The geomorphic evolution of the Warrumbungle Volcanic Complex, New South Wales, Australia.

Amanda J. Timmers BSc (Hons) (UNE).

A thesis submitted for the degree of Doctor of Philosophy of the University of New England

July 1998

Cover page: Arbuthnot's Range (the Warrumbungle Volcanic Complex) from the west, redrawn by Major Taylor from a sketch by Mr Evans during John Oxley's 1818 expedition into the interior of New South Wales.

Declaration

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree.

I certify that to the best of my knowledge any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

Acknowledgments

There are many people I wish to thank and I apologise for any omissions:

- My principal supervisor Dr. Robert Haworth (Department of Geography, Planning, Archaeology and Palaeoanthropology) for encouragement, as well as constant reading and editorial comments on the many drafts and the final version of the thesis.
- Co-supervisors Associate Professor Peter Flood (Department of Geology) and Dr. Morrie Duggan (Australia Geological Survey Organisation, Canberra) for helpful comments and editing. Dr. Stephen Gale provided supervision and assistance in the field for the first two and a half years of my candidature. His helpful comments and instruction were gratefully received.
- The landholders who allowed access to their land, particularly the successive custodians of "Wandiallabah", Mr Ross Craigo, and Mr Tony Morse (who has shown considerable interest in the nature and origin of the Wandiallabah area). Staff of the Warrumbungle Office of the National Parks and Wildlife Service provided valuable local knowledge and support, as did the staff at the Armidale branch of the Department of Mineral Resources, particularly Rob Barnes.
- The successive Heads of the former Department of Geography and Planning (Associate Professor Jack Hobbs, Professor Jim Walmsley, Associate Professor Tony Sorensen and particularly Associate Professor Jeremy Smith), and the newly formed Department of Geography, Planning, Archaeology and Palaeoanthropology Head, Associate Professor Iain Davidson, for making available Department facilities and funding.
- The administrative personnel in the Department: Megan Wheeler, Helen Creagan and Jan Hayden for their cheerful help and support throughout my candidature. Thanks also to Janice Johnson and Pat Mortell for their assistance in Ellis Thorpe Library and in technical matters, respectively. Other much needed assistance with computing has come from Terry Cooke and Alan Jones, and Mike Roach produced the excellent maps throughout the text.
- The Faculty of Arts (UNE) for providing annual equal opportunity stipends and Internal Research Grants, and the UNE for the provision of a UNE Research Scholarship,

without which it would have been impossible to undertake this study. In addition, I thank the staff of the UNE Geography Department for their support, particularly Fran Rolley, Neil Argent, Barbara Rugendyke, Jeremy Smith and Robert Baker.

- Lin Sutherland and Rob Jones at the Sydney Museum contributed to discussion on volcanism in Australia and fossil identification respectively. Emeritus Professor J.F.G. Wilkinson provided useful discussion on the general geology and the suitability of the application of geochemical techniques in the Warrumbungle Complex. Janet Knutson (Australian Geological Survey Organisation) is thanked for useful discussions on volcanism in the Warrumbungle Complex and Dr. Warwick Sivell of the UNE Department of Geology assisted in field identification of lithology and participated in useful discussion on volcanism in general. His interest and enthusiasm is greatly appreciated.
- Coonabarabran, Coonamble and Gilgandra Shire Councils kindly responded to all requests for information, as did the Coonabarabran Tourist Information Centre. I also thank the technical staff of the UNE Geology Department and Mr Peter Garlick of the Electron Microscope Unit. I acknowledge the contributions of the late Professor John Milburn of the UNE Department of Botany for his helpful discussions on diatom extraction techniques, and Hay War Memorial High School for their continued interest in my studies. The PhD officers were extremely helpful and I am grateful for their assistance.
- Finally, I would like to thank those who have supported me strongly throughout this endeavour: Bob Haworth, my brother David who assisted with work and play, Alison and Michelle, Mum, Dad and Kristen, Grandma, Bob and Colleen, Chris and Kerry, Rob and Tanya, Shari, Lynda, Ngaire, Chase and Michele and Tracey. I also thank Associate Professor John Humphreys, Dr. Bernard Swan and Tilak Kuruppuarachchi, who were never too busy to offer words of support, encouragement and to pass on relevant information. Tilak also assisted with the statistical analysis of diatoms. I especially thank Chandelle Duthie for her assistance and support.

