
INTRODUCTION.

In recent years many advances in very large scale integrated circuit technology have

been made. These have resulted in a growing interest in the design of microprocessor

networks. In such networks it is obviously desirable to minimize the distance (i.e., the

number of times a message has to be relayed to reach its destination) between any two

microprocessors, and thus to reduce the delays and also the load on the interconnecting

lines.

Ignoring other factors, the smaller the distance between any two microprocessors, the

more efficient the network. On the other hand, the cost of the interconnections between

the microprocessors increases with the number of lines in the network. Thus it is desirable

to have networks with both the minimum distance between any two microprocessors, and

the minimum total number of lines. However, if the number of lines is decreased then the

distance between the microprocessors tends to increase and vice versa. There seems to be

some kind of an inverse relationship between these two criteria of a network, although it

is possible that there might be some anomalies.

When designing a network, we may consider other criteria as well. For example, we

can require an overall balance of the system: given that all the microprocessors have the

same status, the flow of information and exchange of data between microprocessors will

be on average faster if there is a similar number of interconnections going in and out of

each microprocessor, i.e., if there is a balance (or regularity) in the network.

Next, instead of (or as well as) aiming at the minimum distance between any two

microprocessors of the network we may require that the network be of minimum average
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distance.

Other factors may also be taken into account when designing a network. For example,

we may wish to produce a network which is reducible, that is, given a network N, we wish

to find partial networks N1 , N2 , , Nt = N such that N1 C N2 C	 C Nt and each

keeps certain given desired properties (e.g., minimum distance or minimum average

distance). Conversely, we could require a network to be extensible.

One important aspect of reducibility of a network is fault tolerance. Specifically, a

system that is fault tolerant should continue to work correctly (although possibly with

reduced performance) when one or more connections or when one or more microprocessors

have failed — as long as that particular component of the network is not involved in the

computation.

Given any combination of requirements for a network such as above, there might be

more than one essentially different (not isomorphic) network which satisfy the require-

ments. This gives rise to the problem of finding all nonisomorphic networks satisfying the

given requirements. These are just some examples of unsolved problems in the design of

microprocessor networks.

We are interested here in those network design problems that can be translated into

graph theoretical problems. We can represent each microprocessor by a point. If all the

interconnections in the network are two-way, then a connection between point A and a

point B can be represented by a line joining A and B. In this way we obtain an undirected

graph. Otherwise we represent a connection from point A to point B by an oriented arc

(a line with an arrow pointing in the direction of the flow) from A to B and we obtain a
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directed graph. The kind of properties of a network that we are interested in, such as the

distances between microprocessors, or the regularity of the network, will be preserved in

such representations.

In this thesis we will consider mainly directed networks which are balanced (that

is, regular). To deal with such networks formally we introduce our basic terminology in

Chapter 1. In Chapter 2 we discuss the following three problems:

(i) The problem of optimizing the number of microprocessors given the number of con-

nections going in and out of each microprocessor and given that the distance between

any two microprocessors should not be more than some given value.

(ii) The problem of optimizing the distance between any two microprocessors given the

number of microprocessors in the network and given the number of interconnections

going in and out of each microprocessor.

(iii) The problem of optimizing the number of connections in and out of each microproces-

sor given the number of microprocessors in the network and given that the distance

between any two microprocessors is not more than some given value.

In Chapters 3 and 4 we deal with the first two problems in more detail and we consider

especially the case when there are 2 in and 2 out connections from each microprocessor.

Finally, in the Conclusion of this thesis we present some open problems which follow from

this work or are related to it.

All original results in this thesis are indicated by •. These are Lemma 1, Lemma 2,

Theorem 2 and Lemma 3 in Chapter 2; Theorem 3*, Theorem 3', Theorem 4, Lemma 4,

Lemma 5 and Theorem 5 in Chapter 3; and Theorem 6 with Corollaries 1,2,3,4 and 5 in

Chapter 4.
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CHAPTER 1. Basic concepts.

A graph, or an undirected graph, is a set of points and a set of lines, with each line

joining two points together. The points are often called the vertices (or nodes) of the graph

and the lines are also called the edges of the graph.

More formally, we have

Definition 1.

