Efficacy of Rispens CVI988 Vaccine against Challenge with Marek’s Disease Viruses of Varying Virulence, Effects on Viral Kinetics and Field Application of a Rispens Specific qPCR Test

Sithara Ralapanawe
B.V.Sc. (Hons.), University of Peradeniya, Sri Lanka
M.Sc. (Applied Microbiology), University of Kelaniya, Sri Lanka

A thesis submitted for the degree of Doctor of Philosophy of The University of New England, Armidale, Australia
August 2015

School of Environmental and Rural Science
Faculty of Arts and Science
Declaration

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree or qualification.

I certify that any help received in preparing this thesis, and all sources used, have been acknowledged.

Ms. Sithara Ralapanawe

August 2015
I would like to dedicate this thesis to my beloved
late father, Chandra Saranath Bandara Ralapanawe, and
my mother, Palika Ralapanawe.
Acknowledgements

I would like to thank my principal supervisor, Prof. Stephen Walkden-Brown, for his supervision and overall guidance throughout my PhD candidature. His vast knowledge and enthusiasm about Marek’s disease and statistics will continue to inspire me well beyond this thesis. I am grateful to him for his encouragement, constructive criticism, detailed corrections and suggestions for modifications throughout my candidature and in finalizing this thesis.

I would like to express my gratitude to my co-supervisor Dr. Katrin Renz for sharing her knowledge on molecular diagnostics and valuable advice on the laboratory techniques and procedures. I also extend my thanks for her assistance with laboratory work and sampling in the field experiment.

I appreciate the assistance and guidance of Dr. Fakhrul Islam in the isolator experiment and in the thesis as a whole.

This thesis would not be possible without the hard work of all the technical staff in the Animal Science Department of School of Environmental and Rural Science, UNE: Susan Burgess, Michael Raue, Mark Taylor, Grahame Chaffey, Andrew Blakely and Garry Taylor who all helped me with my experiments. I extend my thanks to Susan Burgess for designing the Marek’s disease enzyme-linked immunosorbent assay and for showing me new methods for analyses whenever I needed them. I would also like to extend my gratitude to Joanne Porter for her kind help with the administrative tasks.

I am deeply grateful to the University of New England for accepting me as a PhD candidate. Financial support from the Australian Egg Corporation Limited (AECL) and the internal student grant from the University of New England, which supported my experimental work, are also greatly appreciated. I also would like to extend my appreciation to the Department of Education and Training of the Australian Government for awarding me the Endeavour Postgraduate Award which enabled me to pursue my studies in Australia. My sincere gratitude also goes to the case managers of the Endeavour award for being extremely supportive and caring throughout the degree program. I also acknowledge the travel grant from the Organizing Committee of the 10th International symposium of Marek’s Disease and avian which enabled me to travel to USA to present my work.
I also want to thank my postgraduate colleagues Robin Achari and Brendan Sharpe for helping me with field sampling. My gratitude also to my dear friends all over the world specially Rahfiya, Dharma, Hong, Khadijah, Michelle, Christine, Elfira, Shalanee, Merani, Aruni, Udani and Kanchana for their moral support and for lifting my spirits whenever I was down. I am also thankful to the Kanagaratnam family for helping me to settle down in the cold weather of Armidale.

I would also like to thank the Director General, Department of the Animal Production and Health and the Director, Veterinary research institute in Sri Lanka for granting me study leave to continue my graduate studies in Australia. I am also grateful to Dr. Gnana Gunawardena, Dr. Hemal Kothalawla, Dr. Thilliapalam Sivakumar and Dr. Samantha Iddamadeniya at the Veterinary Research Institute in Sri Lanka for their invaluable support.

I would like to especially thank my late father for teaching me the importance of education and raising me to be a hardworking scientist. Being a senior lecturer himself, he showed me by example how to reach goals while having a young family. His inspiration kept me afloat through difficult times in this doctoral degree. My heartfelt gratitude also goes to my mother, Palika, and my two beautiful sisters, Dilru and Hiruni, for their encouragement throughout.