Dedication

I dedicate this work to my Pop, who passed away during my candidature, and to Chandelle.....

Abstract

Geomorphic analysis of the mid-Miocene Warrumbungle volcanic complex in north-central New South Wales revealed a highly dissected multi-vent ovoid shield, 55 km long and averaging 32 km wide. The volcanics rest unconformably on a pre-volcanic medium-relief sandstone landscape of broad valleys and flat interfluves.

The degree of dissection, a function of the exceptionally large proportion of easily erodible pyroclastic material erupted during the volcano's 3.7 million year active life, varies considerably between the distal and proximal zones of extrusion. The proximal zone is preserved only in a skeletal state and is dominated by less erodible domes, plugs, and dykes. By contrast, the distal zone presents a characteristically gently sloping shield landscape with terraces where flow units are exposed.

Remarkably, and probably as a result of the large number of explosive eruptions that were a dominant feature of Warrumbungle activity, four previously unrecorded crater remnants were recognised, as well as other previously unrecognised features. The preferential preservation of their lithology is perhaps a result of the partial/complete burial of these features by coeval activity and the development of dual scale radial drainage networks, with exhumation only occurring when local sub-drainage had been captured.

There is strong structural control on volcanic morphology, with a fracture joining the ends of offset parallel lineaments. This fracture corresponds to a 40 km long northeast-southwest trending belt that controlled the emplacement of some 100 vents. This belt may reflect the migration of the Indo-Australian Plate over a fixed sub-lithospheric heat anomaly. However, analysis of age trends indicate a west-east (age-longitude) younging of volcanics contrary to the expected east-west younging, and no significant north-south (age-latitude) younging. The geomorphic evolution of the Warrumbungle Complex is a consequence of the interaction of sub-basement structure, multiple dome emplacement and preferential preservation of lithology caused by compositionally diverse pyroclastic ejecta and lava distributed disproportionately in the proximal and distal zones respectively. Coeval activity, dual scale drainage and denudation that was highly localised over time and space allowed preservation of individual landforms, while the overall radial pattern of a volcanic centre combined with the effects of pre-volcanic topography to reshape regional drainage.

Table of Contents

Chapter one: The geomorphic evolution of the Warrumbungle Volcanic Complex, New South Wales, Australia

1.1 Rationale for the study	.1
1.2 Australian volcanism	.2
1.3 The Warrumbungle Complex study area	.4
1.4 Research objectives	.6
1.5 Landscape evolution	.8
1.6 Nomenclature	.9
1.7 Thesis outline	.11

Chapter two: Volcanic geomorphology in eastern Australia

2.1 General introduction	13
2.2 Eastern Australian volcanism: distribution and classification	15
2.2.1 Distribution of Australian volcanism	15
2.2.2 Classification of Australian volcanism	16
2.3 The relationship between volcanism and the eastern Australian highlands: post-Palaeozoic	
evolution	22
2.3.1 Eastern highland relief	23
2.3.2 Volcanism and uplift	24
2.3.3 Timing of uplift	25
2.4 Heat sources for eastern Australian intraplate volcanism: introduction	
2.4.1 Heat source models	30
2.4.2 Hotspot traces in eastern Australia	31
2.5 Synthesis for eastern Australian volcanic geomorphology	36
2.6 Conclusion	37

Chapter three: The geomorphic development of volcanic landforms

3.1 Volcanic landforms: introduction	39
3.2 Classification of volcanic landforms	41
3.3 Shield volcanoes	44
3.3.1 Australian shield volcanoes	45
3.4 Mechanisms of volcanism	48
3.4.1 Types of volcanic activity	48
3.4.2 Lava eruptions	49
3.4.2.1 High viscosity lava eruptions: emplacements (plugs, dykes, sills and domes)	50
3.4.2.2 Low viscosity lava eruptions: lava flows	53
3.5 Other morphological features of basalt lava flows	55
3.6 Pyroclastic eruptions	56
3.6.1 Types of pyroclastic eruptions	56
3.6.1.1 Pyroclastic ejecta: pyroclastic flows	60
3.6.1.2 Pyroclastic ejecta: pyroclastic falls	62
3.6.2 Landforms of explosive eruption centres	64
3.7 Erosion and weathering of volcanic landforms	65
3.7.1 Denudation of volcanic features	

