
CHAPTER 4. The K(n, d) problem.

To determine the value of K(n, d) given n and d, we can use all the results of Chapter

3. Indeed, if N (d, k) = n then K(n, d) = k. However, we still need to consider all n's which

are not in the range of N(d, k).

It is obvious that if n < d+ 1 then K(n, d) = 1 since G(n, d, 1) is nonempty for n < d H- 1.

We will assume from now on that n > d+ 1.

• Theorem 6.

If n < d8 then G(n, d, k) is nonempty for some k < s.

Proof.

Given n < d 8 we shall construct a digraph G E G(n, d, k) such that k < s.

Labelling the n vertices of G by 0,1, 2, ... , n – 1 let there be arcs from vertex i

to vertices

+ t) mod n,	 t = 1, 2, ... , d.

Then G is a diregular digraph with degree d.

We will show that the diameter k of G is at most s, i.e., that there is a directed

path of length s or less from each vertex to all the other vertices.

From vertex i we can reach the following vertices (mod n)

–di + 1, – di + 2, ... , –di + d	 in 1 step

d2 1–	 d 2 i _ 1,...,d2i– (d2	 1)	 in 2 steps

–d3i 1, –d3i 2, ... , –d3 1 + d3	 in 3 steps

and so on.
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In this way we reach in s steps the vertices

—ds i+1,—ds i+ 2, ... , —d s i+ ds	 (mod n)

if s is odd;

or the vertices

ds i — 0, ds i — 1,	 , dss i — (ds — 1)	 (mod n)

if s is even.

In either case, if n < ds then in s steps we reach from the vertex i all the n

vertices of G (including vertex i itself).

Hence G has diameter at most s

Corollary 1.

If n < ds then K(n,d) <

Corollary 2.

If n = d s	 and s odd then for some k < s, G(n, d, k) is nonempty.

Proof.

Using the same construction as in the proof of Theorem 6, if s is odd then i and

—el+ 1, —el+ 2, ... , —ds i+ds (mod n)

are all distinct vertices, ds + 1 of them 0

The next result was also found independently by Imase and Itoh (1983).

Corollary 3.

If n = d"(db 1) and b (< s) is odd then G(n, d, k) is nonempty for some k < s.
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Proof.

Using the same construction as in the proof of Theorem 6,

(i) If s is odd then from vertex i we reach the vertices (mod n)

ds-bi 0, ds-b	 1,	 ,ds-bi (ds-b	 in s - b steps

-d8 1+ 1, -el' 2,... , -dsi ds
	

in s steps.

All numbers in each row are different.

For two numbers from different rows we have

ds-bi	 t	 ds	 t')	 (ds	 ds-bN

	

)	 (t t') = ni — (t t') mod n

and 1 < t -4- < n — 1.

(ii) If s is even then from vertex i we reach the vertices (mod n)

ds-b i _4_	 ds-bi	 ds-bi d8- in s - b steps

ds - 0, ds - 1, . , ds - (ds - 1)
	

in s steps,

All numbers within each row are different.

For two numbers from different rows we have

(ds - - ds-b i 	 (ds-b  + d s )i - t - = ni - (t t') mod n

and 1 < t t' < n - 1.

Hence in each case all the numbers in (s - b) th and 8 th rows are different and

there are altogether n numbers in the two rows. Hence the diameter k of G is at

most s

Corollary 4.

If s is odd then d' + 1 < n < ds + 1 implies s - 1 < K(n,d) < s;

if s is even then ds-1 + 2 < n < ds implies s - 1 < K (n, d) < s.
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Corollary 5.

(i) If s is odd and ds + 1 > n > (ds — 1) 1 (d — 1) then K (n, d) = s;

if s is even and d8 > n > (d8 — 1) I (d — 1) then K (n, d) = s .

(ii) Further, if n	 d8-b(db 1) and b (< s) is a positive odd integer

then K(n,d) = s.

Note that part (ii) of Corollary 5 is in fact a generalisation of Theorem 1.

Note also that in the proof of Theorem 6 we could have used constructions other than

1 -4 (—di + t) mod n (t = 1,2, ... ,d).

In fact, any of the following three construction schemes could have been used instead.

(a) i	 ( — di — t) mod n (t = 1, 2, .... d)

(b) i	 (di	 t) mod n (t = 1,2, ... ,d)

(c) i	 (di	 t) mod n (t = 1,2, ... ,d)

However, the digraph resulting from construction (a) is isomorphic to the digraph in the

proof of Theorem 6; while the constructions (b) and (c) also give isomorphic digraphs. It

is easy to show that the constructions (a) and (b) do not give isomorphic digraphs.

