ECOLOGY OF THE LIZARD, <u>CTENOTUS TAENIOLATUS</u>: INTERACTION OF LIFE HISTORY, ENERGY STORAGE AND TAIL AUTOTOMY.

by

JANET A. TAYLOR M.Sc. (SYDNEY)

UNIVERSITY OF NEW ENGLAND LIBRARY

A thesis submitted for the degree of Doctor of Philosophy in the University of New England, Armidale, Australia.

February 1984

PREFACE

I certify that the substance of this thesis has not already been submitted for any other degree and is not being submitted currently for any other degree.

I certify that the work for this study was carried out solely by the candidate. All assistance received in the preparation of the thesis and all sources used have been acknowledged herein.

Janet A. Taylor

February 1984

ACKNOWLEDGEMENTS

I wish to thank my supervisor, Assoc. Prof. H. Heatwole, for his guidance and support during the course of this research.

I am deeply indebted to Dr V. Bofinger (Department of Mathematics) for his advice on statistical procedures and experimental design, and for his support and encouragement throughout this study.

Many people within the Department of Zoology provided valuable assistance in a range of fields: L. Bridges assisted with diagrams, R. Hobbs assisted with computing and photography, W. Higgins assisted with histology, S. Whitelaw assisted with insect identifications and photography, J. Robertshaw assisted with computing, Dr H .Bell assisted with plant identifications and M. Roan assisted with all things practical. I am particularly indebted to S. Fraser, Drs E. van Beurden, J. Miller and G. Murray for their friendship and herpetological advice. Further, S. Fraser, G. Burns and Drs S. Cairns, J. Miller and R. Pidgeon read portions of the thesis and offered valuable criticisms. S. Fraser, M. Fraser and F. Roubal assisted with proof reading. My fellow postgraduates and many friends in the department often assisted with field work, and always provided interesting discussions, although not always of a zoological tone. I am happy to have spent time with them.

Further, many people within the University of New England provided equipment and advice these include Assoc. Prof. D. Farrell (Department of Biochemistry and Nutrition), G. White (Department of Botany) and A. Jones (Department of Geography). I am grateful to them all.

- ii -

Drs H. Cogger and A. Greer gave me encouragement and kindly allowed me to examine specimens from the Australian Museum collection. L. Cameron and R. Sadlier provided assistance and friendship during these times. Dr R. Shine also provided encouragement throughout the study and allowed me to examine some unpublished manuscripts. Dr R. Barwick kindly gave me a listing of the Fabens growth program.

My sincere thanks must go to the many landowners in the New England Region who kindly allowed me to tramp over their properties. I am especially indebted to Fran West of the Weswal Pottery Moonbi, who not only collected valuable rainfall records but allowed me to stay in her home month after month for the duration of the study, and to Terry Purss who allowed me to place pit traps on his property and assisted with plant identifications.

Finally, I wish to thank my husband, Frank Roubal, whose continued encouragement and help, especially with field work, provided invaluable support throughout this study.

During this study I received financial support from a Commonwealth Postgraduate Research Award and from the University of New England.

	page	
Preface Acknowledgements Table of contents Abstract	i ii iv vii	
PART 1. GENERAL INTRODUCTION	1	
PART 2. GENERAL MATERIALS AND METHODS	5	
2.1 Study area and environment2.2 Monthly sampling program2.3 Mark-recapture program2.4 Statistical procedures and terminology	6 7 8 9	
PART 3. AUTECOLOGY OF CTENOTUS TAENIOLATUS	17	
3.0 General habitat description 3.1 Introduction 3.2 Methods 3.3 Results 3.3.1 Microhabitat 3.3.2 Microclimate 3.4 Discussion	18 18 19 19 20 26	
 4.0 Food and feeding behaviour 4.1 Introduction 4.2 Methods 4.2.1 Analysis of gut contents 4.2.2 Foraging behaviour 4.3 Results 4.3.1 Type of food 4.3.2 Diet and season 4.3.3 Diet and size 4.3.4 Foraging Behaviour 4.4 Discussion 	27 27 28 28 28 28 28 29 30 31 42	
<pre>5.0 Growth 5.1 Introduction 5.2 Methods 5.2.1 Analysis of size classes 5.2.2 Individual growth 5.3 Results 5.3.1 Size classes 5.3.2 Individual growth 5.4 Discussion</pre>	49 49 49 50 52 52 53 64	
6.0 Reproduction 6.1 Introduction 6.2 Methods 6.2.1 Histological techniques 6.2.2 Gross analysis of gonads	69 69 69 69 70	

