The Environmental Fate and Behaviour of Antimony in the Coastal Floodplain System of the Macleay Catchment, with Comparisons to Arsenic

Matthew Kevin Tighe B. Nat. Res (Hons) UNE

A thesis submitted for the degree of Doctor of Philosophy of the University of New England

July 2005

Acknowledgements

Well, this thesis has been a long time coming, and there are several groups and individuals who deserve both my gratitude and a mention here. Firstly, I'd like to thank my supervisors, Associate Professor Paul Ashley, Dr. Peter Lockwood and Dr. Susan Wilson. The three of you put together a fantastic project that really challenged me and kept my curiosity alive. Your knowledge and advice truly made this a multi-disciplinary project. I am also grateful to Dr. Ravi Naidu and Dr. Mike McLaughlin of CSIRO, who provided me with supervision and advice from a distance.

Of course, the project would not have eventuated without funding. I'd like to thank the University of New England for providing me with an APA, the CSIRO for their generous postgraduate scholarship, NSW Agriculture for their timely grant, AINSE for their additional award, and both the Keith and Dorothy Mackay University of New England travelling scholarship and the German Science Foundation for enabling me to attend the 1st International Workshop on Antimony in the Environment.

A few other groups and individuals provided me with support that was just as important as supervision and funding. I would like to thank Dr. Bob Murison and Dr. Bernard Ellem for their statistical support, advice, and patience. My thanks also go out to the technical staff in the Agronomy and Soil Science Department in general and Gary Cluely and Leanne Lisle in particular, for their genuine interest and their attention to detail. Leanne, thanks for the best grounding in laboratory techniques I believe I could have gotten anywhere.

I'd like to extend my thanks to the landholders of the Macleay floodplain, particularly the farmers who allowed me to visit their properties several times during the project. In addition, I would like to thank the Jones', for their hospitality during my fieldwork.

The final group of people who made this thesis possible were my family and friends. It would be remiss of me to not thank Ben W., Kate and Imogen for the 'Summer of the Wicklow', and even more remiss not to thank Tim, Tom, Ben H., Greg, Pete, Jo and Craig for extending that summer into 3 years of weekly stress relief at the Imperial.

It would've also been impossible to get to this point without the support of my mum, dad, sister and brother, who seem to understand and accept the fact that I've been at school for over 20 years, and never really got over playing in the dirt. I must also thank Kara Jones, who has been and is my support in every sense of the word, and is the reason I wake up feeling lucky everyday.

I think I've covered everyone. My apologies if you feel you have been left out. I hope you enjoy (or at least read) this thesis.

Abstract

Antimony (Sb) has been used throughout human history, but recently anthropogenic emissions and recognition of harmful effects on humans and the environment has led to concern over the lack of knowledge about the environmental fate and behaviour of this metalloid. The coastal floodplain of the Macleay Catchment in northeastern NSW, Australia, has been shown to be subject to mining related enrichment of Sb and to a lesser extent, As. The aims of this thesis were to elucidate aspects of Sb behaviour in this system, and to compare the findings with the behaviour of As. The extent of the enrichment of both metalloids in the soils of the floodplain, and the concentrations in selected pastures and surface waters were determined. Possible influences on mobility and availability of both metalloids in selected soils and under specific management regimes were also examined. In addition, the sorption behaviour of Sb (V) was investigated for 2 floodplain soils and 2 dominant soil phases. A review of the available literature indicated that the aims of this thesis had not been addressed previously.

Analytical methods for the determination of total metalloid concentrations in soils and metalloid concentrations in soil extracts at the University of New England were developed as necessary precursors to further investigations. Subsequent floodplain sampling showed that approximately 90 % of the floodplain is enriched in As and Sb, and 6 - 8 % of the floodplain contains As and Sb concentrations greater than current Australian soil ecological investigation guideline values. Variation in surface and depth distributions indicated flood-related deposition of both metalloids. The soil enrichment was reflected in the pasture and surface water metalloid concentrations. The results suggested higher relative metalloid availability than is typical at grossly (> 100 mg kg⁻¹ Sb and/or As) contaminated sites.