Thus the above four construction schemes provide two essentially different possibilities.

However, had we used scheme (b) or (c) we would not have been able to deduce Corollaries

2 and 3 in the same straightforward way.

The following theorem. due to Fiol. Alegre and Yebra (1983) gives us a way of determining

the values of K(n.d) for certain values of n and d.

Theorem 7.

If d > 1 and G(n, d, k) is nonempty then G(dn, d, k + 1) is also nonempty.
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Proof.

Suppose d > 1 and G E G(n, d, k) exists, with vertices labelled 1, 2, ... , n.

We construct the line digraph of G, L(G) as follows.

If i —÷ j in G then there is a vertex denoted by (ii) in L(G). If G contains a

multiple arc (i, j) with multiplicity in then there are m distinct vertices denoted

by (ij) i , (02, • • • , (Om in L(G).

Thus L(G) has do distinct vertices, one for each arc of G.

To construct arcs in L(G), we connect vertex (i j) (with or without a subscript)

to vertex (mn) (with or without a subscript) if and only if j = in.

That is, if i --+ j and j --* n in G then (i j) ---+ (in) in L(G).

It is obvious that the degree of L(G) is d.

To prove that the diameter of L(G) is k + 1, note that to go from vertex u = (ij)

to the vertex v = (inn), u v, in L(G) is equivalent to going from the arc (i, j)

to the arc (m, n) in G.

Now, the directed path of minimum length with these two terminal arcs contains

the shortest path from vertex j to vertex m.

Therefore, the length of the shortest path from vertex u to vertex v is

1 L(G) (u,v) = 1 G (j, in) + 1

provided u v.

If d > 1 then such vertices u and v exist in L(G) and so the diameter of L(G) is

k + 1 0
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Corollary.

If n = dm and K (in d) k then K (n , d) <k- 1.

Theorem 7 gives us an infinite sequence of line digraph iterations (if d > 1)

G L(G). L 2 (G) = L(L(G)),	 LNG) = L(Ln- 1 (G)) ,

Note that each vertex x in L 2 (G) represents an arc (u, v) of L(G) and that the vertices of

this arc correspond to two adjacent arcs of G. say ( ,j) and (j, k) (i.j.k not necessarily

all distinct).

Thus the vertex x of L 2 (G) represents a directed path of length 2 in G and we may write

x = j k

Further. the vertex x will be adjacent to another vertex y if and only if y repesents an arc

of the form (v. w) in L(G). Therefore y must be equal to jkl with (k,1) E G.

More generally, each vertex x in L" (G) represents a directed path (io, 	 . • • , in) of length

n in G and x = /oi l ... i n is adjacent to the vertices of the form y = 1 ] i 2 	 in in4. 1 with

( in, in-t i) E G.

As an illustration, starting with G E G(2. 2, 1), the line digraph iteration gives the following

digraphs L(G) and L 2 (G)
6

003 011 

.1131"jr0 0 10.
TRY

The above digraphs are called the perfect shuffle.
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It is interesting to note that the digraphs of Theorem 1 may be obtained by line digraph

iterations. starting with the complete digraph G E G(d 1. d. 1).

For example, if d = 2 then starting from G E G(3, 2, 1) the line digraph iteration gives us

the following digraphs L(G) and L 2 (G).

If G 1 E	 1, d,1) then G2 = L(Gi),• • • ,Gk = L ( Gk-1),• • -

where Gk = L k_-1 (G) has n = (d 1)dk -1 vertices and diameter k.

Note that a digraph F is a line digraph of some digraph if and only if whenever (v, w), (u, w)

and (u. xj are arcs of F then so is (v. x). This result is due to Heuchenne (1964). Thus

every line digraph of a diregular digraph of degree d > 1 consists of a set of subdigraphs

(not necessarily disjoint) of the following type.

Equivalently, a digraph F is a line digraph of some digraph if and only if any two rows

(columns) of its adjacency matrix are either identical or orthogonal (Richards., 1967).
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Another interesting point about the line digraph iteration scheme is that if G contains p

digons then it is easy to show that L (G) also contains p digons. We will denote the set of

all diregular digraphs of order n, degree d. diameter k and p digons by G(n, d, k) < p >.

