runs from the AADIS and AusSpread silent spread comparison (Section 5.2.1),

were analysed for convergence of the sampled mean number of infected herds. The

technique  (Driels and Shin, 2004), estimates the percentage standard error  E of the

sample mean attained for a given number of runs (Equation 6.1), and the number of

runs needed for the sample mean to converge within E% of the theoretical population

mean (Equation 6.2). Both equations allow a desired confidence level to be specified. 

                                
E =

100 zc Sx

x̄√n

n = {100 zc Sx

E x̄ }
2

 

6.2.2  Results

Table  6.3  provides  the  percentage  standard  error  of  the  sample  mean  (with  95%

confidence), for the given number of runs. This indicates how close the sample mean

has converged to the theoretical population mean. The table also shows the number of

runs needed to be 95% confident that the sample mean is within 5%, 8%, 10%, 12%,

15% and 20% of the theoretical population mean.
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Sx = sample standard deviation
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Table 6.3. AADIS vs. AusSpread: convergence analysis

Small pig herd

(ID=42189, size=110)

Medium pig herd

(ID=7779, size=1945)

Dairy herd (ID=33812, 

size=256)

Sheep herd 

(ID=98, size=3065)

Beef herd 

(ID=315, size=532)

Model AADIS AusSpread AADIS AusSpread AADIS AusSpread AADIS AusSpread AADIS AusSpread

Number of runs 1000 100 1000 100 1000 100 1000 100 1000 100

Sample mean (infected herds) 16.69 18.88 23.73 20.04 14.93 10.99 0.28 0.18 4.57 3.8

Sample standard deviation 20.11 7.73 24.48 20.64 13.50 4.52 1.09 0.44 6.30 2.5

Coefficient of variation1 1.20 0.41 1.03 1.03 0.90 0.41 3.83 2.46 1.38 0.66

Standard error of sample mean2 0.64 0.77 0.77 2.06 0.43 0.45 0.03 0.04 0.20 0.25

Convergence of sample mean3 7.5% 8.0% 6.4% 20.2% 5.6% 8.1% 23.7% 48.3% 8.6% 12.9%

Num runs for 5% convergence4 2231 258 1635 1631 1257 260 22490 9319 2924 666

Num runs for 8% convergence4 871 101 639 637 641 102 11475 3640 1492 260

Num runs for 10% convergence4 558 64 409 408 314 65 5623 2330 731 167

Num runs for 12% convergence4 387 45 284 283 218 45 3905 1618 508 116

Num runs for 15% convergence4 248 29 182 181 140 29 2499 1035 325 74

Num runs for 20% convergence4 139 16 102 102 79 16 1406 582 183 42

1 sample standard deviation / sample mean

2 sample standard deviation / square root of the number of samples

3 Equation 6.1 with 95% confidence (zc = 1.96)

4 Equation 6.2 with 95% confidence (zc = 1.96)
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6.2.3  Discussion

Figure  6.5  illustrates  how the  cumulative  sample  mean  number  of  infected  herds

stabilised over time. For the medium pig herd scenario (herd ID 7779), the cumulative

mean stabilised after approximately 284 runs, at which point it was accurate to 12%,

with 95% confidence (Table 6.3). To achieve 5% convergence the scenario would

have needed to be run 1635 times. 

Table 6.3 illustrates how some scenarios are inherently more stochastic than others.

For  example,  outcomes  of  the  sheep  scenario  (herd  ID  98),  have  much  larger

coefficients of variation than those of  the other  scenarios.  This means that  higher

number of runs are required for convergence. AADIS would require 22,490 runs to

attain  5% convergence  in  the  sheep  scenario  but  would  only  need  1257  runs  to

achieve 5% convergence in the dairy scenario.

AADIS  generally  produced  outcomes  with  higher  coefficients  of  variation  than

AusSpread and required more runs to converge than AusSpread (Table 6.3). Likely

reasons for the variability between the two models are:

• AADIS explicitly  models within-herd spread whereas  AusSpread does  not

(Section 5.2.3), 
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• the  AADIS  concurrent  software  architecture  is  inherently  more  stochastic

than the AusSpread sequential software architecture (Section 4.1.4).

Although AADIS required more runs than AusSpread to  achieve convergence,  the

runtime performance advantage that AADIS offered more than compensated for this.

For example, AADIS took 11 minutes to achieve 5% convergence in the small pig

herd scenario (herd ID 42189), with 2231 runs. AusSpread would have required over

7 hours to achieve 5% convergence in the same scenario with 258 runs.

This case study demonstrates the value of a user knowing the level of convergence for

a given scenario outcome, and whether sufficient runs have been conducted in order

to achieve the desired statistical confidence in the outcome distribution.

6.3  National and regional scenario runtime performance

This case study looks at the performance of AADIS when conducting a national-scale

simulation compared to one at a regional scale. No new scenarios are run – the case

study simply contrasts previous results from Chapter 5 and Chapter 6. The goal of the

case study is to ascertain whether AADIS is computationally tractable on a national

scale.

6.3.1  Method

The regional-scale scenario in Section 5.2.2 involved an FMD outbreak in a medium-

sized pig farm in the Goulburn Valley region of Victoria. The livestock population

comprised 42,217 herds. The outbreak was allowed to spread for 21 days at which

point  a  control  policy  of  stamping  out  plus  suppressive  ring  vaccination  was

employed. The national-scale scenario in Section 6.1 also involved an FMD outbreak

in a medium-sized pig farm in the Goulburn Valley region of Victoria. The livestock

population was however the full national population of 235,668 herds. The outbreak

was allowed to spread for 21 days at which point a control policy of stamping out plus

suppressive ring vaccination was employed. 
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6.3.2  Results

One thousand runs of the regional-scale scenario took 21 minutes and achieved 9%

statistical  convergence.  Five  hundred  runs  of  the  national-scale  scenario  took  45

minutes and achieved 7% convergence. On average, the regional-scale scenario took

1.2 secs per run while the national-scale scenario took 5.4 seconds per run. Table 6.4

compares the two scenarios.

Table 6.4. Regional-scale vs national-scale scenario comparison

Regional-scale scenario National-scale scenario

Primary case herd Pig (ID=7779) Pig (ID=109047)

Primary case herd size 1945 3209

Primary case location Goulburn Valley, Victoria Goulburn Valley, Victoria

Number of herds in population 42,217 235,668

Number of runs 1000 500

Day of first IP detection 21 21

Control Strategy SORV SORV

Outbreak duration1,2 42(28-79) 57(40-107)

Median number of IPs2 15(4-93) 32(13-95)

Mean number of IPs3 29 +/- 1 40 +/- 1

Convergence of mean4 9% 7%

Num culled farms2 15(4-93) 32(13-95)

Num vaccinated farms2 36(0-293) 192(70-561)

Total elapsed runtime 21 mins 45 mins

Average time per run 1.2 secs 5.4 secs

1 day that the last IP is declared

2 median with 90% probability interval

3 sample mean +/- standard error of the mean
4 sample mean convergence with 95% confidence (zc = 1.96). See Section 6.2 for definition.
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6.3.3  Discussion

The national-scale scenario generally produced larger and longer outbreaks than the

regional-scale scenario. As the national-scale scenario took into account inter-region

disease  spread it  is  suggestive that  an outbreak in  the Goulburn Valley  may well

impact jurisdictions other than Victoria. The comparison illustrates the usefulness of a

national-scale model that incorporates inter-region livestock movements which have

the potential to spread disease quickly and expansively (Sections 2.2 and 3.5.1).

The study illustrates that AADIS is computationally tractable on a national scale. The

increase  in  runtime for  the  national-scale  scenario  was very  reasonable  given the

considerably larger population, larger and longer outbreaks with considerably more

culled  and  vaccinated  farms,  and  the  inclusion  of  multi-jurisdictional  control  and

eradication.
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7  DISCUSSION

The  goal  of  this  PhD  project  was  to  develop  a  next-generation,  national-scale

epidemiological model to support Australian animal health authorities in the planning

and preparedness for EADs. Ten aims for the project were identified in Section 1.4.

Chapters 2 to 6 presented the background, design, implementation and testing of the

Australian Animal DISease (AADIS) model. This chapter reviews the work that has

been carried out in the light of each of the ten project aims.

Model users and policy makers should have a good understanding of the limitations of

modelling in general, and specific models in particular (Taylor, 2003; Keeling, 2005;

Schley, 2007). Thus, as well as highlighting the strengths of AADIS, this chapter also

includes its limitations, and caveats on the use of epidemiological models for disease

management.