The availability of both metalloids to pasture species were related to flooding in selected acid sulfate affected soils under controlled and field conditions, although only the availability of Sb appeared to also be related to the proportion of Fe present in the soil in the non-crystalline oxyhydroxide form. In addition, it was determined that flooding these soils over the short periods (weeks) practical in the field would not induce significant soil reduction as an acid sulfate management technique. Flooding,

however, may increase the availability of both metalloids, depending on the amount and form of Fe in the soil.

Adsorption batch trials were undertaken to elucidate the binding of Sb to the soils investigated in the glasshouse trial, and two dominant phases of these soils. During the adsorption trials, the soils investigated sorbed 80 - 100 % of the added Sb (V) at pH values less than approximately 6.5. Amorphous Fe hydroxide retained > 95 % of the added Sb in all adsorption experiments, while humic acid sorbed up to 60 % of the added Sb at acidic pH values.

In addition, a limited exposure assessment and risk characterisation for generic floodplain populations with the highest metalloid exposure was undertaken. They showed that up to 23 % of the tolerable daily intake of Sb was provided by the few pathways of exposure included in the assessment, and that the acceptable daily intake of As may be exceeded under certain conditions.

Declaration

1

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree or qualification.

I certify that any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

Raw data have been supplied as appendices on a compact disc at the end of this thesis.

Acknowledgements	i
Abstract	iii
Declaration	V
Table of Contents	vi
List of Figures	xiii
List of Tables	Xv
Chapter 1 - Introduction	1
1.1. Antimony	
1.2. Metalloids in the study site	
1.3. The aims and structure of this thesis	
Chapter 2 - The environmental chemistry and bel	naviour of antimony
with comparisons to arsenic	5
2.1. Introduction	
2.2. Uses and production	
2.3. Chemical properties	
2.4. Speciation and toxicity	
2.4.1. pH and redox as master variables	
2.4.2. pH, redox, and species of As and Sb	9
Inorganic forms of As and Sb	9
Organic forms of As and Sb	14
Kinetic aspects of speciation	16
2.5. Arsenic and antimony in soil	16
2.5.1. Background levels	16
2.5.2. Anthropogenic enrichment of As and Sb in soils	19
2.5.3. Retention mechanisms	19
Adsorption	21
Precipitation, co-precipitation and dissolution	29
Phase associations	
2.6. Arsenic and antimony in water	
2.6.1. Occurrence and speciation	
2.7. Arsenic and antimony in plants	42

Table of Contents

2.7.1. Plant concentrations and soil concentrations	42
2.7.2. Extracts as predictors of availability	44
2.7.3. The effects of environmental conditions on plant uptake	45
2.8. Summary - The lack of knowledge regarding antimony in env	ironmental
systems	47
Chapter 3 - Study site description and previous research	50
3.1. Introduction	50
3.2. Study site description	50
3.2.1. Location	50
3.2.2. Urban areas	50
3.2.3. Climate and flooding	52
3.2.4. Floodplain depositional environments and surroundings	53
Surrounding geology	53
3.2.5. Landuses	57
Aboriginal landuses	57
Contemporary landuses	57
3.2.6. Vegetation	57
3.3. Previous geochemical work	59
3.3.1. The contaminant source in the upper catchment	59
3.3.2. Indications of As and Sb enrichment in the floodplain	61
3.3.3. Acid sulfate soils in the floodplain	62
Reduction processes	63
Oxidation processes	64
3.3.4. The interaction of ASS and metalloid binding	66
3.4. Conclusions and recommendations	67
Chapter 4 - Development of ICP-OES multielement analysis,	
optimised for arsenic and antimony	69
4.1. Introduction	69
4.2. Methods	71
4.2.1. Apparatus and reagents	71
4.2.2. Sample digestion methods	72
4.2.3. Sample collection, preparation and analysis	74
4.2.4. Statistical analysis	75