Let us now summarize our present state of knowledge of the K (n , d) problem. We have

K(n.1) = n - 1 (n 2)

IC(1,d) = 0

K (d	 = 1

C	 d2 ,	 -= 2

K (dk -b (db 1). d) = k (for b (< k) odd)

K(n.d) k whenever d	 1 > n > (dk - 1) 1 (d - 1) (if k odd)

or dk >n	 (dk - 1)/(d - 1) (if k even).

Otherwise. if d k - 2 < n < (dk - 1 - 1) 1 (d - 1) - 1 (if k odd)

or d
	

1 < n < (d ic - l - 1) / (d - 1) - 1 (if k even) then

k < K (n, < k + 1.

In the remainder of this chapter we will turn our attention to the case when d = 2.

Since .N(2.0) = 1. N(2,1) = 3, 11'(2.2) = 6 and N(2,3) = 12

we have K(1.2) = 0. K(3,2) = 1, K(6.2) = 2 and K(12,2) = 3.

Theorem 8 (Culik, 1984).

If n > 2 and G E G(n,2,k) < p > exists then also G' E G (n - 1,2,k') < p' > exists

with k' < k and p' > p - 1.

64



Cc

Pvt

Proof.

Suppose G E G(n. 2. k),,p , p > 1. Then for some vertices u, v(u	 v) there exist

arcs (u.v) and (v. u) in G.

Suppose also that p	 u, q	 v and u ---* r, v	 t (u, v, p, q, r, t not necessarily

all distinct).

Construct G' from G by "gluing" vertices u and v together. so that instead of

vertices u and v we have a vertex uv in G' .	 The following cases can occur.

44	 g

t

Ca)

V

at 	 10. uPt;	 A	 44
444-	 lirlb—Ar

.111

(41)

AA.:7-1-11

A ft
\k{	 At • 0	 e,"•-	 0(k)

Atio— lir ceit
(n)
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It is obvious that G' is a diregular digraph of degree 2, n — 1 vertices, diameter

either k or k — 1 and if n > 2, G' has at least p — 1 digons

Corollary.

If n> 2 k + 2 then p` = p — 1.

Proof.

If n > 2k + 2 then cases (f),(h) and (k) cannot happen in G E G(n, 2, k) 0

Theorem 8 together with Theorem 7 gives us a "digon reduction" scheme (Fris, 1985).

If G E G(n, 2, k) < p > (p > 1) then we can use digon reduction p times as follows.

G E G(n,2,k) < p > 	  G1 E G(n — 1,2, k 1 ) < p — 1 >

> G2 E G(n — 2,2, k2 ) < p — 2 >

> Gp E G(n — p,2,kp) < 0 >, G(n — p,2,kp)

where k > k i > k2 >	 > kp.

Hence if K(n,2) = k and G(n,,2,k) < p > is nonempty with p > 1 then K(n — 1,2) < k.

We will call the iteration scheme of Theorem 7 Rule I, or I; and the iteration scheme of

Theorem 8 Rule	 or II for brevity.

We can use these rules to deduce the minimum diameter K(n, 2) for many values of n.
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For example, starting with G E G(10.2,3)	 5	 i.e..

2•

we can proceed as follows

G 1 E G(10.2.3) < 5 >

< K(20.2) <55 > by I and since 4 <'7 G2	 G(20.2,4)E

< 4 > by II and since 4 < K(19,2) < 5G3	 G(19,2,4)>	 E

< 3 > by II and since 4 < K(18,2) < 5-> G4	 G(18,2,4)E

>	 E < 2 > by II and since 4 < K(17.2) < 5G5	 G(17.2.4)

>	 E < 1 > by II and since 4 < K(16,2) <5G6	 G(16.2.4)

>G; E < 0 > by II and since 4 < K(15,2) <5G(15.2.4)

Further,

G 1 E G(20, 2, 4) < 5 >

< 5 > by I and since 5 < K(40.2) < 6G2	 G(40,2,5)>	 E

< 4 > by II and since 5 < K(39,2) <6G3	 G(39,2,5)>	 e

G4	 G(38,2,5)E < 3 > by II and since 5 < K(38,2) < 6

etc.

Hence we deduce that
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K(20,2) = 4, K(19.2) =

K(40,2) = 5, K(39,2) =

4. K(18.2) = 4. K(17,2) = 4. K(16.2) = 4, K(15,2) = 4 and

5, K(38.2) = 5 etc.