Finally, potential directions for the future development of AADIS are considered.

7.1  Epidemiological unit of interest

It  is  possible  to  derive  realistic  individual-based  livestock  contact  networks  from

identification  and  tracing  systems  such  as  the  NLIS  (Section  3.1).  However,

modelling  the  spread  of  disease  on  a  per-animal  basis  is  overkill  for  a  model  of

national-scale. Apart from the computational burden of representing over 100,000,000

animals, livestock are typically managed as single species herds that effectively share

a single contact network whilst on a farm  (Section 3.1). Once  a highly contagious

disease  such as  FMD is  introduced into  a  susceptible  herd  it  is  likely  to  rapidly

progress unchecked (Section 3.4). 
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Approximately 10% of farms in Australia are mixed beef/sheep (Table 3.1).  These

farms typically adopt distinct management practices per species which influences the

spread of disease between species on the same farm.  The choice of the herd as the

modelling unit  of interest  captures heterogeneity in  the disease dynamics between

herds on a multi-herd farm. The AADIS local spread pathway captures the higher

probability of cross-infection between herds managed on the same premises (Section

3.5.3). AADIS thus offers more granular modelling of disease spread than models

such as AusSpread and InterSpread Plus that use the farm as the basic modelling unit. 

Once a herd is declared infected with FMD, all other herds on the farm are subject to

the same control and eradication procedures (Animal Health Australia, 2014a). Thus,

from a disease control perspective, the key unit of interest is a farm. AADIS takes the

innovative approach of using dual modelling units of interest: the herd for disease

spread and the farm for disease control.

7.2  FMD spread

Section  2.4  described  a  variety  of  approaches  that  have  been  used  to  model  the

transmission of disease between units (herds or farms). The simplest approach is to

spread disease based on an aggregated transmission rate (Kostova-Vassilevska, 2004);

however, this provides no information on how new infections arise. For a disease such

as  FMD  that  can  spread  by  multiple  mechanisms,  understanding  how  and  why

infection occurs can assist disease managers determine the type and scale of control

measures  to  apply.  The  most  complex approach to  modelling  the  transmission  of

disease is to explicitly represent many, perhaps dozens,  of individual pathways by

which disease might spread. For example, indirect spread can potentially arise from a

wide  variety  of  movements  of  people  and  equipment,  including  veterinarians,

shearers,  feed  delivery  vehicles,  milk  tankers,  artificial  insemination  technicians,
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friends and relatives. To explicitly model every pathway would introduce a great deal

of  complexity,  and  it  would  be  very  difficult  to  parameterise  many  of  these

movements with credible data.

AADIS has adopted a middle ground approach in which five discrete pathways of

infection are modelled: local spread, direct contact spread, indirect contact spread,

spread through markets/saleyards and airborne spread. This approach is sufficiently

granular  to  support  the  evaluation  of  targeted  control  measures  such  as  livestock

movement  standstills,  movement restrictions  on animals  and animal  products,  and

increases in farm biosecurity. The approach is consistent with that taken by a number

of other FMD models (Garner and Beckett, 2005; Risk Solutions 2005a; Harvey et al.,

2007; Stevenson et al., 2013).

The transmission of FMD is a multi-scale process in that the mechanisms and rates of

within-herd spread are distinct from those of between-herd spread (Carpenter et al.,

2003). The AADIS hybrid approach captures this phenomena by decoupling the two

spread  mechanisms  (Section  3.3).  Each  infected  herd  has  an  EBM  that

deterministically predicts within-herd infected, infectious and clinical prevalence over

time based on the herd type, herd size and pathogen strain (Section 3.4). EBM outputs

feed into stochastic ABM decisions on the spread of disease between herds across the

direct, indirect, saleyard, local and airborne pathways (Section 3.5). The ABM also

uses EBM outputs to predict the probability of detection, and in the control of disease

(Section 3.6). 

State-transition microsimulations such as NAADSM, AusSpread and InterSpread Plus

simplify  intra-farm  transmission  as  transitions  through  atomic  infection  states
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according  to  durations  sampled  from  probability  distributions.  A state-transition

approach to within-herd spread does not naturally capture the dynamics of intra-herd

transmission.  A simple  herd  state  of  'infected'  does  not  distinguish  between  the

infectiousness of a herd with 1% of the animals shedding virus and that of a herd with

80% of the animals shedding virus. This leads to a loss of infected and infectious

prevalence information that is relevant to between-herd spread, and a loss of clinical

prevalence information that influences the detection and control of disease (Carpenter

et al., 2003; Chis Ster et al., 2012). Some models allow infectiousness to vary over

time using fixed look-up values (Garner and Beckett,  2005), while others augment

infection states with transmission probabilities that vary over time (Stevenson et al.,

2013),  or  allow  custom within-herd  prevalence  curves  to  be  pre-loaded  (Reeves,

2012). A distinction of the AADIS EBM is that it is dynamic and adaptive. The EBM

reacts  to  ABM  events  such  as  vaccination  by  resolving  the  ODE-system  and

generating updated infected, infectious and clinical prevalence profiles (Section 3.4).

Section 2.2 looked at the expansive and diverse nature of Australia, with respect to

both climate and livestock production systems. Farming operations range from, for

example, small intensive piggeries, up to extensive outback cattle farms the size of a

small country (Kidman, 2015). FMD has a complex epidemiology whereby the virus

is  multi-strain  and can infect  multiple  species  across  multiple  spread mechanisms

(Section  2.1).  The  task  of  modelling  the  spread  of  FMD  on  a  national-scale  in

Australia  is  a  complex  task  owing  to  the  considerable  heterogeneities  in  the

susceptible species, production systems and environment.

Section  2.4  reviewed  various  modelling  approaches  and  noted  the  advantages  of

individual-based  models  (Keeling  et  al.,  2001;  Garner  and  Beckett,  2005;  Risk

Solutions 2005a;  Harvey et al., 2007;  Stevenson et al., 2013), and hybrid embedded
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models (Bates et al., 2003; Speck, 2008; Backer et al., 2012a; Boklund et al., 2013),

in capturing the complexities and heterogeneities that influence the spread of FMD.

The AADIS embedded hybrid approach is a continuation in this modelling direction.

It  provides  a  flexible  and  extensible  means  of  capturing  population,  spatial  and

environmental heterogeneities (Sections 3.3 and 4.1).

It is important to take population heterogeneities into account when modelling the

spread  of  FMD,  as  the  degree  and  nature  of  susceptibility  and  infectivity  varies

considerably  between  species.  The  Australian  population  of  FMD-susceptible

livestock is characterised as comprising 10 distinct herd types (Section 3.2). Herds are

further characterised by region, climate data based on the nearest weather station, and

direct  and indirect  movement patterns.  The EBM embedded in each AADIS herd

agent  generates  infected,  infectious  and  clinical  prevalence  curves  that  take  into

account the strain of virus, host species, herd type and herd size. The infectivity and

susceptibility  of  a  herd  is  species  dependent  and scales  with the  size of  the  herd

(Section 3.5.2).

7.3  FMD control and eradication

Section  2.3  described  how Australia  is  a  federation  and  while  there  are  national

policies for the handling of EADs such as FMD, the individual states and territories

implement  control  programs  under  their  own  legislation.  The  implication  for  a

national-scale model of FMD is that control measures need to be configurable and

resourced on a per-jurisdiction basis.
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AADIS  provides  a  highly  configurable  suite  of  control  measures  based  on  the

AUSVETPLAN national guidelines (Animal Health Australia, 2014a). A model user

has ready access to a range of control parameters in order to conduct what-if scenarios

on existing policies and to trial new policies. Movement restrictions, surveillance, IP

operations and vaccination are configured and resourced on a per-jurisdiction basis

(Section 3.6.8). Tracing is configured on a per-species basis and SP reporting on a

per-herd type basis. 

The  modelling  of  false  SP  reports  and  false  traces  provides  a  more  realistic

representation  of  surveillance  as  it  reflects  how  team  resources  are  consumed

regardless of the result of a surveillance visit. The ABM approach allows the required

resourcing levels for a scenario to emerge rather than be prescribed (Section 3.6.8 and

Appendix E).