A graph G = (V, E) where

(i) V is a nonempty set V = {v i , v 2 ,	 ,	 ...} of distinct elements, called

vertices;

(ii) E is a bag E = {e l , e 2 ,	 , e m ,...} of unordered pairs {v i ,	 vi, vi E V,

called edges.

Thus an edge {v, w} is the same as the edge {w, v}. A bag is a collection of elements,

possibly with repetitions, and so an element {v, w} of the cartesian product V x V can

appear more than once in E. If an edge appears more than once in E, it is called a multiple

edge.

An edge of the form {v, v} is called a loop. Some authors (e.g., Harary, 1969) do not admit

the existence of multiple edges and loops in their definition of a graph. They then call

a graph with multiple edges a multigraph and a graph with multiple edges and loops a

pseudograph.

In this thesis we will not make such restrictions; we will allow both multiple edges and

loops in a graph.

If an edge e occurs m times in a graph G then we say that e is of multiplicity m.

4



The number of vertices in G = (V, E) is called the order of G. If the order of G is finite

and if also E is a finite bag then G is a finite graph. Two vertices u, v E G are called

adjacent if there is an edge {u, v} in G. Two edges {u, v} and { w , x} are called adjacent if

u = w or u = x or v = w or v = x.

The degree of a vertex v E G is the number of edges in G of the form {u, v}, u E G. If

the multiplicity of all edges of G is 1, then the degree of a vertex v E G is the number of

vertices adjacent to v.

If in a graph G every vertex has the same degree d then G is said to be a regular graph, or

a regular graph of degree d.

A chain is a sequence = (e l , e 2 ,... , e q ) of edges of G such that each edge after the first

in the sequence has one point in common with its predecessor in and its other point

in common with its successor in p. The number of edges in p, is the length of the chain.

Alternatively, we can define a chain as a sequence p, 	 (vo, v i ,	 , vq ) of vertices vi E G

such that for all i, 0 < i < q — 1 , the edge {v i , v + 1 } exists in G. A chain that does not

encounter the same vertex twice is called elementary. A chain that does not contain the

same edge twice is called simple.

A cycle is a simple chain p, 	 (vo, v i ,	 , vq ) such that vo = vq . Thus a cycle is a "closed"

chain. A loop is then a cycle of length 1.

A graph G = (V, E) is said to be connected if for each pair of distinct vertices x, y E V, G

contains a chain p = (vo,v i ,... , v q ), v i E G, where vo	 x and vg	y.

The distance d(x, y) of two vertices x and y is the length of the shortest chain with x and

y as its end points.
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The diameter k of a graph G is the longest distance between any pair of vertices of G,

i.e., k = max x,yEG d(x.y).

We can represent a graph G = (V, E) by a geometric diagram, or a diagram, in which the

vertices are indicated by small circles or dots, while any two vertices u, v E V are joined

by a continuous curve if and only if {u, v} E E. For example, the graph G = (V, E) where

V = {1,2,3,4} and E = {{1, 1}, {2,1}, {2,1}, {3,4}, {4,3}, {1,4}} can be represented by

the following diagram.

2.

04

A graph G 1 = (V, E) is a subgraph of a graph G = (147, F), denoted G 1 C G, if V C W and

E C F.

Many applications of graph theory require a direction to be associated with each edge. For

example, flow through a program is directed as is the traffic flow through one-way streets.

In these cases, an edge from a point u to a point v is not the same as an edge from v to u.

We will call a directed edge an arc. If a is an arc from vertex u to vertex v then we call u

the start point of a. and v the end point of a. Alternatively, we may say that the vertex

u goes to the vertex v. We will also say in such a case that a joins vertex u to vertex v.

Graphs with directed edges are called directed graphs.

More formally, we have
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Definition 2.

A digraph, or a directed graph, G = (V, E) where

(i) V is a nonempty set V = {v i , v2 , ... vn , ...} of distinct elements called ver-

tices;

(ii) E is a bag E = {e l , e 2 ,	 ,	 .. .} of ordered pairs (vi, vi ), v i , vi E V, called

arcs.

The number of vertices n in a digraph G is called the order of the digraph. If V is finite

and if E is a finite bag then G is called a finite digraph.