Last but not least I would like to express my gratitude to my husband Tharanga Chandrasena for being my pillar of strength. Also thank you to my little daughter, Omendree, and son, Ovindu, for bearing with me and having infinite patience.
Table of Contents

Declaration..i
Acknowledgements ... iii
List of Tables ..x
Table of Figures.. xi
List of Abbreviations .. xiv
List of Publications .. xvii
Abstract..xix
General Introduction.. xxi

1 Review of Literature .. 1

1.1 General description of Marek’s disease ... 1

1.2 Brief history of Marek’s disease .. 3

1.3 Marek’s disease in Australia ... 7

1.4 Economic significance ... 8

1.5 Aetiology .. 9
 1.5.1 Classification of MDVs ... 9
 1.5.2 Morphology.. 11
 1.5.3 Genome structure of the virus .. 12
 1.5.4 New methods for manipulation of the MDV genome ... 15

1.6 Epidemiology .. 16
 1.6.1 Incidence and distribution of disease ... 16
 1.6.2 Determinants of MD occurrence .. 17
 1.6.3 Transmission ... 23

1.7 Pathogenesis .. 24
 1.7.1 Entry of MDV into the host ... 24
 1.7.2 Early cytolytic phase ... 24
 1.7.3 Latent phase ... 26
 1.7.4 Late cytolytic phase ... 27
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7.5</td>
<td>Fully productive infection in the feather follicular epithelium</td>
<td>27</td>
</tr>
<tr>
<td>1.7.6</td>
<td>Lymphoma phase</td>
<td>28</td>
</tr>
<tr>
<td>1.8</td>
<td>Clinical signs and pathobiology</td>
<td>29</td>
</tr>
<tr>
<td>1.8.1</td>
<td>Classical MD/ fowl paralysis</td>
<td>29</td>
</tr>
<tr>
<td>1.8.2</td>
<td>Acute MD/lymphoma syndrome</td>
<td>29</td>
</tr>
<tr>
<td>1.8.3</td>
<td>Transient paralysis (TP) and persistent neurological diseases</td>
<td>30</td>
</tr>
<tr>
<td>1.8.4</td>
<td>Lymphoma and other lesions of the eye</td>
<td>30</td>
</tr>
<tr>
<td>1.8.5</td>
<td>Skin leucosis</td>
<td>31</td>
</tr>
<tr>
<td>1.8.6</td>
<td>Atherosclerosis</td>
<td>31</td>
</tr>
<tr>
<td>1.8.7</td>
<td>Incubation Period</td>
<td>31</td>
</tr>
<tr>
<td>1.8.8</td>
<td>Immunosuppression caused by MD</td>
<td>31</td>
</tr>
<tr>
<td>1.8.9</td>
<td>Classical MD/ fowl paralysis</td>
<td>35</td>
</tr>
<tr>
<td>1.8.10</td>
<td>Acute MD/lymphoma syndrome</td>
<td>35</td>
</tr>
<tr>
<td>1.8.11</td>
<td>Transient paralysis (TP) and persistent neurological diseases</td>
<td>35</td>
</tr>
<tr>
<td>1.8.12</td>
<td>Lymphoma and other lesions of the eye</td>
<td>35</td>
</tr>
<tr>
<td>1.8.13</td>
<td>Skin leucosis</td>
<td>35</td>
</tr>
<tr>
<td>1.8.14</td>
<td>Atherosclerosis</td>
<td>35</td>
</tr>
<tr>
<td>1.8.15</td>
<td>Incubation Period</td>
<td>35</td>
</tr>
<tr>
<td>1.8.16</td>
<td>Immunosuppression caused by MD</td>
<td>35</td>
</tr>
<tr>
<td>1.9</td>
<td>Pathology</td>
<td>32</td>
</tr>
<tr>
<td>1.9.1</td>
<td>Gross pathology</td>
<td>32</td>
</tr>
<tr>
<td>1.9.2</td>
<td>Microscopic Pathology</td>
<td>33</td>
</tr>
<tr>
<td>1.10</td>
<td>Control</td>
<td>34</td>
</tr>
<tr>
<td>1.10.1</td>
<td>Vaccination</td>
<td>34</td>
</tr>
<tr>
<td>1.10.2</td>
<td>Management Procedures</td>
<td>38</td>
</tr>
<tr>
<td>1.10.3</td>
<td>Genetic resistance</td>
<td>39</td>
</tr>
<tr>
<td>1.11</td>
<td>Diagnosis</td>
<td>39</td>
</tr>
<tr>
<td>1.11.1</td>
<td>Diagnosis of clinical disease</td>
<td>39</td>
</tr>
<tr>
<td>1.11.2</td>
<td>In vitro diagnosis</td>
<td>40</td>
</tr>
<tr>
<td>1.12</td>
<td>Rispens CVI 988 virus history and characteristics</td>
<td>46</td>
</tr>
<tr>
<td>1.12.1</td>
<td>History of Rispens virus</td>
<td>46</td>
</tr>
<tr>
<td>1.12.2</td>
<td>Characteristics of the Rispens vaccine virus</td>
<td>47</td>
</tr>
<tr>
<td>1.13</td>
<td>Conclusions</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>General Materials and Methods</td>
<td>52</td>
</tr>
<tr>
<td>2.1</td>
<td>The experiments</td>
<td>52</td>
</tr>
<tr>
<td>2.2</td>
<td>Handling of experimental animals</td>
<td>52</td>
</tr>
</tbody>
</table>
3.2.6 DNA extraction, Rispens and pathogenic MDV-1 specific real-time PCR assay 73
3.2.7 Vaccinal protective index and Virulence Rank ... 73
3.2.8 Statistical analysis ... 74