7.4  Flexibility

The AADIS hybrid model architecture and object-oriented software design provide

independence between the EBM, the spread pathways and the control measures. The

decoupled approach allows the EBM and any spread pathway or control measure to

be quickly isolated for tuning or experimentation. This is much harder to accomplish

when a model aggregates ecological components, for example,  by representing all

means  of  inter-herd  spread  with  a  spatial  kernel.  AADIS  provides  three  types  of

configuration:  project-specific  in  a  relational  database,  scenario-specific  in  a  text

configuration file, and temporary overrides via the GUI. Although control measures

are configured on a per-jurisdiction basis, the GUI provides a convenient means of

quickly employing national-level overrides (Section 4.6.6). For example, the annulus

for suppressive ring vaccination can be quickly set for all jurisdictions to temporary

radii via the Vaccination Dialog. Control measures are resource constrained based on

206

Aim 7: The model has a high level of configurability
so that a range of what-if scenarios can be conducted
on the spread and control of FMD. 



configured per-jurisdiction pools.  A user can easily disable resourcing all  together

which equates to an unlimited supply of teams.

7.5  Extensibility

The decoupled nature of the AADIS ABM environment allows individual components

to be enabled and disabled with no impact on other components. New components are

readily added and existing components easily removed. For example, the five spread

pathways can be replaced with a simple spatial-kernel with no impact on the rest of

the model. This would be useful if AADIS was required to model the spread of a

disease where there was insufficient data to parameterise individual spread pathways. 

The hybrid model architecture decouples the spread of disease within a herd from the

spread of disease between herds. The ABM operates independently of how a herd

agent  EBM  is  implemented.  The  ABM  simply  requires  that  an  EBM  meet  the

contracted interface of supplying infected, infectious and clinical prevalence profiles

over time, and reacting to culling and vaccination events. This means that alternative

EBMs can be readily employed as required for the specific pathogen under study,

without impacting the ABM. This is awkward to accomplish when intra-herd spread

and inter-herd spread are tightly coupled in a pure individual-based model such as a

state-transition microsimulation. 

It is anticipated that in the future AADIS will incorporate raster-based data layers such

as weather, vegetation, feral animal ranges and insect vector distributions. The lattice

used in the AADIS grid-based spatial-indexing scheme is a natural fit for raster-based

data (Doran and Laffan, 2005). 
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The ABM architecture of lightweight agents in an active environment scales well with

population  size.  Increasing  the  number  of  herds  does  not  increase  the  number  of

threads in the system. Section 5.1.2 illustrates how the AADIS spatial query response

increases smoothly and mildly for herd population sizes of 21,617 up to 235,668.

Although not explored, it is likely that AADIS can comfortably extend beyond the

Australian population of 235,668 herds.

The  AADIS  hybrid  model  architecture,  object-oriented  software  design  and  grid-

based spatial-indexing scheme provide a solid base for modelling endeavours beyond

FMD. 

7.6  Target platform and performance

A key requirement of this study was to produce a national scale model that could

efficiently  operate  on  standard  PC/laptop  equipment.  Careful  attention  to  model

design and the use of some novel implementation tactics has enabled this requirement

to be met.  The multi-threaded asynchronous AADIS architecture offers significant

performance improvements over the sequential approach typical of microsimulations.

As  all  AADIS  spread  and  control  tasks  proceed  concurrently  the  length  of  a

simulation day is effectively limited by the longest individual task (Section 4.1.4).

Computational  efficiency  is  an  important  consideration  for  a  stochastic  model  of

national-scale as complex scenarios are re-run hundreds if not thousands of times to

allow trends to emerge (Driels and Shin, 2004).

AADIS completed national-scale test simulations 3 to 11 times faster than InterSpread

Plus (Section 5.3).  For example, InterSpread Plus completed 100 runs of a 28-day

silent spread scenario in Canterbury, New Zealand in 9.4 minutes. AADIS completed
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100 runs of the same scenario in 50 seconds.  AADIS completed regional-scale test

simulations  130 to 800 faster than AusSpread (Section 5.2).  The ease with which

AADIS  handles  large  numbers  of  runs  brings  with  it  decreased  statistical  error.

Section 5.2 shows that on average, AADIS completed 1000 runs of a regional-scale

scenario 41 times faster than AusSpread completed 100 runs, with the higher number

of AADIS runs resulting in outcome distributions that had on average 47% better

statistical convergence than the fewer AusSpread runs. Section 6.3 compared AADIS

running a  regional-scale  scenario with a  national-scale  scenario,  and showed how

AADIS is computationally tractable on a national scale. 

7.7  Fitness for purpose

The control and eradication of FMD is challenging due to the complexities of a highly

contagious and multi-host pathogen operating in a heterogeneous environment across

multiple  jurisdictions.  Models  of  disease  spread  and  control  are  increasingly

recognised as valuable tools for informing policy, provided that modellers and policy

makers have confidence that the model is fit for purpose. It is unreasonable to expect

important policy decisions to be based on blind trust in a complex piece of software.

The first step in creating confidence in a model is to ensure that the underlying data,

assumptions  and  logic  are  transparent  to  both  users  and  customers  of  the  model

(Macpherson,  2013).  Effort  has  thus been made to make the AADIS architecture,

design  and  implementation  as  accessible  as  possible  to  both  modellers  and  non-

modellers alike:

• The disaggregated and decoupled nature of the AADIS hybrid architecture

assists  with  transparency  as  each  spread  pathway  and  control  measure  is

defined  as  a  distinct  algorithm (Sections  3.5  and  3.6).  In  contrast,  when

ecological components are aggregated mathematically they can become black

boxes, for example, a spatial-kernel that condenses the various and diverse
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FMD spread mechanisms into distance-dependent probabilities (Kitching et

al., 2006). 

• The novel AADIS visualisation and GUI provide detailed visibility into the

daily progression of a scenario (Section 4.6).  An outbreak can be stepped

through a day at a time and all the spread and control decisions viewed both

graphically and via detailed log files. The AADIS visualisation is a useful

mechanism for conveying how the model works to non-modellers. This is not

possible with non-visual models such as AusSpread and InterSpread Plus that

only output tabular data for subsequent graphical analysis.

• The AADIS data is organised in a standard relational database (Appendices B

and C) and accessible either via the CSV data files or via a graphical database

viewing utility such as pgAdmin (PostgreSQL, 2015). AADIS is coded in

Java  which  is  a  very  readable  programming  language  and  reasonably

accessible to non-specialists.

A model can only be used with confidence if it has undergone sufficient verification

and validation.  This  is  particularly important  when a model  may influence policy

(Green and Medley, 2002; Garner and Hamilton, 2011). Considerable effort was made

in this project to ensure that AADIS was robust, reliable, adequately tested, and fit to

be  used  to  support  animal  health  policy.  As  such,  the  study  included  detailed

comparisons and 'relative validation'  (Dubé et  al.,  2006; Sanson et  al.,  2011) with

well-tested  models  (AusSpread  and  InterSpread  plus);  independent  testing  by  the

University of Melbourne; and a sensitivity analysis. The AADIS validation activities

undertaken thus far have yielded encouraging results (Chapter 5). The validation of a

complex  model  is  an  ongoing  process  that  extends  well  beyond  the  period  of

development  and verification.  Validation  of  AADIS will  continue  through  studies

such as the CEBRA-funded project on early indicators of outbreak severity (CEBRA,

2014). 
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Epidemiological authenticity and animal health policy have been a priority during the

entire AADIS design and implementation process. This has involved working closely

with Australian Government  Department  of Agriculture and Water Resources staff

involved in EAD preparedness and response, and trialing the model with national and

international  technical  and policy experts  at  workshops,  including an international

disease modelling workshop organised by the EuFMD (Section 5.5). 

7.8  Innovation

Population-based models concisely and efficiently capture the spread of disease in a

closed homogeneous population. Individual-based models have a natural affinity for

incorporating stochasticity, population heterogeneity, spatial effects, social factors and

jurisdictional differences.  The AADIS embedded hybrid approach has the granular

modelling advantages of an individual-based approach and efficient population-based

representation of within-herd spread. Over time, an infection network that captures

the spatiotemporal history of an outbreak emerges from the AADIS ABM (Sections

3.3 and 4.6.5). For any given node (i.e., an infected herd), the network can be traced

backwards to the source of infection and forwards to subsequent infections (Section

4.6.6).  The  network  can  also  be  mathematically  analysed  to  identify  topological

features of interest such as sinks and spreaders (Bigras-Poulin et al., 2006; Dubé et al.,

2011a; Nöremark et al., 2011). 