.69
. 70
70
74
.78
79
.80
81
82
83

Chapter four: The Warrumbungle Complex

4.1 Introduction	.84
4.2 The Warrumbungle Complex: cultural history	.85
4.3 Biological diversity	.87
4.3.1 Vegetation	.87
4.3.2 Faunal diversity	90
4.4 Regional landscape development	90
4.4.1 Pre-volcanic setting	.90
4.4.2 Mid-Miocene volcanism	95
4.4.2.1 Rock types and distribution, geochemistry and petrogenesis	96
4.4.2.2 The age of the Warrumbungle Complex	98
4.4.3 Subsequent erosion of the Warrumbungle Complex	.101
4.4.3.1 Present shield morphology	.102
4.4.3.2 Drainage	107
4.4.3.3 Diatomite as a palaeoenvironmental indicator	.110
4.4.3.4 Diatomite in the Warrumbungle Complex	.111
4.4.3.5 Chalk Mountain diatomite	.113
4.4.3.6 Paddy McCullochs Mountain diatomite	113
4.4.3.7 Wandiallabah Creek diatomite	.114
4.5 Conclusion	115

Chapter five: Field and laboratory methods

5.1 General introduction	
5.2 The identification of volcanic landforms from aerial photographs	
5.3 Identification and morphology of crater-like features	
5.4 Calculations of remnant lava flow dimensions	
5.5 The morphology of the sub-volcanic basement	
5.5.1 The updoming of pre-volcanic topography	
5.5.2 The sub-volcanic surface	
5.6 Drainage reconstructions	
5.7 Reconstruction of volcanic features	
5.8 Diatom and pollen sampling for palaeoenvironmental analysis	
5.8.1 Site selection	
5.8.2 Bulk sample preparation	
5.9 Data presentation	
5.9.1 Geomorphic data	
5.9.2 Fossil diatom diagram construction	

Chapter six: Findings and preliminary discussion of landform interpretation

6.1 Introduction	131
6.2 Sub-volcanic topography	132
6.2.1 Basement morphology	132
6.2.2 The impact of volcanic emplacement on the basement	135
6.3 The age of activity	138
6.3.1 The timing of eruptions	138
6.3.2 Age-progressive relationships	139
6.3.3 Denudation as an indicator of age	143
6.3.4 Summary of age-relations	145
6.4 Points of eruption	146
6.4.1 The location and distribution of vents	147
6.4.2 Newly identified volcanic landforms	163
6.4.2.1 Caraghnan Crater	167
6.4.2.1.1 Caraghnan Crater lavas: the Wallumburrawang Ridge flows	169
6.4.2.2 Milchomi Crater	172
6.4.2.2.1 Milchomi Crater lavas	173
6.4.2.3 Wheoh Crater	175
6.4.2.3.1 Wheoh lavas	177
6.4.2.4 Salters Spring Crater	181
6.4.2.4.1 Salters Spring lavas	182
6.4.2.5 Hungerford Swamp crater-like feature	185
6.4.2.6 The Black Mountain crater-fill lava	186
6.5 Horizontal/near horizontal flows and flow remnants	189
6.5.1 Sheet flows	191
6.5.1.1 Tonduron Spire: Tooraweenah Ridge	192
6.5.2 Major constructional flows	195
6.5.2.1 Mount Exmouth	195
6.5.2.1.1 Reduction in planeze elevation	196
6.5.2.2 Siding Spring Mountain: Mount Woorut flows	197
6.5.2.2.1 Lower Woorut Sequence	198
6.5.2.2.2 Upper Woorut Sequence	199
6.5.2.3 Weston Mountain flows	200
6.5.3 Constricted flows	201
6.5.3.1 Belougery Split Rock flows	201
6.5.3.2 Mount Naman	203
6.6 Tephra deposits	203
6.6.1 Timor Rock pyroclastics	205
6.6.2 Mount Bullaway pyroclastics	206
6.7 Palaeoenvironmental reconstructions	206
6.7.1 Stratigraphy of the Wandiallabah Creek diatomite section	206
6.7.2 Lake conditions	210
6.8 Drainage development in the Warrumbungle Complex	211
6.8.1 River long-profiles	211
6.8.2 Dual scale drainage patterns	213
6.8.3 The impact of volcanism on the course of the Castlereagh River	213
6.9 The morphology of the Warrumbungle Complex at the cessation of activity	215
6.9.1 Shield reconstruction	215