If G is a digraph then two vertices x, y E G are called adjacent if there is an arc (x, y) or

an arc (y, x) in G; two arcs (u, v) and (w, z) of G are called adjacent if v = w or u = z.

The indegree of a vertex v E G is the number of arcs of the form (u, v) in G. Similarly, the

outdegree of a vertex u E G is the number of arcs of the form (u, v) in G. The degree of a

vertex v is the sum of its indegree and outdegree.

If in a digraph G every vertex has the same degree d then G is said to be a regular digraph,

or a regular digraph of degree d. However, if G is a regular digraph in which

indegree = outdegree	 d for every vertex in G then G is called a diregular digraph of

degree d

We can represent a digraph G = (V, E) by a geometric diagram differing from a diagram of

an undirected graph only in that we draw arrows on the lines representing directed edges

of G. For example, if G = (V, E)

where V = {1, 2, 3, 4} and E = {(1, 2), (1, 1), (3, 2), (3, 2), (2, 3), (4, 4)} then the diagram of

G is as follows.
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G

2'

A digraph is called complete if for every two distinct vertices x, y E G there is an arc (x, y)

or an arc (y,x) in G (or both). A digraph G is symmetric if whenever (x,y) E G then

(y, x) E G.

A digraph G 1 = (V, E) is a subdigraph of a digraph G = (W, F), denoted G 1 C G, if V C W

and E C F.

The underlying graph G* = (V, E*) of a digraph G = (V, E) is a graph which contains all

the vertices of G, and an edge {u, v} whenever there exists an arc (u, v) in G.

Below is an illustration of a digraph G and its underlying graph G*.

A directed path of length q, or a path of length q, is a sequence of arcs of a digraph G,

= (a 1 , a2 ,	 , aq) in which the start point of a 2 is the end point of a i_ 1 for all i, 1 < i < q.

We will denote a path also by A = (vo, v 1 ,	 , vq ) where (vi_ 1 , vi ) is an arc in G. If

/I, (vo, v 1 ,... , vq) we will sometimes say that vertex vo reaches vertex vq in q steps.

A circuit is a path it = (vo, v 1 ,	 , vq) such that vo = vq . A circuit of length 1 is called a
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loop, a circuit of length 2 is called a digon. For any p > 0 we will call a circuit of length p

a p-circuit.

Note that path and circuit in digraphs are concepts analogous to chain and cycle respec-

tively in undirected graphs. Analogously, we also have the concepts of elementary path,

simple path, elementary circuit and simple circuit in digraphs.

A digraph G = (V, E) is said to be connected if the underlying graph of G is connected.

A digraph G = (V, E) is said to be strongly connected if for each pair of distinct vertices

x, y E V, G contains a path it = (vo, v i ,	 , vq ) where vo = x and vg = y.

Two digraphs G = (V, E) and G* = (W, F) are isomorphic if there exists a one-to-one

correspondence between V and W, f : V	 W such that there is an arc of multiplicity m

joining f (u) to f (v) in G* if and only if there is an arc of multiplicity m joining u to v in

G.

With every digraph G we can associate various "adjacency" matrices. We call a matrix A

the vertex-adjacency matrix of a digraph G of order n, if A is an x n matrix such that

Ai3 = 1 if there is an arc from vertex i to vertex j in G;

A 2 3 = 0 otherwise.

Note that two nonisomorphic digraphs may have the same vertex-adjacency matrix as in

the definition of a vertex-adjacency matrix of a digraph G we ignore the multiplicity of

multiple arcs in G.

The elements of A can be regarded as elements of the simple Boolean algebra B2 with
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Boolean addition u and Boolean multiplication n defined as follows.

0 1

0

1

0

1

1

1

n o

0i0

1	 0	 1

Thus if the order of G is n then A is a n x n Boolean matrix. We define multiplication of

two n x n Boolean matrices A and B as follows.