AADIS provides novel dynamic visualisation of an outbreak unfolding in 'real' time.

The herd infectivity visualisation mode depicts the infected prevalence of all infected

herds as heat-colours. The infected and clinical prevalence of any infected herd can be

viewed as pop-up curves. The spread pathway visualisation mode shows the entire

infection network, showing what herds were infected on what day, via what means.

The declared premises visualisation mode depicts premises involved in the control

program and  thus  presents  a  disease  manager's  limited  view of  the  outbreak that
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contrasts with the physical reality of infected herds in the population. The graphical

user  interface allows a user  to  interact  with an epidemic,  for example to  pause a

scenario  and  view  details  of  any  herd/farm  in  the  model.  It  is  also  possible  to

manually adjust the declared state of any farm. AADIS thus has potential as not only a

predictive tool that informs emergency livestock disease preparedness and planning,

but also as a vivid training tool for disease managers. 

Specific functional advantages of one model over another can be short-lived. Models

such  as  AusSpread,  InterSpread  Plus,  NAADSM,  DADS,  DTU-DADS  and  the

Netherlands model  are  active and continue to  evolve.  The principle  innovation of

AADIS is  perhaps architectural,  i.e.,  the movement away from the state-transition

microsimulation approach of AusSpread, InterSpread Plus, Exodis and NAADSM to a

hybrid EBM/ABM model. The AADIS model architecture is a more generalised form

of the embedded hybrid approach already adopted by the DADS, DTU-DADS and the

Netherlands  models  (Section  2.4.3.2).  Not  only  does  AADIS  embed  explicit

modelling of within-herd spread, the active ABM environment is  flexible and can

implement  a  contact  network,  a  spatial-kernel,  or explicitly  model  any number of

data-driven  spread pathways  in  as  much detail  as  required,  and also  provide  any

number  of  control  measures.  AADIS  also  borrows  from  the  lattice  approach  of

cellular automata for the purposes of efficient grid-based spatial-indexing (Section

4.2.5).

The  combination  of  dual  modelling  units  of  interest,  hybrid  model  architecture,

asynchronous software architecture, an ABM with lightweight agents and an active

concurrent environment, grid-based spatial-indexing, and dynamic visualisation has

resulted  in  a  flexible,  extensible,  computationally  efficient,  national-scale,  multi-

jurisdictional model  of disease spread and control,  not seen before in the field of

livestock epidemiology.
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7.9  Limitations

AADIS  is  a  sophisticated  epidemiological  model  and  decision-support  tool.  The

realism of data-driven models such as AADIS hinges on the quality of the underlying

data with which it  is parameterised (Section 2.4.2.2). Australia is fortunate in that

good quality  livestock  data  is  available  from regular  agricultural  censuses  by  the

Australian  Bureau  of  Statistics,  state-based  farm registers,  NLIS  databases  and  a

series of industry reports commissioned by the Department of Agriculture and Water

Resources.  There  are  also  good  quality  production  and  marketing  data  from  the

Australian Bureau of Agricultural and Resource Economics and weather data from the

Bureau of Meteorology. For AADIS to be adapted for a jurisdiction with a paucity of

data,  setting  up  the  model  would  be  problematic.  In  this  situation  it  would  be

preferable to use simplified spread and control components, for example, individual

data-driven  spread pathways  could  be replaced with  a  simple  spatial-kernel-based

spread pathway.

Models with large numbers of parameters provide realism and flexibility but can also

introduce  difficulties  with  parameter  estimation  and  model  validation  (Section

2.4.2.2).  AADIS  has  extensive  configuration  data  spread  across  40  tables  in  a

relational database and a text configuration file. This allows for detailed configuration

of  the  heterogeneous  environment  and  population,  and  pathogen  under  study.

However, a result of this complexity is that a knowledge of epidemiology and a good

understanding of the system being studied is required to set up the model correctly.

An artefact of the concurrent architecture adopted by AADIS is that thread scheduling

arbitrarily  influences  the  order  in  which  components  request  random  numbers

(Section 4.1.4). This means that it is not possible to replay scenarios by specifying the

pseudo-random  number  generator  seed  (and  thus  control  the  stream  of  random

numbers  used to  sample from probability  distributions).  The ability  to  control  the

random  number  stream  makes  a  stochastic  model  temporarily  deterministic,  and

allows specific aspects of a scenario to be isolated. For example, a control measure
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such as vaccination can be varied and the impact on the scenario outcome directly

observed  (in  the  absence  of  variability  introduced  through  stochasticity).  The

implication of this for AADIS is that it is permanently stochastic and a greater number

of scenario runs are required for results to converge.

The AADIS user interface while functional, is still only a prototype. This is a result of

the project priority of epidemiological authenticity and computational efficiency over

ease-of-use.  The visualisation relies heavily on colour which is a disadvantage for

users with colour vision deficiencies. Modifying the model configuration file with a

text editor is functional but unwieldy and it would be desirable to adopt some form of

configuration tool. 

7.10  Caveats on the use of epidemiological models

Disease models are  increasingly being used to  study disease dynamics,  assess  the

impact of outbreaks in different settings and to evaluate control measures (Garner et

al., 2007). This is evidenced by the large growth in scientific publications on disease

modelling  in  recent  years  as  well  as  government  investment  in  and  support  for

modelling studies in many countries. There is also growing interest in international

collaboration  in  this  area,  including  model  comparison  studies  and  multi-model

studies  to address important policy issues such as the use of vaccination in FMD

control (Roche et al., 2014). It is important to recognise that while models can provide

insights and assist in managing disease outbreaks, used inappropriately, or in the face

of incomplete or inaccurate data,  they can be unreliable and have the potential  to

mislead  rather  than  inform.  This  section  reviews  some  experiences  and  lessons

learned from previous use of models in FMD management.

The 2001 outbreak of FMD in the UK was a significant event, both in terms of its

economic and social impact (Section 1.1), and also as it was the first time that FMD

models were used during the 'heat' of an outbreak to guide policy (Green and Medley,

2002; Taylor, 2003). The models involved were the population-based 'Imperial' model
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(Ferguson  et  al.,  2001),  the  spatial-kernel-based  Cambridge-Edinburgh  model

(Keeling et al., 2001), and the InterSpread microsimulation (Morris et al., 2001). The

policy of  pre-emptive contiguous culling was supported by modelling studies  that

predicted  it  to  be  crucial  to  controlling  the  outbreak  (Kao,  2002;  Keeling,  2005;

Kitching et al., 2006). Of the 10,846 UK premises that were depopulated, more than

80% were done so without confirmation of the presence of disease. The destruction

and disposal of vast numbers of uninfected animals raised many social, ethical and

environmental concerns (Section 1.1). 

While some subsequent studies backed the appropriateness of the model predictions

(Keeling, 2005; Tildesley et al., 2008), there have also been criticisms that the models

were based on poor quality data, had poor epidemiological assumptions and lacked

validation (Kitching et  al.,  2006;  Nerlich 2007;  Mansley et  al.,  2011).  Doubt was

raised  as  to  whether  the  quality  of  modelling,  at  least  initially,  was  sufficient  to

underpin such drastic measures as the pre-emptive contiguous culling of millions of

otherwise healthy animals. Phrases such as 'carnage by computer' (Campbell and Lee,

2003),  and  'armchair  epidemiology'  (Kitching  et  al.,  2006),  describe  a  perceived

disconnect between theoretical model predictions and the grim reality faced by those

at the front-line of the outbreak. Despite consensus that veterinary judgement on a

farm-by-farm basis is a far more reliable predictor of infection risk than a model (as

premises-specific biosecurity, topography and management practices can be taken into

account (Scott et al., 2004; Keeling, 2005; Kitching et al., 2006)), premises adjacent

to infected premises were automatically classified as dangerous contact premises and

culled without formal confirmation of infection (Haydon et al., 2004; Kitching et al.,

2006;  Mansley et  al.,  2011).  Regardless of the accuracy of the modelling and the

justification or not of 'slaughtering on suspicion', the control and eradication of FMD

can have enormous economic, environmental, ethical and social consequences, and it

is  vital  that  both  modellers  and those using model  outputs  are  aware  of  both the

strengths and limitations of the models being used. 
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Parameterising a model with data from a past epidemic (i.e., fitting data to a model),

can  be  useful  for  retrospective  analysis,  for  example,  to  assess  alternate  control

strategies (Howard and Donnelly, 2000), but may be of limited value in understanding

what  might  happen  in  a  different  setting  and  different  time.  A fitted  model  may

become 'self-fulfilling'  in  that  outcomes  align  well  with the  outbreak under  study

primarily  because it  has been parameterised with data from that outbreak (Taylor,

2003). A fitted model may not necessarily generalise well to other outbreak scenarios

(Schley, 2007; Mansley et al., 2011). San Miguel and colleagues (2012) describe the

tension between biasing a model by overfitting data, and oversimplifying a model by

underfitting data. 

