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Abstract
Antimony (Sb) has been used throughout human history, but recently anthropogenic

emissions and recognition of harmful effects on humans and the environment has led

to concern over the lack of knowledge about the environmental fate and behaviour of

this metalloid. The coastal floodplain of the Macleay Catchment in northeastern

NSW, Australia, has been shown to be subject to mining related enrichment of Sb and

to a lesser extent, As. The aims of this thesis were to elucidate aspects of Sb

behaviour in this system, and to compare the findings with the behaviour of As. The

extent of the enrichment of both metalloids in the soils of the floodplain, and the

concentrations in selected pastures and surface waters were determined. Possible

influences on mobility and availability of both metalloids in selected soils and under

specific management regimes were also examined. In addition, the sorption behaviour

of Sb (V) was investigated for 2 floodplain soils and 2 dominant soil phases. A review

of the available literature indicated that the aims of this thesis had not been addressed

previously.

Analytical methods for the determination of total metalloid concentrations in soils and

metalloid concentrations in soil extracts at the University of New England were

developed as necessary precursors to further investigations. Subsequent floodplain

sampling showed that approximately 90 % of the floodplain is enriched in As and Sb,

and 6 - 8 % of the floodplain contains As and Sb concentrations greater than current

Australian soil ecological investigation guideline values. Variation in surface and

depth distributions indicated flood-related deposition of both metalloids. The soil

enrichment was reflected in the pasture and surface water metalloid concentrations.

The results suggested higher relative metalloid availability than is typical at grossly (>

100 mg kg-1 Sb and/or As) contaminated sites.

The availability of both metalloids to pasture species were related to flooding in

selected acid sulfate affected soils under controlled and field conditions, although

only the availability of Sb appeared to also be related to the proportion of Fe present

in the soil in the non-crystalline oxyhydroxide form. In addition, it was determined

that flooding these soils over the short periods (weeks) practical in the field would not

induce significant soil reduction as an acid sulfate management technique. Flooding,
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however, may increase the availability of both metalloids, depending on the amount

and form of Fe in the soil.

Adsorption batch trials were undertaken to elucidate the binding of Sb to the soils

investigated in the glasshouse trial, and two dominant phases of these soils. During

the adsorption trials, the soils investigated sorbed 80 - 100 % of the added Sb (V) at

pH values less than approximately 6.5. Amorphous Fe hydroxide retained > 95 % of

the added Sb in all adsorption experiments, while humic acid sorbed up to 60 % of the

added Sb at acidic pH values.

In addition, a limited exposure assessment and risk characterisation for generic

floodplain populations with the highest metalloid exposure was undertaken. They

showed that up to 23 % of the tolerable daily intake of Sb was provided by the few

pathways of exposure included in the assessment, and that the acceptable daily intake

of As may be exceeded under certain conditions.
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