4.3. Results	75
4.3.1. Method precision comparison	75
4.3.2. Comparisons of relative extraction strength of methods	77
4.3.3. Method verification using floodplain soil samples and a certifie	d standard
	78
4.4. Discussion	79
4.4.1. Method precision comparison	79
4.4.2. Relative extraction strengths	80
4.4.3. Method verification	81
4.5. Conclusions	82
Chapter 5 - Development of a sequential extraction scheme to	•
fractionation soil arsenic and antimony	84
5.1. Introduction	84
5.2. Methods	85
5.2.1. General analysis	85
5.2.2. Method development	86
Optimisation of ICP-OES parameters	87
Independent laboratory verification	87
Method detection limits	87
Analysis of spiked samples	88
Summation analysis of extracted soil fractions	89
5.2.3. Comparison of extractions	89
Characteristics of the soils used for the extraction comparisons	89
The modified sequential extraction scheme	90
Oxalic acid/ammonium oxalate extractable Fe and Al	91
Relative extraction strengths for P, As and Sb	91
Statistical analysis and further quality control	92
5.3. Results	92
5.3.1. Method development	92
Parameter optimisation	92
Detection limits	93
Independent laboratory verification	94
Spiked sample analysis and summations	96

The function of D As and Ch	97
The fractionation of P, As and So	97
Oxalic acid/ammonium oxalate extractable Fe and A1	98
The relative strengths of the extracts	99
5.4. Discussion	101
5.4.1. Method development	101
Parameter optimisation and detection limits	101
Spikes and recoveries	101
Independent validation	102
Summary	102
5.4.2. Comparisons of extracts and sequences	103
NaHCO ₃	103
Oxalic acid/ ammonium oxalate	104
NaOH	105
Aqua regia	106
5.5. Conclusions	107
hapter 6 - Soil, water and pasture enrichment of arsenic an	d
timony within a coastal floodplain system	
timony within a coastal floodplain system 6.1. Introduction	109 109
timony within a coastal floodplain system 6.1. Introduction 6.2. Materials and methods	109 109 111
6.1. Introduction 6.2. Materials and methods 6.2.1. Site description	109 109 111 111
6.1. Introduction 6.2. Materials and methods 6.2.1. Site description 6.2.2. Sampling procedures	109 109 111 111
6.1. Introduction 6.2. Materials and methods 6.2.1. Site description 6.2.2. Sampling procedures 6.2.3. Laboratory and statistical analysis	109 111 111 111 111
atimony within a coastal floodplain system 6.1. Introduction 6.2. Materials and methods 6.2.1. Site description 6.2.2. Sampling procedures 6.2.3. Laboratory and statistical analysis	109 111 111 111 112 115
atimony within a coastal floodplain system 6.1. Introduction 6.2. Materials and methods 6.2.1. Site description 6.2.2. Sampling procedures 6.2.3. Laboratory and statistical analysis 6.3. Results 6.3.1. Arsenic and Sb surface distribution and concentrations of other	
atimony within a coastal floodplain system 6.1. Introduction 6.2. Materials and methods 6.2.1. Site description 6.2.2. Sampling procedures 6.2.3. Laboratory and statistical analysis 6.3. Results 6.3.1. Arsenic and Sb surface distribution and concentrations of other	
atimony within a coastal floodplain system 6.1. Introduction 6.2. Materials and methods 6.2.1. Site description 6.2.2. Sampling procedures 6.2.3. Laboratory and statistical analysis 6.3. Results 6.3.1. Arsenic and Sb surface distribution and concentrations of other 6.3.2. Arsenic and Sb depth distribution and the sedimentation rate	
Atimony within a coastal floodplain system 6.1. Introduction 6.2. Materials and methods 6.2.1. Site description 6.2.2. Sampling procedures 6.2.3. Laboratory and statistical analysis 6.3. Results 6.3.1. Arsenic and Sb surface distribution and concentrations of othe 6.3.2. Arsenic and Sb depth distribution and the sedimentation rate 6.3.3. Arsenic and Sb pasture concentrations	
Atimony within a coastal floodplain system 6.1. Introduction 6.2. Materials and methods 6.2.1. Site description 6.2.2. Sampling procedures 6.2.3. Laboratory and statistical analysis 6.3. Results 6.3.1. Arsenic and Sb surface distribution and concentrations of othe 6.3.2. Arsenic and Sb depth distribution and the sedimentation rate 6.3.3. Arsenic and Sb pasture concentrations 6.3.4. Water quality	
htimony within a coastal floodplain system 6.1. Introduction 6.2. Materials and methods 6.2.1. Site description 6.2.2. Sampling procedures 6.2.3. Laboratory and statistical analysis 6.3. Results 6.3.1. Arsenic and Sb surface distribution and concentrations of othe 6.3.2. Arsenic and Sb depth distribution and the sedimentation rate 6.3.3. Arsenic and Sb pasture concentrations 6.3.4. Water quality	
atimony within a coastal floodplain system 6.1. Introduction 6.2. Materials and methods 6.2.1. Site description 6.2.2. Sampling procedures 6.2.3. Laboratory and statistical analysis 6.3. Results 6.3.1. Arsenic and Sb surface distribution and concentrations of othe 6.3.2. Arsenic and Sb depth distribution and the sedimentation rate 6.3.3. Arsenic and Sb pasture concentrations 6.3.4. Water quality 6.4.1. Metalloid concentrations in surface soil and soil profiles	
atimony within a coastal floodplain system 6.1. Introduction 6.2. Materials and methods 6.2.1. Site description 6.2.2. Sampling procedures 6.2.3. Laboratory and statistical analysis 6.3. Results 6.3.1. Arsenic and Sb surface distribution and concentrations of othe 6.3.2. Arsenic and Sb depth distribution and the sedimentation rate 6.3.3. Arsenic and Sb pasture concentrations 6.3.4. Water quality 6.4.1. Metalloid concentrations in surface soil and soil profiles 6.4.2. Metalloid concentrations in pastures	