An epidemiological  model  may suffer  silently  from incomplete  data,  poor  quality

assumptions, implementation flaws and inadequate validation, yet the outputs still be

detailed and appear definitive (Dent and Blackie, 1979; Taylor, 2003; Kitching et al.,

2006). Ecological systems such as epidemics are by nature non-deterministic (Medley,

2001).  The  propagation  of  disease  is  influenced  by  heterogeneities  in  species,

production systems, marketing systems, climate, environment, and biosecurity, as well

as biological variability in the mechanics of transmission. The control and eradication

of disease is influenced by heterogeneities in jurisdiction, resources and environment,

competing economic, trade, political pressures, and psychosocial variability in such

things as self-reporting of disease (Garner and Hamilton, 2011). It is important for

modellers and the customers of models not to be seduced by the illusion of certainty

(Gupta, 2001; Taylor, 2003). Models are simplifications of complex systems and can

only  produce  theoretical  projections  of  reality.  The  strength  of  epidemiological

models  lies  in  their  ability  to  aggregate  complex  population,  pathogen  and

environment variables on a large-scale and, in the case of stochastic models, produce

probability  distributions  of  epidemic  outcomes  (Green  and  Medley,  2002;  Taylor,

2003; Woolhouse, 2004). 
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The use of epidemiological models as real-time predictors as to how a 'live' epidemic

may unfold is controversial (Green and Medley, 2002; Kitching et al., 2006; Dubé et

al., 2007a; Garner and Hamilton, 2011). Models can however be usefully employed in

a 'war-time' setting to monitor the progress of an outbreak, and compare observed

behaviour with expected behaviour in order to alert epidemiologists to potential areas

of  concern  (Taylor,  2003;  Kitching  et  al.,  2006).  Probably  the  safest  and  least

contentious view of models is  to  recognise that they are just  one of several  tools

available for inter-epidemic EAD contingency planning and preparedness (Green and

Medley, 2002; Taylor, 2003; Kitching et al., 2006; Dubé et al., 2007a; Garner et al.,

2007).

7.11  Future work

Potential functional enhancements to AADIS include: a configurable financial module

that  allows  costs  to  be  attributed  to  control  strategies;  a  disease  manager  expert

system that dynamically adjusts a control program according to the current state of the

outbreak; the simulation of risk-based surveillance whereby high-risk premises are

proactively inspected for indications of disease; the incorporation of raster data sets

such  as  weather,  feral  animal  ranges,  vegetation,  insect  vector  distributions;  the

refinement of the user interface; and the development of a configuration tool.

In the short term, as part of a CEBRA-funded study (CEBRA, 2014), there will be an

investigation as to whether epidemiological cues exist early in an outbreak that signify

eventual outbreak size, for example, are there early indicators as to low-probability

but high impact 'black swan' (Taleb, 2010) outbreaks? 

Potential  strategic  directions for AADIS include:  modelling of diseases other  than

FMD; modelling of endemic disease; modelling of diseases in countries other than

Australia and New Zealand; and modelling disease in herd populations larger than

235,668.
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8  CONCLUSIONS

Disease managers have to take into account technical, socio-political, economic and

logistical  factors  when  developing  policies  for  disease  control.  Often  there  are

conflicting objectives to balance: for example,  to  eradicate  the disease as soon as

possible and  regain  export  markets,  while  minimising  the  costs  of  control  and

compensation,  and minimising impacts  on other  industries  and society  in  general.

Draconian measures of control such as contiguous culling and expansive movement

restrictions contain FMD, but at what economic and social cost? How is the business

continuity of non-infected premises impacted? Suppressive ring vaccination may help

to dampen an outbreak but may bring additional costs to regaining FMD-free status.

Epidemiological modelling is emerging as an important contributor to the complex

task of EAD planning and policy development.

AADIS  expands  the  livestock  disease  modelling  capabilities  of  the  Australian

Government  Department  of  Agriculture  and  Water  Resources  from  regional  to

national-scale. Complex simulations of disease spread and control on a national-scale

can be conducted  on  a standard desktop computer. Computational efficiencies stem

from the hybrid model architecture that fuses population-based and individual-based

modelling  approaches,  an  asynchronous  software  architecture,  and a  custom  grid-

based spatial-indexing system.

A pure individual-based approach to modelling the spread and control of livestock

disease in Australia implies an ABM with over 100 million animal agents. This would

only be plausible with a specialised highly parallel hardware platform. The choice of

the  herd  as  the  epidemiological  unit  of  interest  reduces  the  size  of  the  model

population to a far more manageable 236,000. The tactic of embedding EBMs in herd

agents provides dynamic predictions of within-herd infected, infectious and clinical

prevalence, based on the herd type, herd size and pathogen strain. The EBM outputs
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dynamically  inform ABM decisions  on  the  spread  of  disease  between  herds,  the

probability of disease detection, and the control of disease. Threadless EBM-driven

agents  in  an  active  and  concurrent  ABM  environment  may  have  utility  in  other

modelling domains that deal  with large populations.  Further,  if  a  spatially-explicit

ABM has simple stationary spatial objects, then uniform grid-based spatial indexing

may offer computational advantages over R-Tree-over-GiST spatial indexing.

AADIS has been developed to be adaptable and flexible, both in terms of being able

to implement and trial different approaches to FMD detection and control, and also

future adaptation for other diseases of concern. Recognising the importance of models

being fit for purpose, considerable verification and validations activities have been

undertaken to  give confidence in AADIS's ability  to  support  animal  health  policy

development in Australia.

The AADIS project typifies the multi-disciplinary nature of modern epidemiology.

The  model  utilises  veterinary  epidemiology,  mathematics,  statistics  and  computer

science  (including  concurrent  programming,  disk-based  and  in-memory  relational

databases,  grid-based spatial-indexing,  artificial  intelligence  techniques,  and multi-

view dynamic  visualisation).  The end result  is  an  innovative  and computationally

efficient model that prioritises the need for epidemiological authenticity. 
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Appendix A   Glossary of acronyms

Table A.1. Glossary of Acronyms

Name Description

AADIS Australian Animal DISease model

ABARES Australian Bureau of Agricultural and Resource Economics and 
Sciences

ABM Agent-based model

ARP At-risk premises – a premises inside an RA that contains susceptible 
animals and is not currently designated an IP, DCP, SP or TP

ASF African swine fever

AUD Australian dollar

AUSVETPLAN Australian Veterinary Emergency Plan (Animal Health Australia, 
2014a).

CA Cellular automaton

CA Control Area - a controlled area enclosing an RA and subject to lower 
levels of movement restrictions than those applied in RAs

CEBRA Centre of Excellence for Biosecurity Risk Analysis

CSF Classical swine fever

CSV Comma-Separated Values

CVO Chief Veterinary Officer

DADS Davis Animal Disease Simulation model (Bates et al., 2003a) 

DCP Dangerous Contact Premises - a premises that, based on a risk 
assessment, is considered highly likely to contain an FMD-infected 
animal(s) or contaminated animal products, equipment or other 
material

DDL Data definition language

DTU-DADS Technical University of Denmark - Davis Animal Disease Simulation 
model (Boklund et al., 2013)

EAD Emergency animal disease 

EADRA Emergency Animal Disease Response Agreement

EBM Equation-based model

EuFMD European Commission for the Control of Foot-and-mouth Disease

FAO Food and Agriculture Organisation of the United Nations
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Name Description

FIPA Foundation for Intelligent Physical Agents

FMD Foot-and-mouth disease

FMDV Foot-and-mouth disease virus

FSM Finite-state machine

GA Geographic automaton

GIS Geographic information system

GSAM Global-Scale Agent Model (Parker and Epstein, 2011)

HPAI Highly pathogenic avian influenza

HPC High-performance computing

IATA International Air Transport Association

IP Infected premises - a premises where infection has been confirmed

JVM Java Virtual Machine

LGA Local government area

MABM Massive agent-based model

MCMC Markov chain Monte-Carlo

MESA Multiscale Epidemiologic/Economic Simulation and Analysis model 
(Speck, 2008).