3.3 Results .. 74
3.3.1 Application of treatments .. 74
3.3.2 Mortality .. 75
3.3.3 Incidence of MD, vaccinal protective index and virulence rank 76
3.3.4 Body weight and relative immune organ weights at 14 dpc and 56 dpc 77
3.3.5 MDV and Rispens viral loads in the spleen at 14 dpc 78
3.3.6 Prediction of MD incidence at 56 dpc based on MDV and Rispens viral load in PBL, feathers, dust and spleen, and on immune organ weights 79
3.3.7 Prediction of vaccine take from of invasive and non-invasive samples 82

3.4 Discussion .. 82

4 Effects of Rispens CVI988 vaccination followed by challenge with Marek’s disease viruses of differing virulence on the replication kinetics and shedding of the vaccine and challenge viruses. ... 90

4.1 Introduction .. 91

4.2 Materials and methods ... 94
4.2.1 Experimental design .. 94
4.2.2 Experimental chickens and management .. 94
4.2.3 Vaccines, vaccination and challenge ... 95
4.2.4 Sampling .. 95
4.2.5 DNA extraction, Rispens and pathogenic MDV-1 specific real-time PCR assay 96
4.2.6 Statistical analysis ... 96

4.3 Results .. 98
4.3.1 Application of treatments .. 98
4.3.2 Summary of statistical analysis .. 100
4.3.3 Effects of vaccination and challenge virus on MDV viral load (Analysis 1) .. 100
4.3.4 Effects of MDV challenge on Rispens viral load (Analysis 2) 102
4.3.5 Viral loads of MPF57, FT158, and Rispens in co-infected chickens (Analysis 3).... 103
5 Field studies on the detection, persistence and spread of the Rispens CVI988 vaccine virus and the extent of co-infection with Marek’s disease virus

5.1 Introduction

5.2 Materials and methods

5.2.1 Experimental design

5.2.2 Layer farm details

5.2.3 Sampling procedures

5.2.4 Laboratory procedures

5.2.5 Statistical analysis

5.3 Results

5.3.1 Early assessment of vaccine take (up to 12 weeks of age)

5.3.2 Persistence of infection and immune response

5.3.3 Extent of co-infections with MDV

5.3.4 Rispens virus escape into non-vaccinated flocks

5.3.5 Association between variables

5.4 Discussion

5.5 Conclusion

6 General discussion and conclusions

6.1 Protection provided by Rispens CVI988 against two different GaHV-2 pathotypes

6.2 Early predictors of MD incidence

6.3 Sampling to assess vaccine take under experimental and field conditions

6.4 Viral loads of Rispens and two pathogenic GaHV-2s of different virulence in co-infected hosts

6.5 Effect of Rispens vaccination on pathogenic viral load and implications for vaccination-driven evolution of virulence
6.6 Effect of GaHV-2 challenge viruses on Rispens viral load .. 142
6.7 Viral loads of different tissues .. 143
6.8 The patterns of pathogenic GaHV-2 and Rispens vaccine viral load over time 143
6.9 Kinetics of Rispens CVI988 in long lived chickens .. 144
6.10 Co-infection of Rispens and GaHV-2 in the field ... 145
6.11 Presence of Rispens virus in unvaccinated broiler flocks 145
6.12 Conclusions ... 146
6.13 Future work .. 147