(AB)ii	 (Aik Bki)
k=1

Thus the product of two n x n Boolean matrices is again a n x n Boolean matrix. Further,

we can define Boolean powers of anxn Boolean matrix A iteratively by

A2 = A x A, A3 = A x A 2	 •kA = A x

For example, if the digraph G (V, E)

where V = {1,2,3,4,5} and E = {(1, 1), (2,1), (3,2), (3,4), (4,2)} then the diagram of G

is as follows

.5

•h

and the vertex-adjacency matrix of G is

1 0 0 0 0
1 0 0 0 0

A= 0 1 0 1 0
0 1 0 0 0
0 0 0 0 0
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11
1

A 2 = 1
1

\o
/1

1
A3 = 1

1
\o 0 0 0 0)

and further,
0 0 0 0\
0 0 0 0
1 0 0 0
0 o o o
0 0 0 0)

0 0 0 0\
o o o o
0 0 0 0
o o o o

and in this case A t = A3 for t > 3.

Note that if A is a vertex-adjacency matrix of a digraph G of order n, then At = 1 if and

only if there exists a path of length t from vertex i to vertex j in G.

If G is a digraph of order n and with m arcs, then we could similarly define the m x m

arc-adjacency matrix of G and the n x m vertex-arc-adjacency matrix of G.

However, since in this thesis we will need to use only the vertex-adjacency matrix of a

digraph G, we will call it simply the adjacency matrix of G.

Next, we define the directed distance d(x, y) from a vertex x to a vertex y (x, y E G) as the

length of the shortest path from x to y. We define d(x, x) = 0, and if x and y are distinct

vertices of G and there does not exist a path from x to y we define d(x, y) = oo.

The associated number a(v) of a vertex v is defined to be a(v) max we G d(v, w). That is,

from the vertex v we can reach any other vertex in a(v) or less steps.

We define the diameter of G to be the maximum of the associated numbers of all the

vertices of G, that is, k(G) = max, EG a(v).

The concept of a diameter is important in the design of interprocessor communication of

multicomputers. The diameter represents the maximum number of times that a message

must be relayed before it reaches its destination. The diameter of a digraph G is finite if
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and only if G is strongly connected. For example. if G = (V, E) where V =

and E = (1, 4), (2, 1), (3, 2), (3, 4), (3,6), (3, 5), (4. 3). (4, 5), (5, 1), (5, 4), (6,1), (6,5)1

G

then the diameter of G is 4.

The sort of problems we shall deal with in this thesis follows from the so called Moore

graph problem (Cameron, 1978). This problem was originally posed for finite undirected

graphs which are connected and regular. If G is such a graph with diameter k and degree

d then G can contain at most

Nni = 1 + dE(d —
i=i

vertices. .1Vm, is called the Moore bound for undirected graphs and the graphs which attain

this bound are called Moore graphs. The problem of finding all Moore graphs has been

practically solved (Cameron, 1978). If G is a Moore graph with diameter k and degree d

then

(i) If k = 1 then G exists for any cl, it is the complete graph on d + 1 vertices.

(ii) If k = 2 then d = 2,3,7 or (possibly) 57; in each of the cases d = 2,3,7 G is unique

up to isomorphism.

(iii) If k > 2 then d = 2 and G is a cycle of length 2k + 1.

Thus apart from the fact that it is not known whether or not a Moore graph with diameter

2 and degree 57 exists, the Moore graph problem has been solved.
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Next, the so called (d, k) problem for undirected graphs follows naturally from the Moore

graph problem. The (d, k) problem is : given d and k, find the maximum possible number

of vertices in a regular graph of degree d and diameter k. That is, if we cannot attain the

Moore bound N, for a given d and k, we wish to find a graph whose order is as close

to N, as possible. This problem has been studied elsewhere (e.g., Memmi and Raillard,

1982). Alternatively, it is possible to try to minimize the diameter given the order and the

degree of a graph G; or to try to minimize the degree given the order and the diameter of

G. At present all these problems remain open extremal problems in graph theory.

In this thesis we will study analogous problems for directed graphs.
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CHAPTER 2. Discussion of the three problems.

We will consider a diregular digraph G of order n. degree d, and diameter k < pc.

G has n vertices; there are d arcs going in and out of each vertex, and any vertex can

be reached in at most k steps. This implies that G is a finite digraph which is strongly

connected. We will study the relationships between n, d and k. In particular we wish to

find the bounds for n given d and k; the bounds for k given n and d; and the bounds for

d given n and k.