Note that G 1 E G(10.2.3) < 5 > can be deduced from G2 E G(5, 2, 3) < 5 >, i.e.. from

by using Rule I.

In the following table we give the values of I (n , 2) for n < 100.
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n K(n,2) n K(n,2) n K(n,2)

1 0 34 5 67 6

2 1 35 5 68 6

3 1 36 5 69 6

4 2 37 5 70 6

5 2 38 5 71 6

6 2 39 5 72 6

7 3 40 5 73 6

8 3 41 5 74 6

9 3 42 5 75 6

10 3 43 5 76 6

11 3 44 5 77 6

12 3 45 5 78 6

13 4 46 5 79 6

14 4 47 5 80 6

15 4 48 5 81 6 or 7

16 4 49 5 or 6 82 6

17 4 50 5 83 6

18 4 51 5 or 6 84 6

19 4 52 5 or 6 85 6

20 4 53 5 or 6 86 6

21 4 54 5 or 6 87 6

22 4 55 5 or 6 88 6

23 4 56 5 Or 6 89 6

24 4 57 5 or 6 90 6

25 4 58 5 or 6 91 6

26 4 or 5 59 5 or 6 92 6

27 4 or 5 60 5 or 6 93 6

28 4 or 5 61 5 or 6 94 6

29 4 or 5 62 6 95 6

30 5 63 6 96 6

31 5 64 6 97 6 or 7

32 5 65 6 98 6 or 7

33 5 66 6 99 6 or 7

100 6
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CONCLUSION.

In this thesis we have proved some new results about the relationship between the

degree, diameter and order of diregular digraphs. In particular, for degree 2 we have

improved upon the bounds for the order (given diameter); and for certain values of order

we have improved upon the bounds for diameter (given order). However, the N(2, k) and

the K(n, 2) problems still remain open, as do the N(d, k), K(n, d) and D(n, k) problems

in general. To get nearer to the solutions we could try to answer some simpler questions,

such as

1. Is K(n, d) monotonic in n?

2. Is D(n, k) monotonic in n?

3. Is D(n, k) monotonic in k?

4. Does K(n,d) = k imply K(nd,d) = k + 1?

Certainly, K (n, d) = k implies K (nd, d) < k + 1 using the line digraph iteration scheme

of Theorem 7. On the other hand, a similar implication for N(d, k) does not hold as for

example N(2,3) = 12 and N(2,4) > 25.

5. Is K (n, d) monotonic for some intervals of n? In particular,

(a) Is K(n, d) monotonic for all n such that (dk – 1)/(d – 1) < n < N(d, k))?

(b) Is K(n, d) monotonic for all n such that (dk – 1) 1 (d – 1) < n < (d + 1)dk-1?

An affirmative answer to any of these questions would much advance the solution of

the N(d, k) , K(n, d) and D(n, k) problems.
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Apart from the three problems treated in this thesis, there are many other related

open problems. We will mention just a few of these.

6. The problem of finding the minimum average diameter if (n,d) = 	 k given

n,d and k. where k is the average diameter of G,

k = k(G) =
Ei,JEG d23 

n(n — 1)

where d11 is the length of the shortest path from vertex i to vertex j in the digraph

G.

For example. there are five nonisomorphic digraphs G 1 , G2, G3, G4, G5 E G(4, 2.2).

The average diameters of digraphs G 1 , G2, G3, G4 and G5 are

k(G 1 ) = 1.5, k(G 2 )	 k(G3 ) = 1.413 and k(G 4 ) = k(G5 ) = 1.3.

7. The problem of finding all the optimal nonisomorphic digraphs of a given order and

degree.

Bowen (1985) found (with the use of a computer) all the optimal nonisomorphic

diregular digraphs for degree 2, and order up to 12.
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The following table gives the number of nonisomorphic diregular digraphs I(n,k) for given

order n and diameter k.

n k I(n,k)

1 0 1

2 1 2

3 1 1

4 2 5

5 2 5

6 2 3

7 3 158

8 3 295

9 3 413

10 3 203

11 3 24

12 3 3
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APPENDIX.

• Lemma 5.

If G E G(13,2,3) then G does not contain the following subdigraph 54

„

2•	 .3

S4

Proof.

Suppose S4 C G E G(13, 2, 3). Then there must be a path of length 2 or 3 from

vertex 2 to vertex 1; and a path of length 2 or 3 from vertex 3 to vertex 1. Thus

vertex 1 must lie on at least two 3- or 4-circuits.