References .. 149

List of Tables

Table 1.1 Serotypes of MDV .. 10
Table 1.2 USDA-ADOL classification of MDV pathotype, adapted from (Witter, 1997) by Walkden-Brown et al. (2007) .. 11
Table 2.1 Experiment details ... 52
Table 2.2 Sequences of meq-gene primers and probes used for qPCR differentiation between Rispens/CVI988 and pathogenic assays (Renz et al., 2013) 62
Table 3.1 Details of the viruses used in this experiment .. 72
Table 3.2 Number and percentage of qPCR positive samples for the Rispens virus in unchallenged vaccinated chicken at 14 dpv and for MDV in unvaccinated challenged chickens at 14 dpc ... 75
Table 3.3 Incidence of Marek’s disease lymphomas to 56 days post challenge, vaccinal protective index and virulence rank by challenge virus and vaccination treatment 76
Table 3.4 Body weight, immune organ weights and immune organ scores by vaccination and challenge treatment at 14 and 56 days post challenge .. 78
Table 3.5 Pairwise correlation of MD incidence (MD%) at d56 with viral loads in various tissues and immune organ weight and MD antibody titre of different challenge days. .. 81

Table 3.6 Number and percentage of different sample types positive for the Rispens virus in all vaccinated chickens from between 7 and 21 days post vaccination (dpv). 82

Table 4.1 Details of the viruses used in this experiment 95

Table 4.2 Summary of treatments showing treatment abbreviations and which treatments are included in each of the major analyses................................. 97

Table 4.3 The proportion and percentage of samples qPCR positive for MDV or Rispens by sample type, treatment and days post infection (dpi). .. 99

Table 4.4 Summary of the P values obtained for analyses 1.1, 2, and 3. 100

Table 5.1 Overview of farms and sampling for the layer studies 116

Table 5.2 Overview of farms and dust samples for the meat chicken (broiler) studies.116

Table 5.3 The proportion of positive samples by the farm, sample type and the age (weeks)... 124

Table 5.4 Details of dust DNA samples positive for generic and Rispens assays...... 125

Table 6.1 Comparison of the number and percentage of different sample types positive for the Rispens virus in all vaccinated chickens from between 7 and 24 days post vaccination (dpv) in the isolator and field experiments.. 138

Table of Figures

Figure 1.1 The replicative form of the GaHV-2 genome (Lee, et. al. (2000a)) 13

Figure 1.2 Stages in the cycle of MD pathogenesis... 26

Figure 2.1 (A) English Leghorns and (B) ISA Brown pullets on farm C 53

Figure 2.2 Interior of the UNE isolator facility containing 24 isolators 54

Figure 2.3 Birds supplied with litter trays and nylon strings to improve welfare 54