6.10 Conclusion	
6.10 Conclusion	

Chapter seven: Synthesis of results and preliminary discussion

7.1. Introduction	224
7.2 Pre-volcanic morphology	
7.2.1 Pre-volcanic drainage evolution of the Castlereagh River	228
7.3 Tectonics, eruptive styles and timing of activity	230
7.3.1 Volcanic origins	230
7.3.2 Eruption centres	235
7.3.3 Eruption styles, timing and geomorphic effects of activity	235
7.4 Morphology of lava flows and pyroclastic materials	242
7.4.1 Lava flow morphology	242
7.4.2 Morphology of pyroclastic deposits	243
7.5 Drainage development	243
7.5.1 The geomorphic impact of dual scale radial drainage regimes	244
7.6 Post-volcanic landscape evolution	245
7.6.1 The nature of erosion in the Warrumbungle Complex	245
7.6.2 The preservation of volcanic craters	248
7.7 Conclusion	249

Chapter eight: Factors contributing to the erosional morphology of eastern Australian central-type volcanoes

8.1 General introduction	251
8.2 Miocene shield emplacement	252
8.2.1 Sub-volcanic structure: location and distribution of vent emplacement	252
8.2.2 Vent emplacement and drainage development	254
8.3 Relative denudation of Miocene shields	254
8.4 Conclusion	256
	057

Cł	napter	nine:	Conc	clusions	257

pter ten: References

Appendix A: The Miocene climate of Australia

A.1 General introduction	279
A.2 The Miocene climate	
A.3 Miocene climate and vegetation in New South Wales: pollen and macrofossil evidence	

Appendix B: Diatom biology, ecology and palaeolimnological applications

B.1 Diatom biology	286
B.2 Diatom taxonomy	286
B.3 Ecological classification of diatoms	287
B.3.1 Modern analogues of diatom tolerances for Wandiallabah Creek diatoms	289
B.4 Species diversity of diatoms in the Warrumbungle Complex	290

B.5 Diatom preservation	
B.6 Diatom palaeoecology and palaeolimnological applications	
B.7 Conclusion	

Appendix C: The application of potassium-argon dating to the erosion of volcanic areas

C.1 Introduction	298
C.2 Advantages and limitations of K-Ar methods	298
C.3 Analytical precision of K-Ar dates	299
C.4 The interpretation of K-Ar dates	299

Appendix D: Limitations of aerial photographic interpretation of volcanic landscapes

D.1 Aerial photographic interpretation
--

Appendix E: Preparation of diatomite for palaeoenvironmental interpretation

E.1 Subsampling of diatomite	303
E.2 Diatom extraction	304
E.2.1 Extraction of frustules from pure diatomite	.307
E.2.2 Extraction of frustules from intermediate diatomite	307
E.2.3 Extraction of frustules from impure diatomite	308
E.3 Slide preparation	308
E.4 Diatom counting procedure	311
E.4.1 Calculations of diatom numbers	311
E.4.2 Statistical analysis of diatom counts	312
E.4.3 Statistical methods	313
E.5 The Limitations of diatom studies	315

Appendix F: Description and interpretation of the Wandiallabah Creek diatom section

F.1 Site description	
F.2 Wandiallabah Creek diatom log	
F.3 Interpretation of Wandiallabah Creek log	
F.4 Summary	
F.5 Conclusions	
Appendix G: Lava flow stratigraphgy	
Appendix H: The direction and extent of dip of the sub-vol	canic basement.