	

Suppose the two arcs going to vertex 1 are x	 1 and y	 1. Obviously, x y.

Then there must be a path of length 2 or 3 from vertex 1 to vertex x and a path

of length 2 or 3 from vertex 1 to vertex y. Hence x lies on at least one 3- or

4-circuit containing 1; and y lies on at least one 3- or 4-circuit containing 1.

Thus we have the following possibilities.

47-
2	 4

( C )
	

(d)
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where 1.2.3.4.x. y. z. w need not be all distinct vertices. We will use Lemma 4

throughout this proof.

Case (a).

Impossible as we can reach at most 11 vertices from vertex 1.

Case (b).

Obviously. x	 1,2.3.4, y, z: y	 1.2,3.x.z: z	 ,2,3,4,x,y. This gives the

following possible cases.

(i) y	 4 and vertices 1.2.3.4.x. z all distinct.

(ii) Vertices 1,2.3.4, x, y, z all distinct.

(i) We have
2

Nui	 v 4\./
4-	 02)	 (q)	 3
\A( 	\i/

1

	

/2\	 1\6,
4-	 7	 F	 8

6 A3 TAIP AI 71' 'i 3
where we have arbitrarily labelled the vertices 5.6,7,8.9,10,11,12,13 and where

placing (9) and (12) is explained below. Since vertex 1 has to reach all the other

12 vertices in at most 3 steps, any other labelling of vertices would produce an

isomorphic digraph.

Now, to reach 1 from 7 we must have (9 or 10)	 (6 or 5).

To reach 1 from 8, we need (12 or 13) --- (6 or 5).

74



Now 9,10 7/4 6 (else we cannot reach 6 from 3) so (say) 9 -4 5 and 12	 6.

To reach 1 from all vertices we have to have arcs from vertices 10,11,13 to vertices

4,12,9, i.e., 10	 (4 or 12 or 9) and 11 -4 (4 or 12 or 9) and 13 -4 (4 or 12 or 9).

We will write this as {10,11,13} -3 {4,12,9} for brevity.

Moreover, to reach 12 from 2, we need 10 -4 12.

Now to reach 3 from 7 we need (9 or 10) -4 4; and to reach 3 from 8 we need (12

or 13) -4 4.

As we already have 2 -4 4, this is not possible.

(ii) We have

Now, to reach 3 from 8, we need (12 or 13) -4 4, say 12	 4.

To reach 3 from all vertices we need {9,10,11,13} 	 {6,7,2,12},

To reach 1 from 8, we must have (12 or 13) -4 (6 or 7); and so 13 -4 (6 or 7).

Now 11 76 2 and 11 76 12 (else we cannot reach 12 from 2) and 11 74 6 .

Hence 11 -4 7 and then also 13 -4 6 and {9,10} -4 {2,12}.

To reach 1 from all, we need {9,10,12} -4 {13,5,11}.

Now 12 74 13, 12 76 11 (else we cannot reach 11 from 2) and so 12 	 5 and
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{9,10}	 03,111.

To reach all from 3, we must have {11, 13} -4 {9,10}.

That leaves 7 -4 8 as the only possibility.

But then we cannot reach all vertices from vertex 7.

Case (c).

Obviously, x	 1,2,3,4,y, z; y � 1,2,3,4, x, z; z	 1,2,3,4, x, y.

Hence the vertices 1,2,3,4, x, y, z are all distinct.

We have	

V \I/5
2	 12)	 (1)	 6

5-	7

A/\2	 /\443

-3A14 1 A5- 40 IA 12-)\41-3

To reach 1 from 4, we must have 9 -4 (5 or 7).

Now 9 74 5 (else we cannot reach 5 from 3) so 9 -4 7.

To reach 1 from 8, we must have (12 or 13) -4 5, say 12 	 5.

To reach all from 2, we need {9,10} 	 {11,12,13}, i.e., 10	 two of {ll, 12,13}.

But now we cannot reach 7 from 5.

Case (d).

Obviously, x � 1,2,3,4,y, z, w; y	 1,2,3,x,z,w; z	 1,2,3,4, x, y, w;

w	 1, 2, 3, 4, x, y, z.
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This gives the possible cases

(i) y = 4 and the vertices 1,2,3,4,x,z,w all distinct.

(ii) Vertices 1,2, 3, 4, x, y, z, w all distinct.