6.5. Conclusion1	29
Chapter 7 - The effect of shallow resubmergence and an acid sulfate	e
subsoil on metalloid mobility and pasture uptake1	31
7.1. Introduction1	31
7.2. Materials and methods1	33
7.2.1. Glasshouse trial1	33
Soil characteristics1	33
Experimental design1	33
Monitoring, sampling and analysis1	35
7.2.2. Field sampling1	36
7.2.3. Data and statistical analysis1	37
Speciation and chemical modelling1	.39
7.3. Results1	.41
7.3.1. Soil properties1	41
7.3.2. The effects of flooding, soil type and sulfidic subsoil on soil soluti	ion
variables, pasture uptake and soil fractionation at trial completion (20 weeks) 1	.42
Soil L1	42
Soil M1	44
7.3.3. Single variable relationships with phytoavailability1	46
7.3.4. The relationship between flooding, oxalate extractable Fe a	ınd
phytoavailability1	47
7.3.5. Responses of soil solution variables to flooding over time1	49
Soil L1	50
Soil M1	50
Electrical conductivity1	52
7.3.6. Comparisons with field data1	53
7.4. Discussion1	55
7.4.1. Soil properties1	55
7.4.2. A note on EC, ionic strength and competitive species1	57
7.4.3. Total dissolved soil solution As and Sb1	58
7.4.4. Soil solution pe, pH and metalloid speciation at trial completion1	59
Soil L1	59
Soil M1	61