١	Narrumbungle	Complex	••••••	 	336

List of Figures

<i>Figure 1.1</i> : Location of the Warrumbungle Complex in relation to the main central-type volcano, lava field and leucitite suite (high potassium-mafic) provinces of eastern Australia
Figure 1.2: Map of the Warrumbungle Complex study area and the principal localities discussed in the text
Figure 2.1: Distribution, rock types and ages (Ma, in brackets) of volcanic provinces in northern New South Wales
Figure 2.2: The relationship between age and latitude of central-type volcanoes in eastern Australia
Figure 2.3: The global distribution of main hotspots
Figure 2.4: Hotspot traces in eastern Australia and the Tasman Sea
<i>Figure 3.1:</i> (a) Schematic representation of simple central-type volcanoes. The numbers refer to the volcano type classified in Table 3.1. (b) Schematic diagram showing the characteristic landforms resulting from volcanic action at the surface and their relationship to shallow intrusive activity in the crust
Figure 3.2: The geometry of tephra deposits derived from eruption fallout
Figure 3.3: Drainage and landforms associated with lava flows
<i>Figure 3.4</i> : The geomorphic effects of the Mount St. Helens eruption on regional drainage. (a) Before the 1980 eruption. (b) After the 1980 eruption. (c) One year after the eruption
Figure 3.5: The successive stages in the erosion of a large stratovolcano to leave a volcanic neck. The inset shows the drainage pattern where planeze surfaces are present
Figure 4.1: Tertiary and Jurassic volcanic complexes of the Gunnedah Basin
Figure 4.2: Schematic cross-section of the Warrumbungle Complex, showing how erosion has stripped away a large part of the original shield
<i>Figure 4.3</i> : (a) Present drainage of the Warrumbungle Complex. (b) The circumvolcanic drainage of the Castlereagh River around the Warrumbungle Complex
Figure 4.4: The location of diatomite in New South Wales
Figure 5.1: Schematic diagram representing the parameters used to estimate the current size of crater remnants
Figure 6.1: The sub-volcanic contours of the Warrumbungle Complex
<i>Figure 6.2:</i> Field measurements of tectonic disturbance of basement rock in the Warrumbungle Complex in relation to volcanoes within the shield. The distribution of vents within the shield is also shown. The numbered vents correspond to those listed in Tables 6.2 and 6.3
Figure 6.3: (a) The relationship between age and latitude in the Warrumbungle Complex
Figure 6.3: (b) The relationship between age and latitude in lavas of the Warrumbungle Complex after dated lavas have been traced back to their apparent sources
Figure 6.4: (a) The apparent age-longitude relationship of the Warrumbungle Complex