(i) We have

2V VV V3
(f0)4-	 0)

\
6 4../9 10\ j5 fly	 13

1r 	 2	 g

\17 	 \1/4/
1	 4

A4 A,	 3

A7 A
In this case we can immediately label all the vertices going to vertex 3 in up to

3 steps as there is only one possibility (up to isomorphism).

Now, to reach 4 from 3, we must have 3 	 (11 or 12 or 13).

Suppose 3	 11.

To reach 2 from all, we need 8 ---* 11.

To reach 4 from 5, we need 5 	 (12 or 13), say 5 --+ 12.

To reach 6 from 3, we need 11	 9 (as 11 74 4).

But then we cannot reach all from 8.

Hence 3 74 11 so 3	 12 (say).

To reach 2 and 6 from 3, we must have {5,12}	 {11,9}.

To reach 4 from 5, we need 5 —÷ (11 or 13) (since 5 74 1,12).

Hence 5 -4 11 and 12 ---* 9.
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To reach 6 from 5. we need (7 or 11) --> 9.

To reach 2 from 12, we must have (8 or 9) —4 11.

Suppose 9 —4 11. Then 7 —4 9 (as 11 74 9).

Then also 11 —4 10 (to reach 1 from 11) and 13 —4 5 (to reach 2 from 13).

But then we cannot reach all from 5.

Hence 8 —4 11. Then 11 —4 10 (to reach 7 from 8).

But then we cannot reach 9 from 8 as 6 74 9, 2 74 9 and 10 74 9.

(ii) We have 8 .41---6

3

2	 4   

Obviously. v	 1,2,3,4.5.6,7.8 so v = 9 (say).

Obviously, x	 1,2,3,4, 5,6, 7, 9.

Suppose x = 8.

Then we have 2	 2	 3
V V V

6"	 (22)	 4-	 6

2	 3

A/\■	 //\A
4	 S	 6
AAAA
8 3 7 10	 8 11 i2 13
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Then to reach 1 from 9, we need 12	 7 (say).

To reach 3 from 9, we must have 13 4 (as 12 74 4 -else we cannot reach 3 from

all).

To reach 4 from 5, we need 10 ---> 13 (since 7,10 74 2 - else we cannot reach 2

from 3; and 7 74 13 - else we cannot reach 3 from all).

To reach 3 from 11, we need 11 -4 2.

To reach all from 4, we must have 8 5.

But then we cannot reach 5 from 9.

Hence x = 10 (say).

Now we have

Obviously, y � 1,2,3,4,5,7,8,10.

Suppose y = 6.

Now we have
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2VVV\v/
4,	 00

\.1
8

6 3

A A3
,jAk.

3 10	 6

Then to reach 6 from 9, we must have 12 5 (say).

To reach 6 from all, we must have {10, 11,13} --+ {2,4,12}.

Now 11,13 -74 12 (else we cannot reach 12 from 2) so 10 	 12.

To reach 1 from 4, we need 10 —* (7 or 8).

Now 10 714 7 (else we cannot reach 7 from 3) and so 10 8.

But then we cannot reach 2 from 4. Hence y � 6.

Suppose y 9.

Then we have

2V V 3V \41(
5*\fry)	 6 CID)

8
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Then 10	 8 (to reach 8 from 2 and since 7 76 8).

To reach 1 from 9, we must have 12 ---+ 7 (say).

To reach 7 from 4, we need 10 --412 (10 74 5 -else we cannot reach 5 from 3).

Then 7	 11 (to reach 11 from 2).

But then we cannot reach 8 from 5.

Hence y 9 and so y 11 (say).

Now we have

2\ti V V V
3

vo,

3

A/\
b
/\kg

3A0 7Al\ii 8" A

As vertex 3 is already a repeat from 1, we can only have one more repeat.

Thus we can assume 9 --* 12.

To reach 1 from 4, we need 10 	 (7 or 8).

Supose 10 7. To reach 13 from 1, we must have (6 or 9) 	 13.

If 10 --+ 7 then (6 or 9) --+ (5 or 10) (to reach 7 from 3).

To reach 8 from 2, we need 11 --+ 8 (as 10 1+ 8 and 71+ 8).

Then 9 -4 (5 or 10) (to reach 1 from 9) and so 6	 13.

To reach 2 from 4, we must have 10 --> x 2 (as 7 74 2 and 9 1+ 2 and 10 74 2).