Figure 2.4 (A) Chicks on farm A being brooded (B) Laying hens on farm A under a battery cage systems .. 56
Figure 2.5 MD lymphomas in A) Spleen B) Heart C) Conjunctiva of eye D) Breast muscle E) Thymus and F) Liver ... 58
Figure 3.1 Survival of eligible chickens to 56 days post challenge showing the effect of all treatments (Left), the overall effect of vaccination (Centre) and the overall effect of challenge treatment (Right)... 75
Figure 3.2 Viral load (Log_{10} viral copy number/mg) of MDV (left) and Rispens (Right) in spleens at 14 dpc in MDV challenged and vaccinated chickens respectively. 79
Figure 3.3 Linear regression between MD incidence at 56 dpc and MDV viral load in PBL (top), Feathers (centre) and dust (bottom) at 7 dpc (Left), 14 dpc (centre) and 21 dpc (right).. 80
Figure 3.4 Linear regression between MD incidence at 56 dpc MDV viral load in spleen (Left) and relative splenic weight (right) at 14 dpc. ... 80
Figure 4.1 Mean (LSM ± SEM) log_{10} viral copy number of pathogenic MDV in PBL (a), feather tips (b), and log_{10} VCN/mg in dust (c) by vaccination status (Rispens at day 0 or unvaccinated), MDV challenge (FT158 or MPF57 at day 5) and day post challenge (7, 14, 21, 28, 49 and 56 dpc). ... 102
Figure 4.2 Analysis 2. Mean (LSM ± SEM) log_{10} viral copy number of Rispens MDV in PBL (a), feather tips (b), and log_{10} VCN/mg in dust (c) in all samples, showing interactions between the effects of vaccination status (Rispens at day 0 or unvaccinated), challenge (vMPF57 or vvFT158), and day post vaccination (7, 14, 21, 28, 49 and 56 dpv). ... 103
Figure 4.3 Analysis 3. Mean (LSM ± SEM) log_{10} viral copy number of MDV in PBL (a), feather tips (b), and log_{10} VCN/mg in dust (c) in all samples, showing interactions between the effects of type of virus (Rispens or pathogenic MDV) and day post infection (7, 14, 21, 28, 49 and 56 dpi). ... 104
Figure 5.1 Percentage of serum samples positive for anti-MDV antibody (A) and feather samples qPCR positive for the Rispens virus (B) in layer chickens vaccinated with Rispens CVI988 vaccine up to 12 weeks of age.. 121
Figure 5.2 Serum anti-MDV titre (cube root transformed) (A), Rispens viral load (log transformed) in feathers (B), and dust (C) in layer chickens vaccinated with Rispens CVI988 vaccine up to 12 weeks of age on two farms. ... 122
Figure 5.3 Percentage of serum samples positive for anti-MDV antibody (A) and feather samples qPCR positive for the Rispens virus (B) in layer chickens vaccinated with Rispens CVI988 vaccine up to 91 weeks of age... 123
Figure 5.4 Serum anti-MDV titre (cube root transformed) (A), Rispens viral load (log transformed) in feathers (B), and dust (C) in layer chickens vaccinated with Rispens CVI988 vaccine up to 91 weeks of age. ... 123
Figure 5.5 Comparison of viral copy number detected in dust samples from seven commercial broiler farms using the Rispens specific or generic MDV serotype 1 qPCR test. .. 125
Figure 6.1 Scatterplot showing the association between protective indices provided by the Rispens and bivalent (HVT/SB1) vaccines against vv and vv+MDV pathotypes using SPF chickens ... 135
Figure 6.2 The mean protective indices of Rispens for v (1 isolate), vv (11 isolates) and vv+MDV (9 isolates) and data from this thesis (one v and one vv isolate). 135
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>aa</td>
<td>Amino acid</td>
</tr>
<tr>
<td>ADOL</td>
<td>Avian Disease Oncology Laboratory</td>
</tr>
<tr>
<td>AE</td>
<td>Avian encephalomyelitis</td>
</tr>
<tr>
<td>AEC</td>
<td>Animal ethics committee</td>
</tr>
<tr>
<td>AGPT</td>
<td>Agar gel immunoprecipitation test</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>B cells</td>
<td>B lymphocytes</td>
</tr>
<tr>
<td>BAC</td>
<td>Bacterial artificial chromosomes</td>
</tr>
<tr>
<td>bp</td>
<td>Base pairs</td>
</tr>
<tr>
<td>Bursa</td>
<td>Bursa of fabricius</td>
</tr>
<tr>
<td>CEF</td>
<td>Chicken embryo fibroblasts</td>
</tr>
<tr>
<td>CKC</td>
<td>Chicken kidney cells</td>
</tr>
<tr>
<td>CMI</td>
<td>Cell mediated immunity</td>
</tr>
<tr>
<td>Ct</td>
<td>Cycle threshold</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of variance</td>
</tr>
<tr>
<td>DEF</td>
<td>Duck embryo fibroblasts</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxy ribonucleic acid</td>
</tr>
<tr>
<td>dpc</td>
<td>Days post challenge</td>
</tr>
<tr>
<td>dpi</td>
<td>Days post infection</td>
</tr>
<tr>
<td>dpv</td>
<td>Days post vaccination</td>
</tr>
<tr>
<td>EDS</td>
<td>Egg drop syndrome</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme linked immunosorbent assay</td>
</tr>
<tr>
<td>EMS</td>
<td>Early mortality syndrome</td>
</tr>
<tr>
<td>FFE</td>
<td>Feather follicular epithelium</td>
</tr>
<tr>
<td>FP</td>
<td>Fowl pox</td>
</tr>
<tr>
<td>G</td>
<td>Gauge</td>
</tr>
<tr>
<td>GaHV-2</td>
<td>Gallid herpesvirus 2</td>
</tr>
<tr>
<td>GaHV-3</td>
<td>Gallid herpesvirus 3</td>
</tr>
<tr>
<td>HEPA</td>
<td>High efficiency particulate air</td>
</tr>
<tr>
<td>HP</td>
<td>Highly protective</td>
</tr>
<tr>
<td>hr</td>
<td>Hours</td>
</tr>
<tr>
<td>HVT</td>
<td>Herpesvirus of turkeys</td>
</tr>
<tr>
<td>IB</td>
<td>Infectious bronchitis</td>
</tr>
<tr>
<td>IF</td>
<td>Immunofluorescence test</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunoglobulin</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>ILT</td>
<td>Infectious laryngotracheitis</td>
</tr>
</tbody>
</table>
IRL Internal repeat long
IRS Internal repeat short
Kbp Kilobase pairs
LAMP Loop mediated isothermal amplification
LAT Latency-associated transcripts
LL Lymphoid leucosis
LP Low protective
m Mild
mab Maternal antibody
MAMA Mismatch mutation assay
MATSA Marek's tumour associated surface antigen
MD Marek's disease
MDV Marek's disease virus
MDV-1 MDV serotype 1
MDV-2 MDV serotype 2
MDV-3 MDV serotype 3
MeHV-1 Meleagrid herpesvirus 1
MHC Major histocompatibility complex
mRNA Messenger RNA
ND Newcastle disease
NO Nitric oxide
P Proline
PBL Peripheral blood leucocytes
PBS Phosphate buffered saline
PBST Phosphate buffered saline Tween 20
PC2 Physical containment level 2
PCR Polymerase chain reaction
PFU Plaque forming units
pp38 Phosphoprotein of 38kDA
QC Quality control
qPCR Quantitative polymerase chain reaction
QTL Quantitative trait loci
REV Reticuloendothelial virus
Rispens Rispens CVI988
RNA Ribonucleic acid
Rnase Ribonuclease
rpm Revolutions per minute
SNP Single nucleotide polymorphism
SPF Specific pathogen free
T cells T lymphocytes
TP Transient paralysis
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRL</td>
<td>Terminal repeat long</td>
</tr>
<tr>
<td>TRS</td>
<td>Terminal repeat short</td>
</tr>
<tr>
<td>UL</td>
<td>Unique long sequence</td>
</tr>
<tr>
<td>UNE</td>
<td>University of New England</td>
</tr>
<tr>
<td>US</td>
<td>Unique short sequence</td>
</tr>
<tr>
<td>USDA</td>
<td>United States Department of Agriculture</td>
</tr>
<tr>
<td>v</td>
<td>Virulent</td>
</tr>
<tr>
<td>VCI</td>
<td>Vaccination challenge interval</td>
</tr>
<tr>
<td>VCN</td>
<td>Viral copy numbers</td>
</tr>
<tr>
<td>VN</td>
<td>Virus neutralization</td>
</tr>
<tr>
<td>VR</td>
<td>Virulence rank</td>
</tr>
<tr>
<td>vv</td>
<td>Very virulent</td>
</tr>
<tr>
<td>vv+</td>
<td>Very virulent plus</td>
</tr>
</tbody>
</table>
List of Publications