<i>Figure 6.4:</i> (b) The relationship between age and longitude in lavas of the Warrumbungle Complex after dated lavas have been traced back to their apparent sources	142
Figure 6.5: Frequency histogram for the volume of vents in the Warrumbungle Complex	161
Figure 6.6: Cross-section showing Caraghnan Crater	167
Figure 6.7: Cross-section showing stratigraphy of the Wallumburrawang Ridge flows	171
<i>Figure 6.8:</i> (a) West-east cross section showing the proposed Milchomi Crater. (b) Close-up photograph of Milchomi Crater (centre) looking east.	172
Figure 6.8: (c) Distant shot showing the rim of Milchomi Crater in profile	173
Figure 6.9: Cross-section of Wheoh Crater showing crater dimensions.	175
<i>Figure 6.10</i> : Annotated air photo image showing the crescent lobes of Wheoh Crater and the adjacent peaks formed by stacked lava flows. A line joining a-b locates the cross-section in Figure 6.9	176
Figure 6.11: Cross-section of Salters Spring Crater showing morphology. Lavas associated with this feature are shown in Figure 6.12	181
<i>Figure 6.12</i> : Sketch map of Salters Spring Crater showing geographic relations between the crater and lava flows. Outlines and numbers denote flow units originating from the crater. The line A-B locates the cross-section in Figure 6.11.	184
<i>Figure 6.13</i> : Cross-section along Tooraweenah Ridge showing the relationship between the flow source (Tonduron Spire), individual lavas and the adjacent and partly overlying Red Mountain. Further detail of field relations may be observed in Plate 6.7	194
<i>Figure 6.14</i> : Extract of the Tooraweenah 1:50 000 topographic map (SH8635-II & III) showing the effect of headward retreat of Walga Creek and Dooroombah Creek on interfluve elevation	197
Figure 6.15: Cross-section showing the relationship between Belougery Split Rock lavas and the sub-volcanic basement	202
<i>Figure 6.16</i> : Cross-section showing field associations between the volcanic plug of Timor Rock, pyroclastics and trachytes	205
Figure 6.17: Results of cluster and percentage diatom analysis from Wandiallabah Creek	208
Figure 6.18: (a-c) River long-profiles for the major streams of the Warrumbungle Complex	212
<i>Figure 6.19</i> : The distribution of mid-Miocene valley-fill basalts in relation to the present course of the Castlereagh River	214
Figure 6.20: Profiles of extrapolated remnant planeze surfaces used to produce a reconstruction of the original Warrumbungle shield at cessation of activity	217
<i>Figure 6.21</i> : Superimposed profiles across the Warrumbungle Complex at 100 m contour intervals showing the relationship between sub-volcanic and volcanic surfaces. (i) Reconstructed upper surface of volcanic rocks at cessation of activity. (ii) The present land surface. (iii) Contact between basement and volcanic rock.	219
<i>Figure 7.1</i> : Tertiary and Jurassic volcanic complexes of the Gunnedah Basin showing broad northeast and/or north-northeast alignment. Traces of major transfer faults are also shown	233
Figure A.1: (a) Pollen spectra from northern New South Wales	282
Figure B.1: Changes in the species diversity of diatoms throughout the Cenozoic	292

List of Tables

Table 1.1: Nomenclature used for the description and classification of major volcanic landforms as relevant to the Warrumbungle Complex 10
Table 2.1: Miocene shield volcanoes of New South Wales 19
Table 2.2: Timing and evidence for highland evolution
Table 2.3: Origins ascribed to Cenozoic volcanism, eastern Australia-Tasman Sea
Table 3.1: Simplified classification of volcanoes and related landforms. The numbers refer to the diagrams in Figure 3.1a
Table 3.2: A summary of the geomorphic and petrological characteristics of the main central-type (shield) volcanic provinces of southeastern Queensland and New South Wales. See also Figure 1.1
Table 3.3: Some morphological features of lava flows common to the Warrumbungle Complex
Table 3.4: Pyroclastic flow genesis and landforms 62
Table 3.5: Pyroclastic airfall (tephra) deposits 63
Table 4.1: General geological and geomorphological history of the Warrumbungle Complex and surrounding area
<i>Table 4.2</i> : Potassium ⁴⁰ -argon ⁴⁰ ages of the Warrumbungle Complex
Table 4.3: Diatom species found in association with the Warrumbungle Complex
Table 6.1: Phases of volcanic activity as interpreted from K-Ar ages 139
Table 6.2: Location and description of points of eruption (domes, plugs, craters and hidden sources) in the Warrumbungle Complex. Subscript numbers in the text correspond to the vents tabulated here. An asterix (*) indicates new features identified in this study
Table 6.3: Exposed dykes and/or dyke clusters in the Warrumbungle Complex. Asterix (*) denotes new features identified in this study 157
Table 6.4: The ratio (D_1) of the original (projected) cone height (H_1) to the crater diameter (W_{er}) minus the ratio (D_2) of the present cone height (H_2) to the crater diameter gives D, an expression of the degree of erosion of each crater
Table 6.5: A comparison of Chalk Mountain and Paddy McCullochs Mountain diatomite sequences 176
Table 6.6: The reconstruction of the original altitude of the Warrumbungle Complex at cessation of activity from constructional surfaces
Table 6.7: A summary of the geomorphic development of the Warrumbungle Complex
Table 7.1: Denudation rates calculated for the Warrumbungle Complex
Table A.1: Cenozoic palaeoclimatic, vegetational and volcanic history of Australia