MSM Microsimulation model

NAADSM North American Animal Disease Spread Model (Harvey et al., 2007)

NLIS National Livestock Identification System

OAG Official Airline Guide

ODE Ordinary differential equation

OIE Office International des Epizooties (World Organisation for Animal 
Health)

POR Premises of relevance - a premises inside a CA that contains 
susceptible animals and is not currently designated an IP, DCP, SP or 
TP.

PDF Probability density function

RA Restricted area - a controlled area surrounding an IP and subject to the
highest level of movement restrictions.

RAM Random access memory

RP Resolved premises – a former IP or DCP on which IP operations have 
been completed.

255



Name Description

RVF Rift Valley fever

SAT South African Territories

SEIR Susceptible Exposed Infectious Recovered

SEIRS Susceptible Exposed Infectious Recovered Susceptible

SIR Susceptible Infected Recovered

SO Stamping out of infected premises

SORV Stamping out of infected premises plus suppressive ring vaccination

SOCC Stamping out of infected premises plus pre-emptive contiguous 
culling 

SP Suspect Premises – a premises that contains susceptible animals and 
has been reported as exhibiting clinical signs.

SQL Structured Query Language

TP Trace Premises – a premises that contains susceptible animals and has 
been traced as having been potentially exposed to infection.

USD United States Dollar

VP Vaccinated Premises – a premises on which vaccination has 
completed.
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Figure B.1. Relational database schema (north-west quadrant)
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Figure B.2. Relational database schema (north-east quadrant)
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Figure B.3. Relational database schema (south-west quadrant)
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Figure B.4. Relational database schema (south-east quadrant)



Appendix C   Database files

Table C.1. Summary of database input files

CSV file name Contents Clients

consignment_dest_herd_ty
pe

Cumulative PDFs of direct movement destination 
herd types.

Direct Spread, 
Direct Tracing

consignment_dest_inter_r
egion

Cumulative PDFs of direct movement destination 
regions.

Direct Spread, 
Direct Tracing

consignment_dest_premis
es3_type

Cumulative PDFs of direct movement dest 
herd/saleyard/abattoir.

Direct Spread

consignment_dest_premis
es_type

Cumulative PDFs of direct movement destination 
herd/abattoir.

Direct Spread

consignment_distance Beta-PERT PDFs of direct movement distances per 
herd type per region.

Direct Spread, 
Direct Tracing

consignment_size Beta-PERT PDFs of direct movement consignment 
sizes per herd type.

Direct Spread

declared_area Declared area type enumeration (OA, CA, RA). Surveillance

direct_movements Mean num daily outgoing direct movements per month 
per herd type. 

Direct Spread, Direct 
Tracing

direct_movements_on Mean num daily incoming direct movements per month 
per herd type. 

Direct Tracing

ebm EBM ODE system parameterisation (per herd type). Herd agents

farm_type Farm type-dependent parameters (e.g., IP operations 
priority).

Herd agents

herd National set of herds (e.g., type, size, lat/long, 
weather station)

Herd agents

herd_type Herd type-dependent parameters (e.g., surveillance 
priorities).

Herd agents

indirect_dest_herd_type Cumulative PDFs of indirect movement destinations. Indirect Spread, 
Indirect Tracing

261



CSV file name Contents Clients

indirect_distance Beta-PERT PDFs of indirect movement distances per
herd type.

Indirect Spread, 
Indirect Tracing

indirect_movements Mean daily outgoing indirect movements per season per
herd type. 

Indirect Spread, 
Indirect Tracing

ip_operations IP operations configuration (e.g., pre-emptive culling 
radius), per jurisdiction.

IP Operations

lga National set of LGAs (name, region and jurisdiction). Herd agents

mega_region Mega region enumeration (Pastoral, North East, 
South East, South West).

Herd agents, 
Saleyard Spread

movement_restrictions Movement restrictions parameters (e.g., RA radius), 
per jurisdiction.

Movement 
Restrictions

passive_detection Passive detection configuration (e.g., detection 
probabilities), per herd type.

First Detection

premises_classification Declared premises types (UP, IP, DCP, SP, TP, ARP, 
POR, VP, RP).

Herd agents

region Region enumeration (Far North, Lower North, Arid 
Zone, Barkley Tableland, Tropical North-East Coast, 
Central QLD and North-West NSW, New England, 
Temperate South-East Coast, Temperate Slopes and 
Plains, Mediterranean, Tasmania, South-West WA)

Herd agents

resources Resources parameters (e.g., num surveillance teams), 
per jurisdiction.

Resources

sale Scheduled sales per saleyard Saleyard Spread

sale_directions Sale bearing types (enumeration only, e.g., north 
east).

Saleyard Spread

sale_frequency Sale frequency enumeration (e.g., bi-weekly, weekly, 
fortnightly, monthly).

Saleyard Spread

sale_type Sale type enumeration (beef, sheep, calf, pig, dairy). Saleyard Spread
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CSV file name Contents Clients

saleyard_consignment_dis
tance

Beta-PERT PDFs of saleyard consignment distances 
per region.

Saleyard Spread

saleyard_consignments_o
ut

Beta-PERT PDFs of num consignments from 
saleyard per herd type.

Saleyard Spread

saleyard National set of saleyards (name, lat/long and 
jurisdiction).

Saleyard Spread

species Species-dependent parameters (e.g., Beta-PERT PDF 
of trace duration).

Herd agents

sp_reporting SP reporting configuration (e.g. Beta-PERT PDF of 
report lag), per herd type.

SP Reporting

state State/territory jurisdictions (enumeration only, e.g. 
NSW).

Herd agents

surveillance Surveillance parameters (e.g., visit prioritisation, visit
frequency).

Surveillance

vaccination Vaccination parameters (e.g., ring radii), per 
jurisdiction.

Vaccination

weather_data Weather data for each weather station per month. Airborne Spread

weather_station National set of weather stations (name and lat/long). Airborne Spread
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Appendix D   Configuration files

Table D.1. Summary of configuration files

File name Contents

system.properties System-level  configuration  parameters,  for  example:  spatial-indexing

mode  (grid-based,  R-Tree-over-GiST,  off),  cell  dimensions  of  spatial-

indexing grid, GUI definitions, PostgreSQL database configuration. These

parameters  don't  change  very  often  and  so  the  file  is  generally  not

changed by users.

linux.properties

windows.properties

Operating  system-dependent  configuration  parameters,  for  example

directory/folder locations. These parameters don't change very often and

so these files are generally not changed by users.

log4j.properties Configuration  of  the  Apache  Software  Foundation  (Apache,  2012)

logging services. These parameters include control of the level of logging

output (off, info, debug, trace) for each subsystem. These parameters are

for  development  and  test  purposes,  and  so  this  file  is  generally  not

changed by users.

openmap.properties Configuration  of  the  Openmap  (BBN,  2015)  GIS  platform.  These

parameters  don't  change  very  often  and  so  this  file  is  generally  not

changed by users.

model.properties

(where  model is  a

user-defined  name

specified  when

building  and  running

the model)

General  model  and  scenario  configuration  parameters,  for  example,

database  name,  bounding  latitude/longitudes  of  study  area,  scenario

configuration,  spread  pathway  configuration,  control  measures

configuration. All parameters in this file are user-changeable. An example

model configuration file is provided in Figure D.1.
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##########################################################
# AADIS user-changeable configuration parameters. 
##########################################################

##########################################################
# Database configuration.
##########################################################
db.name=AADIS_PHASE1

##########################################################
# Grid boundaries for Australia.
##########################################################
grid.north_lat_bound=-10.40
grid.south_lat_bound=-43.90
grid.west_long_bound=112.70
grid.east_long_bound=153.80

##########################################################
# Scenario configuration.
##########################################################
# Scenario identification.
scenario.name=test

# Scenario start date (dd/mm/yyyy).
scenario.start_date=1/05/2013

# Scenario end mode (valid modes are: fixed, control-based, earliest, detection).
# fixed - scenario ends on a fixed day.
# control-based - scenario ends when no E/I farms and no pending control actions
# earliest - scenario ends upon the earliest of the fixed and control-based endings 
# detection - scenario ends after the detection of the first IP
scenario.end_mode=control-based