Now x
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If z = 13 then 9 -4 10 (to reach 2 from 9) and 12	 6 (to reach 2 from 12).

But then we cannot reach 13 from all.

Hence x = 12 and 10	 12,12	 2.

Then 9 	 10 (as 9 -4 12) and so 9 --+ 5.

But then we cannot reach 3 from 9 (as 12 74 1,12 74 4).

Hence 10 74 7 and so 10	 8.

Now we have 2 V V 4VV
3

10	 6

1.

3

A/\45 	 /\4•4
6	 q

3 AO	 S A "12
Suppose 6 -4 repeat from 1.

Then 9 -4 13.

To reach 3 from 9, we must have (12 or 13) -4 4, say 12 4.

To reach 4 from 5, we must have (7 or 11) -4 (12 or 2).

To reach 3 from all, we need {11, 13} 	 two of {2,12, 7}.

To reach 1 from 9, we need (12 or 13) -4 7 and so 11	 (2 or 12).

If 11	 2 then 6	 11 (to reach 2 from 3).

But then we cannot reach 2 from all.

Hence 11 74 2 and so 11	 12.
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Now if 12	 7 then 10	 5 (to reach 7 from 4).

To reach 5 from 9, we need (12 or 13) -4 (10 or 2).

To reach 5 from 3, we must have 6 --4 (10 or 2).

To reach 13 from 2, we must have (7 or 11) -4 13.

To reach 8 from 5, we need (7 or 11) 	 6.

Now (12 or 13)	 (10 or 6) (to reach 8 from 9) so (12 or 13) --4 10 and 6	 2.

Then 8	 9 (to reach all from 6).

But then we cannot reach 4 from 10.

Hence 1274 7 and so 13 7.

Then 10 -4 (5 or 13) (to reach 7 from 4).

If 10 -4 5 then 6	 2 (to reach 2 from 4) and 12	 6 (to reach 2 from all).

But then we cannot reach all from 12.

Hence 10 74 5 and so 10 13.

Now to reach 13 from 5, we need (7 or 11) -4 (9 or 10).

To reach 12 from 10, we must have (8 or 13)	 (9 or 11).

To reach 4 from 10, we need (8 or 13) -+ 2.

Since 8 	  2 we must have 13 --4 2.

But now we cannot reach all from 13.

Hence 6 7 repeat from 1 and so 6 -4 13.

Now we have
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To reach 3 from 9, we need 9 ----> 7 or 9 -4 2 or 9 -4 4 or 9 - t - 4.

To reach 1 from 9, we need 9 ---> 5 or 9 	 10 or 9	 6 or 9 ---> 7 or 9	 s	 7.

That is, 9 ---> 7 or 9 -4 10	 4 or 9 ---> t,t ---> 4, t	 7.

Suppose 9	 t, t -4 4, t --> 7.

Then t	 1,2,3,4,5,6,7,8,9,10,11,13.

Hence t = 12.

Then 13	 2 (to reach 3 from 13 and since 13 7/3 12 - else we cannot reach 12

from 2) and 11 --+ 12 (to reach 3 from 12).

To reach 2 from 4, we must have 10 --> 13.

To reach 7 from 4, we need 10 5.

But then we cannot reach 2 from 4.

Hence 9 --> 7 or 9 	 10	 4.

Suppose 9	 10 --> 4.

Then we cannot reach S from all.

Hence 9	 7.
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To reach 2 from 3, we need (12 or 13) --> 2 (as 7,8 -/-> 2).

Suppose 12 -> 2.

To reach 2 from 4, we must have 10 --> 12.

Then 11 --> 9 (to reach 2 from 11 and since 11 74 10 - else we cannot reach 10

from 3) and 13 -> 10 (to reach 2 from 13).

To reach 8 from 5, we must have (7 or 11) -4 6.

To reach 8 from 9, we need (12 or 7) --> 6.

Hence 7 -4 6.

But now we cannot reach 12 from 7.

Hence 12 74 2 and so 13 --> 2.

Now to reach 2 from 4, we need 10 -> 13.

To reach 2 from 11, we must have 11 ---> 6 (as 11 74 10 - else we cannot reach 10

from 3).

To reach 2 from 12, we need 12 ---> 10.

To reach 6 from 9, we must have 12 -> 11 (as 7 74 11).

To reach 3 from 12, 11 -> 4.

But now we cannot reach all from 12.

Hence if G E C(13, 2, 3) then it cannot contain S4.
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