Peer reviewed journal articles

Other reviewed journal articles (not reported in this thesis)

Peer reviewed long conference publications

Short non-peer reviewed conference publications

Abstract

Marek’s disease (MD) is an economically important poultry disease, which is successfully controlled by imperfect vaccines. The imperfect vaccines for MD, herpesvirus of turkeys (HVT) and HVT/Gallid herpesvirus 3 (GaHV-3) (bivalent) are likely to have contributed to the observed increase in virulence which has led to sequential failure of these vaccines in some parts of the world. The Gallid herpesvirus 2 (GaHV-2, MDV-1) Rispens CVI988 vaccine, first developed in 1972, has not been affected by this failure and is considered to be the gold standard Marek’s disease vaccine, being widely used worldwide to vaccinate long lived layers and breeders. Two experiments were designed to investigate this vaccine and its efficacy in Australia. An experiment in isolators investigated the protection provided by Rispens vaccine against Australian pathogenic GaHV-2 isolates of varying virulence (virulent, vMDV and very virulent vvMDV), and the kinetics of viral genome copy number of Rispens and the pathogenic MDV isolates in single and mixed infections. In the second experiment, a Rispens virus specific qPCR test was used to measure the vaccine take in invasive and non-invasive samples and the long-term viral kinetics of the Rispens virus in the field. Co-infection levels of Rispens and pathogenic GaHV-2 in the field and the possibility of establishment of Rispens virus in unvaccinated broiler flocks were also examined. Experiment one used 236 commercial ISA Brown chickens having maternal antibody directed against Rispens vaccine in 12 isolators. Chicks were vaccinated or not vaccinated with Rispens vaccine at hatch and challenged with vMDV isolate MPF57, vvMDV isolate FT158 at 5 days of age or left unchallenged. Each of the six treatment combinations was replicated in two positive pressure isolators. The protective index provided by Rispens vaccine did not vary with GaHV-2 challenge pathotype being 66% and 61% for MPF57 and FT158, respectively. Pathogenic viral loads in PBL, feather cells and dust up to 21 dpc were good early predictors for subsequent MD incidence. The early Rispens viral loads of PBL, feather, dust and spleen samples were, however more useful measures of the vaccine take than subsequent MD incidence. Investigation of the kinetics of the three viruses provided evidence that Rispens vaccination reduced the viral load of MPF57 more than FT158, thus providing an environment that favours the higher virulence isolate as has been shown for HVT, the other major MD vaccine. Patterns of, and treatment effects on, viral load in PBL and feathers were broadly similar, but differed markedly from those of virus shed in dust, so the former measurements cannot be used to predict the latter. In the field study 498 feather
and 42 dust samples were collected from three different farms at a wide range of age groups of chickens. By analysing these samples using Rispens virus-specific qPCR, we found that feather and dust samples from chickens between 2 and 3 weeks of age provided good early indicators of vaccine take. Co-infection of vaccinated chickens with pathogenic GaHV-2 was found in only 7% of 120 randomly selected feather DNA samples and in 5% in dust samples. Preliminary evidence of spread of the Rispens vaccine virus to unvaccinated broiler flocks was detected with 7/100 GaHV-2 positive dust DNA samples from unvaccinated broiler farms found to be positive for the Rispens viral genome.