í

Metalloid speciation	
7.4.5. pe, pH and soil solution metalloid concentration changes with	time164
pe and pH	164
Metalloid concentrations	164
7.4.6. Soil extract concentrations at trial completion	165
NaHCO ₃	165
Ammonium oxalate/oxalic acid	166
NaOH	167
Aqua regia	167
7.4.7. Pasture metalloid levels and uptake mechanisms	
Uptake mechanisms	169
7.4.8. Relationships of variables to phytoavailability	170
Uptake mechanisms and measures of availability	171
7.4.9. Field verification	171
Field evidence of uptake mechanisms	172
7.5. Conclusions	172
Chapter 8 - Adsorption of antimony (V) by floodplain soils.	
amorphous iron (III) hydroxide and humic acid	
amorphous iron (III) hydroxide and humic acid	175
amorphous iron (III) hydroxide and humic acid 8.1. Introduction 8.2. Methods	175 175 176
amorphous iron (III) hydroxide and humic acid	175 175 176 176
amorphous iron (III) hydroxide and humic acid	175 175 176 176 177
amorphous iron (III) hydroxide and humic acid	175 175 176 176 177 177
amorphous iron (III) hydroxide and humic acid	175 175 176 176 176 177 177 177
amorphous iron (III) hydroxide and humic acid	175 175 176 176 176 177 177 177 177 177
amorphous iron (III) hydroxide and humic acid. 8.1. Introduction 8.2. Methods. 8.2.1. Preparation of humic acid. 8.2.2. Preparation of amorphous iron hydroxide 8.2.3. Preparation of floodplain soils 8.2.4. Adsorption trial set up and analysis 8.2.5. Isotherms 8.3. Results	175 175 176 176 176 177 177 177 177 179 179
amorphous iron (III) hydroxide and humic acid	175 175 176 176 176 177 177 177 179 179
amorphous iron (III) hydroxide and humic acid	175 175 176 176 176 177 177 177 179 179 179 181
amorphous iron (III) hydroxide and humic acid	175 175 176 176 176 177 177 177 179 179 179 181 181
amorphous iron (III) hydroxide and humic acid	175 175 176 176 176 177 177 177 177 177 177 177 179 179 179 181 181 182
amorphous iron (III) hydroxide and humic acid	175 175 176 176 176 177 177 177 177 177 177 177 179 179 179 181 181 182 183
amorphous iron (III) hydroxide and humic acid	175 175 176 176 176 177 177 177 177 177 177 177 179 179 179 181 181 182 183

I

8.4.1. Sorption of Sb(V) by humic acid and adsorption mechanisms	186
8.4.2. Sorption of Sb(V) by Fe(OH) ₃ and adsorption mechanisms	
8.4.3. Adsorption of Sb(V) by soils L and M	
Possible competition effects	192
Sorption by soils L and M	193
8.5. Conclusions	195
Chapter 9 - Conclusions, exposure assessment and risk	
characterisation	
9.1. Summary of findings	197
9.1.1. Method development	197
9.1.2. Descriptive work	198
9.1.3. Applied investigations into mobility and availability	198
9.1.4. Soil chemistry	199
9.1.5. Recommendations	199
9.2. The framework of risk assessment	200
9.3. Exposure assessment	200
9.3.1. Sources of environmental exposure	202
9.3.2. The population to be assessed	202
9.3.3. The basis of the exposure assessment	204
9.3.4. The key exposure descriptors	204
9.3.5. A limited risk characterisation	208
References	
Publications arising from this thesis	
Refereed journal articles	230
Refereed conference presentations	230
Refereed conference posters	230
Non-refereed conference posters	231
Electronic Appendices files	

List of Figures

I

Figure 2.1. Thermodynamically predominant species of protonated As(V) (arsenic
acids) across a range of pH values10
Figure 2.2. pe-pH diagram for the As-O-H system (a), and Sb-O-H system (b),
assuming Σ As and Sb = 0.1 mM
Figure 3.1. Location of the study site. A = NSW, B = Macleay Catchment, C =
Macleay floodplain51
Figure 3.2. Average monthly rainfall and average daily temperature at Kempsey52
Figure 3.3. Floodplain depositional environments and surrounds
Figure 3.4. An example of mine waste disposal within Bakers Creek at Hillgrove,
circa 190061
Figure 3.5. pe-pH diagram for the Fe-K-S-O-H system. Assuming Σ $K^{^{+}}\!\!,$ $SO_4{^{2-}}$ and
$Fe^{3+} = 0.01 M.$ 65
Figure 5.1a, b. The relationship between independent ICP-MS and 'in-house' ICP-
OES analysis of As and Sb in 0.1 M NaOH (a) and 1 M HCl (b) extracts95
Figure 5.2a-c. Proportions of P (a), As (b) and Sb (c) extracted from soil 1 by the
modified and original extraction schemes97
Figure 5.3a, b. Aluminium (a) and Fe (b) (mg kg ⁻¹) extracted with 0.2 M $C_2H_2O_4$ -
$(NH_4)_2C_2O_4$ as a single extract and following the 0.5 M NaHCO ₃ extract in soils
1 and 2
Figure 5.4a-c. Proportions of P (a), As (b) and Sb (c) extracted from soil 2 using the
modified extraction scheme
Figure 6.1. Floodplain soil sample locations
Figure 6.2a, b. As (a) and Sb (b) surface distributions across the floodplain117
Figure 6.3a-d. Arsenic and Sb depth distributions in the major floodplain depositional
environments
Figure 6.4a, b. Excess ²¹⁰ Pb and predicted chronology to 20 cm depth in the
backswamp soil core122
Figure 6.5a, b. Total Sb (a) and As (b) concentrations in the swamp soil profile
sectioned at 2 cm intervals
Figure 7.1a, b. The glasshouse trial at 0 (a) and 20 (b) weeks134
Figure 7.2. Rectangular quadrat sample point layout136
Figure 7.3a, b. Soil L field locality, March (a) and August (b) 2003137