		6.3	6.3.2	ts Sexual maturity and dimorphism Gonad weight and lizard size Male reproduction		71 71 72 73
				6.3.3.1 Morphology and histology reproductive tract	of	73
				6.3.3.2 Seasonal cycle in testes weight		74
			6.3,4	Female reproduction 6.3.4.1 Morphology and histology reproductive tract	of	75 75
				6.3.4.2 Annual ovarian cycle		76
				Clutch size and weight		79
		6.4	Discus	Nesting and incubation ssion		80 88
	7.0 Energy storage					95
		-		luction		95 95
		1.2	Method 7 2 1	ıs Lipid analysis - histological		95
				Lipid analysis - gross		96
			7.2.3	Liver analysis		97
		F1 0		Statistical analysis		98
		1.3	Result	ts Storage sites of lipids		99 99
				Lipid stores and lizard size	1	
				Lipid stores and seasonality		00
				7.3.3.1 Tail lipid		00
				7.3.3.2 Carcass lipid		LO1 LO1
			734	7.3.3.3 Multiple comparisons Liver weight and components		101
			,	7.3.4.1 Liver weight		07
				7.3.4.2 Glycogen	1	10
		- <i>.</i>	.	7.3.4.3 Liver lipid		13
		/.4	Discus	SSION	T	31
PART	4. 9	SIGNI	FICAN	CE OF AUTOTOMY]	39
]	RATIO	ONALE]	40
	8.0			overwintering and reproduction		41
		8.1	Method	1s Determination of metabolic rate		41 41
				Determination of overwintering temperatures and costs of	L	41
			8.1.3	overwintering Determination of reproductive		42
		0 2	Result	costs		.43
		0.2		Metabolic rate		.44
				Costs of overwintering		45
			8.2.3	Costs of reproduction		47
		8.3	Discus			50
				Costs of overwintering Costs of reproduction		.50 .58
	9 N	Effe		nd relevance of autotomy		.50
	2.0		Method			.63
				Experiment - effect of autotomy or overwintering	n	.63
				-		

 9.1.2 Experiment - effect of autotomy on reproduction 9.1.3 Lipid distribution within the tail 9.1.4 Frequency and position of autotomy 9.2 Results 9.2.1 Experiment - effect of autotomy on overwintering 	164 165
 9.2.2 Experiment - effect of autotomy on reproduction 9.2.3 Lipid distribution within the tail 9.2.4 Frequency and position of autotomy 	
9.3 Discussion 9.3.1 Effect of autotomy on	183
overwintering 9.3.2 Effect of autotomy on reproduction 9.3.3 Relevance of autotomy	183 183 188
10.0 Significance of tail autotomy - a discussion	189
PART 5. SUMMARY AND CONCLUSIONS	196
PART 6. REFERENCES	200
APPENDIX	228

ABSTRACT

A study of the ecology of the lizard, <u>Ctenotus taeniolatus</u> was conducted in the New England Tablelands of NSW, Australia from 1979 to 1982. The two aims of the study were firstly to answer specific questions relating to the life history of <u>Ctenotus taeniolatus</u>, and secondly to investigate the significance of the tail, the principal energy storage organ, to that life history.

Consequently, questions concerning aspects of habitat selection, food and feeding behaviour, growth, reproduction and energy storage of $\underline{C.taeniolatus}$ were posed and produced the following results.

(i) Lizards used rocks as refuges, where they dug burrows, the shape and depth of which were found to be independent of season or lizard sex.

(ii) Lizards were found to be insectivorous, using both sit-and-wait and active foraging feeding behaviours. Adults and juveniles exhibited these behaviours in different ratios.

(iii) Lizards hatched at 33 mm SVL and were found to grow to maximum sizes of 75 mm (female) and 70 mm (male), reaching sexual maturity at 52 mm (female) and 43 mm (male), when they were likely to be 2 or perhaps 1 year old. Growth rates and associated growth models are presented.

(iv) Females were found to be oviparous, laying 1 to 7 eggs each summer. Spermatogenesis, ovulation and mating all occurred in spring. Clutch size was found to be related to body size.

- vii -

(v) Lizards stored lipid in the general carcass and tail but possessed no abdominal fat bodies. Carcass lipid remained unchanged throughout the year, while tail lipid showed a distinct seasonal cycle in females, males and juveniles with low points occurring at the end of winter and after mating and ovulation. Liver weights, and glycogen and lipid content of the liver also showed seasonal cycles.

Further, questions about the significance of the tail to \underline{C} . taeniolatus produced the following results.

(i) Lizards were found to store all of their usable lipids in the tail.

(ii) Lipid stores in the tail were found, theoretically and experimentally, to be necessary for survival overwinter and for reproduction.

(iii) At most 60% of lizards autotomised the tail.

(iv) Lipids within the tail were found to be stored mainly in the proximal end, which only 20% of lizards were found to lose during autotomy.

Taken together these results indicated that, because of the practise of economy of autotomy, the probability of lizards being adversely effected by autotomy was very small.