Table B.1: Hustedt's pH classification for diatoms	.287
Table B.2: Habitat preferences of modern analogues of Wandiallabah Creek diatoms	.289
Table F.1: One metre wide representative log of Wandiallabah Creek	.322
Tables G.1-G.11: Detail of flow dimensions outlined in Chapter 6	.330-335
Table H.1: The direction and extent of dip of the basement rock caused by the intrusion of the Warrumbungle Complex.	e .336

List of Plates

Plate 2.1: The eroded remnants of the central province type Glasshouse Mountains
<i>Plate 3.1:</i> View showing the structural relationships between the volcanic plugs of Tooraweenah Spire (Tonduron Spire) and Crater Bluff in the Warrumbungle Complex
Plate 3.2: The distinctive lava dome of Bluff Mountain, Warrumbungle Complex
Plate 3.3: The flat-topped lava surfaces of Wallumburrawang Ridge, Warrumbungle Complex
<i>Plate 3.4</i> : (a) Pyroclastic ash billows from the Soufriere Hills volcano in the form of flows at the base of the vertical eruption column. (b) The partially subdued relief of Salem, Monserrat, blanketed by pyroclastic airfall deposits (see also Figure 3.2)
<i>Plate 3.5</i> : One of several small landslides at the base of Mopra Rock, a volcanic plug preserved on the eastern flank of the Warrumbungle Complex, New South Wales
<i>Plate 4.1:</i> (a) The Warrumbungle Complex from the southwest. (b) The shield centre, taken from Siding Spring Observatory
<i>Plate 4.2:</i> (a) Planar crossbedded Pilliga Sandstone exposed in sunken quarry on the western flank of the Warrumbungle shield (GR785272). (b) Fossilised branches or logs replaced by silica or ?siderite-goethite in a sandstone boulder in the Warrumbungle National Park (GR888342)
Plate 4.3: Soil development (GR903325) in poorly sorted and poorly bedded tephra deposits in the shield centre
Plate 4.4: Lahar deposit on the John Renshaw Parkway (GR975370)
Plate 5.1: An example of a partially preserved planeze surface in the Warrumbungle Complex
Plate 6.1: Near surface intrusion exposed in a road cutting on the Oxley-Newell Highway (GR966208)137
<i>Plate 6.2</i> : A comparison of lava flow dissection in the central northern, northwestern and southern areas of the Warrumbungle Complex as a possible indicator of age. (a) The late-residual mountain stage Milchomi lavas showing rounded flow margins and well established drainage. (b) The partially rounded planar surface of Salters Spring lavas
<i>Plate 6.3:</i> (a) The Fire Trail 2 Dyke ₈₇ showing the dyke. (b) The weathering rind on the dyke has exploited jointing in the fine-grained trachyte
Plate 6.4: Aerial photograph of Caraghnan Crater. A line joining a-b-c locates the cross-section in Figure 6.6

Plate 6.5: Aerial photograph showing the field association between Hungerford Swamp and M Berrumbuckle	ount 186
<i>Plate 6.6</i> : The Black Mountain crater-fill lavas. (a) Photograph showing the morphology of the Black Mountain crater-fill lavas. (b) Plan of the proposed Black Mountain crater-fill lava	88
Plate 6.7: Aerial photograph of the Tooreweenah Ridge lavas showing their planar surface	193
<i>Plate 8.1</i> : The variation in the degree of denudation of selected New South Wales Miocene shields (a) The triangular planeze surfaces of the Tweed Volcano, northern New South Wales created by classic radial stream development on a volcanic cone. (b) The shield profile of the Nandewar Volcano, central northern New South Wales	253
Plate F.1: The Wandiallabah Creek diatomite (GR945198)	321
Plate F.2: Volcanic stratigraphy above the Wandiallabah Creek diatomite	324
Plate F.3: Detail of layered tephras at Wandiallabah Creek	\$24
Plate F.4: Unidentified leaf imprints preserved in diatomite at Wandiallabah Creek	325