The main implications of this study are; 1) The Rispens vaccine take can be measured in commercial layer flocks using qPCR testing of feathers from 14 days post vaccination (dpv) or dust from 21 dpv, 2) There is a low level of co-infection of Rispens virus with pathogenic GaHV-2 in commercial layer flocks, 3) There is a preliminary evidence for the Rispens virus has ‘escaped’ into the unvaccinated broiler chicken population and 4) Further evidence that unlike HVT and bivalent vaccines, the protective index provided by the Rispens vaccine is not influenced the pathotype of the challenge GaHV-2 virus, in this case between v and vv MDV.
General Introduction

Marek’s disease (MD) is an economically important disease of poultry which is characterised mostly by lymphotropic infiltrations in visceral organs causing T-cell lymphomas as well as a range of pathological syndromes including classical and acute paralysis. MD is caused by a DNA virus *Gallid herpesvirus 2* (GaHV-2; conveniently referred to by serotype as MDV-1) belonging to the *Mardivirus* genus of the *Alphaherpesvirinae* subfamily of *Alphaherpesviridae*. There are four other species belonging to genus *Mardivirus* and the most important are *Gallid herpesvirus 3* (GaHV-3, MDV-2) and *Meleagrid herpesvirus 1* (MeHV-1, MDV-3). The other two species are *Anatid herpesvirus 1* and *Columbid herpesvirus 1*. GaHV-3 is a non-pathogenic species from chickens and MeHV-3 is a naturally occurring herpesvirus of turkeys (HVT) which is non-pathogenic in chickens.

MD can cause up to 60% mortality in commercial poultry and is usually successfully controlled by live viral vaccines. However, the MD vaccines are imperfect vaccines that do not provide sterile immunity. Therefore, the vaccines successfully reduce MD incidence, lymphomas, and mortality but not superinfection, replication, and shedding of pathogenic GaHV-2. Therefore, it is postulated that the MD vaccines themselves could be one of the causes of the evolution of virulence of GaHV-2 and emergence of new pathotypes (Atkins et al., 2013; Read et al., 2015). This had been previously reported by Witter et al. (1997) who classified the GaHV-2 isolates as mild (m), virulent (v), very virulent (vv) and very virulent plus (vv+) partly on the basis of their ability to induce MD in chickens vaccinated with HVT and HVT+ GaHV-3 bivalent vaccines.

The Rispens CVI988 vaccine (Rispens vaccine) is currently considered the “gold standard” of MD vaccination (Davison & Nair, 2005) and is an attenuated GAHV-2 vaccine. In general, Rispens vaccine offers significantly better protection against vv+MDV isolates than HVT and HVT+GaHV-3 (bivalent) vaccines (Witter et al., 1995). However, previous pathotyping and protection experiments have shown that the protection provided by Rispens vaccine against GaHV-2 isolates is variable (Witter et al., 2005; Zhang et al., 2015). Furthermore, only limited studies have investigated the protection provided by Rispens vaccine against vMDV isolates as they are adequately protected against by HVT and bivalent vaccines. Moreover, most pathotyping and protection studies using Rispens vaccine have been conducted in maternal antibody (mab) –ve chickens (Buscaglia et al., 2004; Gong et al., 2014; Zhang et
al., 2015) or experimental strains of mab +ve chickens (Witter et al., 1995; Witter et al., 2005) which do not reflect the situation in the field. Only a few protection studies have been conducted in commercial mab +ve chickens using Rispens vaccine (Lee et al., 2010; Lee et al., 2013; Chang et al., 2014; Islam et al., 2013a). In this thesis I tested the protection provided by the Rispens vaccine against two Australian isolates of MDV differing in virulence in mab +ve commercial chickens of a major international genotype (ISA Brown) using industry-standard vaccination procedures.