# Scenario end day (only relevant to fixed mode and earliest mode).
scenario.fixed_end_day=80

# Maximum scenario length (days). This is only relevant to
# control-based end mode.
scenario.max_length=200

# Optional delay (in days) after scenario ends in controlled mode.
scenario.end_delay=0

# Number of runs.
scenario.num_runs=10

# Seeding mode (manual, random, snapshot).
scenario.seed_mode=manual

# Name of input file for snapshot seeding.
scenario.seed_file=test_snapshot_1

# A snapshot comprises a binary file (.ser) that fully describes a 
# run, and an ascii file (.csv) that just has summary data. 
# Currently only the binary file can be loaded back into the model 
# for seeding purposes. Options for taking snapshots:
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# Manual - via the Save button on the Run Panel.
# Detection - automatically when the first IP is declared.
# Scenario end - automatically at the end of a run.
scenario.manual_snapshot_enabled=true
scenario.detection_snapshot_enabled=false
scenario.scenario_end_snapshot_enabled=false

# Number of manually defined seed herds.
# Note that eventually seed herds will also be definable via
# the Seed Dialog.
scenario.num_manual_seeds=1

# Manual seed herd definitions.
# Starting level of infection can be specified via initial SEIR
# values or initial number of latent and/or infectious animals.
# If either num latent or num infectious animals are specified
# then the initial SEIR values are derived from them (based on
# herd size and assuming R0 is 0), otherwise the specified SEIR
# initial values are used.
scenario.seed_1_herd_id=109051
scenario.seed_1_day=0
scenario.seed_1_s0=0.9
scenario.seed_1_e0=0.1
scenario.seed_1_i0=0.0
scenario.seed_1_r0=0.0
scenario.seed_1_num_latent=2
scenario.seed_1_num_infectious=0

# Random seeding configuration (use 0 for wildcard).
# See note above re initial SEIR values.
scenario.num_random_seeds=3
scenario.random_seed_herd_type=7
scenario.random_seed_megaregion=0
scenario.random_seed_state=2
scenario.random_seed_region=0
scenario.random_seed_min_herd_size=300
scenario.random_seed_max_herd_size=800
scenario.random_seed_day=0
scenario.random_seed_s0=0.9
scenario.random_seed_e0=0.1
scenario.random_seed_i0=0.0
scenario.random_seed_r0=0.0
scenario.random_seed_num_latent=2
scenario.random_seed_num_infectious=0
scenario.random_seed_reuse_between_runs=false

##########################################################
# Spread pathway configuration.
##########################################################
# Direct spread pathway.
spread.direct.enabled=true
spread.direct.search_distance_tolerance=5
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spread.direct.second_pass_search_distance_tolerance=500
spread.direct.max_herd_type_search_retries=10

# Indirect spread pathway.
spread.indirect.enabled=true
spread.indirect.baseline_prob=0.03
spread.indirect.min_new_infections=1
spread.indirect.mode_new_infections=2
spread.indirect.max_new_infections=5
spread.indirect.search_distance_tolerance=100
spread.indirect.second_pass_search_distance_tolerance=500
spread.indirect.max_herd_type_search_retries=10

# Local spread pathway.
spread.local.enabled=true
spread.local.baseline_prob=0.048
spread.local.multiherd_baseline_prob=0.096
spread.local.detection_weight=0.5
spread.local.radius=3
spread.local.min_new_infections=1
spread.local.mode_new_infections=2
spread.local.max_new_infections=5

# Airborne spread pathway.
spread.airborne.enabled=true
#
# Coefficients for the plume distance (pd) formula:
# pd = base * e ^ (exponent * log10 * n)
# where n is the num infections animals in the shedding herd
#
spread.airborne.plume_distance_base=0.113
spread.airborne.plume_distance_exponent=1.367
spread.airborne.max_plume_distance=20
#
# The potency of a plume diminishes over distance through either 
# linear or exponential decay. Valid values for decay mode are:
# linear, exp1, exp2.
#
spread.airborne.decay_mode=linear
#
# Coefficient for the exponential decay functions.
# dw = e ^ (exponent * hd / pd)
# where dw = distance weight
# hd = distance between shedding herd and susceptible herd
# pd = plume distance
#
spread.airborne.exp1_decay_exponent=-6.90776
spread.airborne.exp2_decay_exponent=-3.45388
#
spread.airborne.wind_bearing_tolerance=15
#
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# Probabilities that a single animal will succumb to airborne virus.
spread.airborne.prob_cow_infection=0.03
spread.airborne.prob_sheep_infection=0.003
spread.airborne.prob_smallholder_infection=0.003
spread.airborne.prob_pig_infection=0.00012
#
spread.airborne.min_new_infections=1
spread.airborne.mode_new_infections=2
spread.airborne.max_new_infections=5

# Saleyard spread pathway (enable regular OR simple)
spread.saleyard.enabled=true
spread.simple_saleyard.enabled=false
spread.simple_saleyard.search_distance_tolerance=20
spread.simple_saleyard.second_pass_search_distance_tolerance=500
spread.simple_saleyard.max_herd_type_search_retries=10
# Amplification factor to direct spread average daily movements
# when simple saleyard spread is enabled. This stems from
# direct movements driving saleyard spread (as opposed to
# regular saleyard spread which is sale-based and self-driven).
spread.simple_saleyard.direct_movements_amplifier=1.05

# When the weight overrides are true than all herd infectivity and
# susceptibility weights are set to 1 (i.e., unweighted).
# When the weight overrides are false then the weights are
# calculated using the species-dependent exponents below.
# e.g. cattleSuscWeight = cattleRelativeSusc * (herdSize ^ cattleSuscPower)
# and is then normalised across all herds
#
spread.herd_infectivity_weight_override=false
spread.herd_susceptibility_weight_override=false
spread.cattle_infectivity_power=0.42
spread.cattle_susceptibility_power=0.41
spread.sheep_infectivity_power=0.49
spread.sheep_susceptibility_power=0.2
spread.pig_infectivity_power=0.42
spread.pig_susceptibility_power=0.41
spread.smallholder_infectivity_power=0.49
spread.smallholder_susceptibility_power=0.2

####################################################
# Control measures configuration.
####################################################
# Global enabling/disabling of control measures.
control.enabled=true

# First IP detection mode (disabled, fixed, passive)
first_detection.mode=passive

# Fixed detection configuration.|
first_detection.fixed.day=3
# Fixed detection mode (any, herd, species)
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first_detection.fixed.mode=herd
first_detection.fixed.herd_id=109051
# Species priorities 1,2,3 dictate the herd type order when
# searching for and selecting the index IP.
first_detection.fixed.cattle_priority=0
first_detection.fixed.sheep_priority=0
first_detection.fixed.pigs_priority=0
first_detection.fixed.smallholder_priority=0

# Passive detection configuration.
first_detection.passive.abattoir_confirmation_lag=3
first_detection.passive.saleyard_confirmation_lag=4
first_detection.passive.farm_confirmation_lag=5

# Artificial injection of declared premises states.
injection.enabled=true

# Movement restrictions configuration. Note that these are just
# range definitions. The actual values are defined in the database 
# per jurisdiction.
movement_restrictions.enabled=true
movement_restrictions.standstill.minimum=3
movement_restrictions.standstill.maximum=14
movement_restrictions.transition.minimum=0
movement_restrictions.transition.maximum=28
movement_restrictions.ra_radius.minimum=3
movement_restrictions.ra_radius.maximum=20
movement_restrictions.ca_radius.minimum=10
movement_restrictions.ca_radius.maximum=50
movement_restrictions.ca_radius.maximum=50

# Number of days that an RP remains enclosed by a controlled area
# after IP Operations have completed.
movement_restrictions.lifting_delay=21

# SP reporting
sp_reporting.enabled=true
sp_reporting.false_report_to_true_ratio=2.34
sp_reporting.moving_average_days=3
sp_reporting.false_report_ra_ratio=0.6
sp_reporting.false_report_ca_ratio=0.3
sp_reporting.false_report_oa_ratio=0.1

# Tracing
tracing.direct.enabled=true
tracing.indirect.enabled=true
tracing.false_traces.enabled=true
tracing.num_days_backward=14
tracing.num_days_forward=14

# Surveillance
surveillance.enabled=true
surveillance.dcp_period=7
surveillance.sp_period=7
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surveillance.tp_period=14
surveillance.arp_period=14
surveillance.local_radius=3
surveillance.min_clinical_signs=0.05
surveillance.min_days_infected=10
surveillance.lab_results_required=yes
surveillance.lab_results_delay=1
surveillance.dcp_sp_tp_overdue_threshold=7
surveillance.arp_overdue_threshold=14