Figure 7.4. Changes in phytoavailability of As (%) as related to flooding and oxalate
extractable Fe (%)148
Figure 7.5. Changes in phytoavailability of Sb (%) as related to flooding and oxalate
extractable Fe (%)149
Figure 7.6a-d. The effects of flooding in the presence and absence of the sulfidic
subsoil across 20 weeks on soil solution pH (a), pe (b), As (mg L^{-1}) (c) and Sb
$(mg L^{-1}) (d)$ for soil L151
Figure 7.7a-d. The effects of flooding in the presence and absence of the sulfidic
subsoil across 20 weeks on soil solution pH (a), pe (b), As (mg L^{-1}) (c) and Sb
(mg L ⁻¹) (d) for soil M152
Figure 7.8a-b. The effect of flooding in the presence and absence of the subsoil across
the 20 weeks of the trial on soil solution EC (μ S cm ⁻¹) for soil L (a) and soil M
(b)153
Figure 7.9a, b. Field As (a) and Sb (b) pasture content (%) overlaying flooded
treatment relationships taken from Figures 7.4 and 7.5 respectively155
Figure 8.1. The sorption isotherm (log values) for Sb(V) by soil L at differing final
solution pH values
 solution pH values

List of Tables

Table 2.1. Some chemical property differences between metals and non-metals 6
Table 2.2. Some pertinent redox reactions in natural systems
Table 2.3. Equations and pK_a values for inorganic As and Sb species10
Table 2.4. Common methylated forms of As and Sb 14
Table 2.5. Typical average concentrations (mg kg $^{-1}$) of As and Sb in various
lithological media17
Table 2.6. Background ranges and values for As and Sb in surface soils. 18
Table 2.7. Examples of total soil concentrations of As and Sb found in soils
contaminated by anthropogenic activities20
Table 2.8. Typical single extracts used to determine As and Sb soil associations, and
the proportions of metalloids extracted
Table 2.9. Examples of two sequential extraction procedures for As and Sb
fractionation and the proportions of metalloids extracted
Table 2.10. Typical concentrations of As and Sb ($\mu g L^{-1}$) in natural waters41
Table 3.1.Typical soil types of the depositional environments of the floodplain56
Table 3.2. Reactions and reaction products associated with pyrite oxidation
Table 4.1 Conditions and method detection limits (MDL) for ICP-OES analysis73
Table 4.2. Method details for the digestion of field soil samples. 74
Table 4.3. Average analytical precisions (%) for eighteen elements in seven field soil
samples76
Table 4.4 Relative extraction strength of each method (mg kg ⁻¹) for each analyte77
Table 4.5. Absolute recoveries for NIST SRM 2711 and RSDs for SRM 2711 and two
replicated field samples for the microwave aqua regia method
Table 5.1. Conditions for ICP-OES parameter optimisation for 0.2 M $C_2H_2O_4$ -
(NH ₄) ₂ C ₂ O ₄ and 0.1 M NaOH extract analysis
Table 5.2. Properties of soils selected for the extraction comparisons
Table 5.3. The extraction sequence, modified from that of Hedley <i>et al.</i> (1982a)91
Table 5.4. Sequential optimisation of viewing height (mm), power (kW) and nebulizer
flow (L min ⁻¹) settings for ICP-OES analysis of the 0.2 M $C_2H_2O_4$ - (NH ₄) ₂ C_2O_4
standard solution