Quantitative PCR (qPCR) methods have been developed to differentiate between GaHV-2, GaHV-3, and HVT, and this has enabled the development of methods to correlate viral loads with subsequent MD status in protection studies. As Rispens/CVI988 vaccine is an attenuated GaHV-2, qPCR methods that differentiate Rispens vaccine from pathogenic GaHV-2 have only become available more recently (Baigent et al., 2011; Haq et al., 2012; Renz et al., 2013; Gimeno et al., 2014).

Viral loads of various samples have been studied to predict subsequent MD status with or without vaccination (Yunis et al., 2004b; Islam et al., 2006b; Gimeno et al., 2008; Islam et al., 2008; Dunn et al., 2014). In this thesis, using the differential qPCR method described by Renz (2013), I explored genome copy numbers of both pathogenic GaHV-2 and Rispens vaccine viruses in peripheral blood leucocytes (PBL), feather, spleen and dust in mab +ve commercial ISA Brown birds used in the protection study referred to above. I also investigated the level of immunosuppression focussing mainly on lymphoid organ atrophy induced by the two Australian MDV pathotypes by assessing effects on relative bursal, thymic, and splenic weights.

The differential qPCR assays for Rispens vaccine and pathogenic GaHV-2 have enabled the study of viral kinetics of vaccinal and challenge MD viruses in the same host (Baigent et al., 2011; Haq et al., 2012; Baigent et al., 2013; Islam et al., 2014). All MDV vaccines are imperfect vaccines, and therefore allow superinfection, replication, and shedding of pathogenic MDV in the host (Eidson et al., 1971; Rispens et al., 1972a; Islam & Walkden-Brown, 2007). Witter (1998b) had postulated that the increased virulence of the field GaHV-2s may be caused by the vaccination itself. It has been postulated that imperfect or “leaky” vaccines may lead to evolution of more virulent pathogens (Gandon et al., 2001; Atkins et al., 2013) and this has been supported by recent modelling of experimental data (Atkins et al., 2013). However, only very recently it has been confirmed experimentally that the use of the
imperfect HVT vaccine does indeed favour more virulent GaHV-2 isolates (Read et al., 2015). Several co-infection studies of HVT and bivalent vaccines with pathogenic MDV in the same host have been carried out. However, this thesis reports the first study that compares the viral kinetics of GaHV-2 pathotypes of differing virulence in chickens vaccinated or not with the Rispens vaccine. This will provide insight into whether the ongoing efficacy of the Rispens vaccine is due to unique features of the vaccine that do not favour more virulent MDVs, or whether it is similar to the other MD vaccines in favouring the more virulent isolates. In the latter case, there must be some other reason for the ongoing success of this vaccine, first introduced in the early 1970s.

Although important viral kinetic studies have been carried out with Rispens vaccine, which provide useful suggestions on what samples should be collected at what times to best monitor the vaccine take (Baigent et al., 2011; Haq et al., 2012; Baigent et al., 2013; Islam et al., 2014a), very few studies have been carried out in the field. This thesis reports a field study into measures of Rispens vaccine take in vaccinated layer hens of different ages. Furthermore, although the initial studies of Rispens vaccine using the 26th DEF passage of Rispens CVI988 concluded that Rispens vaccine infection is lifelong (Rispens et al., 1972a), the existing current commercial vaccine has not been tested in the field for lifelong infection. The current co-infection level of Rispens vaccine with pathogenic GaHV-2 is also unknown in the field. A recent study has confirmed that current commercial Rispens vaccines will effectively transmit laterally from vaccinated to unvaccinated chickens (Islam et al., 2014). Therefore, part of this study was also to investigate whether the Rispens vaccine actually has escaped and become established in unvaccinated chicken populations.

Therefore, the main aims of the work reported in this thesis are to:

1. Investigate the protection levels provided by the Rispens vaccine against GaHV-2 pathotypes of varying virulence (vMDV and vvMDV) and test early predictions of vaccinal protection;
2. Identify which invasive and/or non-invasive samples should be collected, and when, to best detect the vaccine take of Rispens vaccine in commercial layer populations;
3. Study the viral kinetics of Rispens vaccine virus and GaHV-2 pathotypes of varying virulence in single and co-infected hosts, including determining whether Rispens vaccination favours the replication of more virulent GaHV-2 over less virulent GaHV-2;
4. Determine the long-term viral kinetics of Rispens vaccine in commercial layer chicken populations; and

5. Determine whether there has been natural spread to, and establishment of, Rispens vaccine virus infections in unvaccinated broiler flocks.