# IP Operations
ip_operations.enabled=true

# Vaccination
vaccination.enabled=false
vaccination.start_by_control_day=false
vaccination.start_day=3
vaccination.start_by_ip_count=true
vaccination.start_ip_count=3
vaccination.immunity_lag=6

# Resource-constraining of control measures.
resources.enabled=true

Figure D.1. Example model configuration file



Appendix E   Output files

Table E.1. Structure of the Startup report file

Column Description

Run Run number

Seed herd ID Seed herd ID (i.e., initial source of infection in outbreak)

Start offset Scenario start offset in days (snapshot seeding mode only)

Infection day Simulation day that the herd was infected

Herd type ID Herd type ID

Days until detection Number of simulation days from infection to declaration as an IP

Table E.2. Structure of the Herd report file

Field Description

Run Run number

Herd ID Infected herd ID

Latitude Latitude of the infected herd

Longitude Longitude of the infected herd

State ID ID of the infected herd's jurisdiction

Day infected Simulation day that the herd was infected

Infection path Means that the herd was infected

Source herd ID The ID of the source herd that infected the subject herd

Day diagnosed Simulation day that the herd's farm was declared an IP*

Day culled Simulation day that the herd's farm was culled*

Day vaccinated Simulation day that the herd's farm was vaccinated*

• a value of -1 indicates that the herd was not diagnosed/culled/vaccinated
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Table E.3. Structure of the Farm Summary report file

Column Description

Run Run number

Num simulation days Run duration in days

Current latent Number of latent farms (at least 1 exposed herd and no infectious herds)

Current infectious Number of farms that are infectious (at least 1 infectious herd)

Current recovered Number of farms that are recovered (all herds are recovered)

Cum infected farms Cumulative number of infected farms (latent or infectious)

Cum IPs Cumulative number of IPs

Cum TPs Cumulative number of TPs

Cum SPs Cumulative number of SPs

Cum RPs Cumulative number of RPs

Cum ARPs Cumulative number of ARPs

Cum PORs Cumulative number of PORs

Cum ext beef IPs Cumulative number of IPs of type Extensive Beef

Cum int beef IPs Cumulative number of IPs of type Intensive Beef

Cum feedlot IPs Cumulative number of IPs of type Feedlot

Cum mixed IPs Cumulative number of IPs of type Mixed Beef Sheep

Cum dairy IPs Cumulative number of IPs of type Dairy

Cum small pigs IPs Cumulative number of IPs of type Small Piggeries

Cum large pigs IPs Cumulative number of IPs of type Large Piggeries

Cum sheep IPs Cumulative number of IPs of type Sheep

Cum smallholder IPs Cumulative number of IPs of type Small-holders

Last IP declared Simulation day that the last IP was declared

Last day of infection Last simulation day that there was one or more infected farms

Cum VPs Cumulative number of VPs

Cum ext beef VPs Cumulative number of VPs of type Extensive Beef

Cum int beef VPs Cumulative number of VPs of type Intensive Beef

Cum feedlot VPs Cumulative number of VPs of type Feedlot

Cum mixed VPs Cumulative number of VPs of type Mixed Beef Sheep

Cum dairy VPs Cumulative number of VPs of type Dairy

Cum small pigs VPs Cumulative number of VPs of type Small Piggeries
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Column Description

Cum large pigs VPs Cumulative number of VPs of type Large Piggeries

Cum sheep VPs Cumulative number of VPs of type Sheep

Cum smallholder VPs Cumulative number of VPs of type Small-holders

Cum vacc animals Cumulative number of vaccinated animals

Cum vacc cattle Cumulative number of vaccinated cows

Cum vacc sheep Cumulative number of vaccinated sheep

Cum vacc pigs Cumulative number of vaccinated pigs

Cum vacc other Cumulative number of vaccinated smallholder animals

Cum ext beef inf Cumulative number of infected farms of type Extensive Beef

Cum int beef inf Cumulative number of infected farms of type Intensive Beef

Cum feedlot inf Cumulative number of infected farms of type Feedlot

Cum mixed inf Cumulative number of infected farms of type Mixed Beef Sheep

Cum dairy inf Cumulative number of infected farms of type Dairy

Cum small pigs inf Cumulative number of infected farms of type Small Piggeries

Cum large pigs inf Cumulative number of infected farms of type Large Piggeries

Cum sheep inf Cumulative number of infected farms of type Sheep

Cum smallholder inf Cumulative number of infected farms of type Small-holders

Cum cull animals Cumulative number of culled animals

Cum cull cattle Cumulative number of culled cows

Cum cull sheep Cumulative number of culled sheep

Cum cull pigs Cumulative number of culled pigs

Cum cull other Cumulative number of culled smallholder animals
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Table E.4. Structure of the Farm Daily report file

Column Description

Run Run number

Day Simulation day

Cum inf farms Cumulative number of infected farms (exposed or latent farms)

Cum inf herds Cumulative number of infected herds (exposed or latent farms)

Cum IPs Herd type ID

Cum IPs Cumulative number of IPs

Cum TPs Cumulative number of TPs

Cum SPs Cumulative number of SPs

Cum VPs Cumulative number of VPs

Cum RPs Cumulative number of RPs

Cum ARPs Cumulative number of ARPs

New inf farms Number of newly infected farms on the current day

New IPs Number of newly declared IPs on the current day

Cum surv done Cumulative number of completed surveillance visits

Cum surv deficit Cumulative number of pending surveillance visits

Cum culls done Cumulative number of completed culling visits

Cum culls deficit Cumulative number of pending culling visits

Cum disp done Cumulative number of completed disposal visits

Cum disp deficit Cumulative number of pending disposal visits

Cum vacc done Cumulative number of completed vaccination visits

Cum vacc deficit Cumulative number of pending vaccination visits
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Table E.5. Structure of the Saleyard report file

Field Description

Run Run number

Sale ID Sale ID

Saleyard ID Saleyard ID

Latitude Latitude of the saleyard

Longitude Longitude of the saleyard

Sale Type Sale type ID

Day infected Sim day that an outgoing consignment infected a recipient herd

Infected consigns in Number of infected consignments in for the subject sale

Infected consigns out Number of infected consignments out for the subject sale

Infected consigns to abattoir Number of infected consignments sent to abattoirs

Infected consigns to farm Number of infected consignments sent to farms

Infected consigns to feedlot Number of infected consignments sent to feedlots

Table E.6. Structure of the Control report file

Field Description

Run Run number

First IP detection day Simulation day that the first IP was declared

First IP detection type Index case premises type (farm, abattoir, saleyard) 

Index case farm ID Index case farm ID

Index case herd type Index case herd type

Surveillance resources utilisation Max[(visits in progress + visits pending)/pool size]1

Culling resources utilisation Max[(visits in progress + visits pending)/pool size]1

Disposal resources utilisation Max[(visits in progress + visits pending)/pool size]1

Disinfection resources utilisation Max[(visits in progress + visits pending)/pool size]1 

Vaccination resources utilisation Max[(visits in progress + visits pending)/pool size]1 

1 per-jurisdiction
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Table E.7. Structure of the Spread report file

Field Description

Run Run number

Local contacts Number of contacts from the Local spread pathway

Local infections Number of infections from the Local spread pathway

Direct contacts Number of contacts from the Direct spread pathway

Direct infections Number of infections from the Direct spread pathway

Indirect contacts Number of contacts from the Indirect spread pathway

Indirect infections Number of infections from the Indirect spread pathway

Saleyard contacts Number of contacts from the Saleyard spread pathway

Saleyard infections Number of infections from the Saleyard spread pathway

Airborne contacts Number of contacts from the Airborne spread pathway

Airborne infections Number of infections from the Airborne spread pathway

Direct inf to farm Number of direct infections at farms

Direct inf to abattoir Number of direct infections at abattoirs

Table E.8. Structure of the Resources report file

Field Description

Run Run number

Day Simulation day

Num surveillance visits in progress Per jurisdiction

Num surveillance visits pending Per jurisdiction

Surveillance pool size Per jurisdiction

Num culling visits in progress Per jurisdiction

Num culling visits pending Per jurisdiction

Culling pool size Per jurisdiction 

Num vaccination visits in progress Per jurisdiction 

Num vaccination visits pending Per jurisdiction 

Vaccination pool size Per jurisdiction
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Appendix F   University of Melbourne report
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