Table 5.5. Sequential optimisation of viewing height (mm), power (kW) and nebulizer
flow (L min ⁻¹) settings for ICP-OES analysis of the 0.1 M NaOH standard
solution94
Table 5.6. Elemental method detection limits ($\mu g m I^{-1}$) in the C ₂ H ₂ O ₄ - (NH ₄) ₂ C ₂ O ₄
and NaOH soil extracts and the aqua regia digestion94
Table 5.7. Percent recovery for spiked extracts of 0.2 M C ₂ H ₂ O ₄ - (NH ₄) ₂ C ₂ O ₄ and
summation of extract concentrations relative to aqua regia total elemental values
Table 6.1. Occurrence of As and Sb across the floodplain environments in categorical
percent coverage and area (ha)116
Table 6.2. Arithmetic means and ranges of As, Sb and Fe concentrations, pH $_{1:5}$
soil:water, EC 1:5 soil:water (µScm ⁻¹), LOI (%), and particle size distributions in soils of
the floodplain and adjacent hillsides118
Table 6.3. Arithmetic means and ranges of major and trace elements (not given in
Table 6.2) in soils of the floodplain and adjacent hillsides
Table 6.4. Multiple linear regressions (form of $Y = a + bx + cz$) for total As and Sb
using variables presented in Table 6.2120
Table 6.5. Arithmetic means and ranges for pasture species uptake of As and Sb and
total soil metalloid concentrations124
Table 6.6. Average total dissolved As, Sb, Fe and S (mg L^{-1}), pH, and EC (μ S cm ⁻¹) of
major floodplain surface water strata125
Table 7.1. Experimental inputs and model specifications for thermodynamic
speciation of total dissolved soil solution As and Sb concentrations
Table 7.2. Initial properties of experimental soils
Table 7.3. Soil solution pe, pH, EC (μ S cm ⁻¹), oxalate extractable Al, Mn and Fe (%),
and pasture biomass (g pot ⁻¹ dry weight) of soil L treatments at trial completion
Table 7.4. Pasture content (mg kg ⁻¹), dissolved levels (mg L ⁻¹), modelled inorganic
speciation (mg L ⁻¹), and extracted fractions (%) of As and Sb under flooded and
non-flooded conditions in the presence and absence of the sulfidic subsoil at trial
completion in soil L
Table 7.5. Soil solution pe, pH, EC (μ S cm ⁻¹) and oxalate extractable Al, Mn and Fe
(%) of soil M treatments at trial completion145

i

Table 7.6. Pasture content (mg kg ⁻¹), dissolved levels (mg L ⁻¹), modelled inorganic
speciation (mg L ⁻¹), and extracted fractions (%) of As and Sb under flooded and
non-flooded conditions in the presence and absence of the sulfidic subsoil at trial
completion in soil M145
Table 7.7. Spearman rank correlations of plant uptake (in mg kg $^{-1}$ and % values) with
measured variables after 20 weeks147
Table 7.8. Pasture content (mg kg ⁻¹ and %) and total soil concentrations (mg kg ⁻¹) of
metalloids in field locations of soils L and M averaged across the 3 sampling
periods153
Table 7.9. Spearman rank correlations of plant uptake (mg kg ⁻¹ and %) with metalloid
extract values (mg kg ⁻¹ and %) in field locations of soils L and M averaged
across the 3 sampling periods154
Table 8.1. Phases and additions for adsorption experiments 179
Table 8.2. Freundlich parameters of k and n from equation 1, as derived for soil L,
soil M and humic acid at different pH values
Table 9.1. Estimates of exposure to As in scenario 1
Table 9.2. Estimates of exposure to As in scenario 2
Table 9.3. Estimates of exposure to Sb in scenario 1
Table 9.4. Estimates of exposure to Sb in scenario 2
Table 9.5. Estimated total exposures (mg kg ⁻¹ day ⁻¹) for scenarios 1 and 2, based on an
average body weight of 70 kg (scenario 1) and 13.2 kg (scenario 2) and
comparisons with the ADI/TDI values for As and Sb (mg kg ⁻¹ day ⁻¹)209