In the following G(n, d, k) will denote the set of all diregular digraphs of order n degree

d, and diameter k. We shall investigate for which triples (n, d, k) this set is nonempty.

Note that if G(n, d, k) is nonempty then it does not necessarily identify a unique (up to

isomorphism) digraph; indeed it is possible to have two digraphs G 1 E G(n,d,k) and

G2 E G(n, d, k) such that G 1 and G2 are not isomorphic.

For example, if G 1 (V, E1 ) and G2 = (V, E 2 ), where V = {1, 2, 3} and

{(1, 2), (1,3),(1,1),(2,1),(2,3),(2,2),(3,1), (3, 2), (3,3)} and

E2 = {(1,2), (1,2), (1, 3), (2, 1), (2, 3), (2, 3), (3, 1), (3, 1), (3, 2)}

or	....3.0 
Gi

	 zez	

 G,

then G 1 E G(3,3,1), G2 E G(3, 3,1) but G 1 and G2 are not isomorphic.

If at least one of the numbers n,d,k is 1 then it is easy to determine whether G(n, d, k) is

empty or not . In particular,
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(i) If n = 1 then G(1, d, 0) is nonempty and for k > 0 G(1, d, k) is empty.

(ii) If d = 1 then G(n,1,k) is nonempty if and only if k = n — 1. G E G(n, 1, n — 1) is

then an elementary circuit on n vertices.

(iii) If k 1 then G(n,d,1) is nonempty if and only if d > n — 1. If d = n — 1 then

G E G(n, n — 1, 1) is a complete symmetric digraph on n vertices. If d > n 1 then

G E G(n, d, 1) contains a subdigraph which is a complete symmetric digraph on n

vertices.

Let G be a digraph of diameter k. This implies that there is a directed path in G of length

k on which all vertices are distinct, that is, there are at least k + 1 distinct vertices in G.

Thus we have n > k 1 for any d > 1.

Moreover, a diregular digraph G E G(k + 1, d, k) exists for any d> 1.

If d = 1 then G E G(k + 1, 1, k) is an elementary circuit on k + 1 vertices.

If d > 1 then we can construct G 1 E G(k + 1, d, k) from G2 E G(k + 1,1, k) simply by

inserting d — 1 loops at each vertex of G2.

Equivalently, given n and d, the maximum possible diameter of G E G(n,d,k) is k = n— 1.

Next we will consider an upper bound for the degree d of a digraph G, given n and k. Since

we allow loops and multiple edges in G, it is obvious that if G 1 E G(n, d, k) exists then

G2 E G (n , d', k) also exists for every d' > d. We can construct G2 from G 1 for example

by inserting d' — d loops at each vertex of G 1 . Thus no upper bound for d exists, i.e., the

best we can say is d < oo.

To sum up, we have the following bounds.

(i) Given d and k, n > k + 1
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(ii) Given n and d, k < n — 1

(iii) Given n and k, if n > k + 1 then d < cc;

if n < k + 1 then G(n, d, k) is empty for any d, that is, a diregular digraph G of

diameter k and order less than k 1 does not exist for any degree d.

Since G(k + 1, d, k) and G(n, d, n — 1) are nonempty and G(n, d, k) is nonempty for all

sufficiently large d ( when n > k + 1 ), the above bounds cannot be improved upon.

Next we wish to find an upper bound for n given d and k; and lower bounds for k (given

n and d) and d (given n and k). We will use the adjacency matrix A of a digraph

G E G(n, d, k) to obtain such bounds.

Labelling the n vertices of G E G(n, d, k) by 1,2,... ,n we have

Ai) = 1 if there is an arc from vertex i to vertex j in G;

Az) = 0 otherwise.

Further, we can form Boolean powers of the matrix A and we get

(A 2 ) 21 = 1 if there is a directed path of length 2 from vertex i to vertex j in G;

(A 2 ) i3 = 0 otherwise.

In general,

(Ai ) ii = 1 if there is a directed path of length t from vertex i to vertex j in G;

= 0 otherwise.

Now, if the diameter of G is k we must be able to reach from every vertex of G all the

other vertices of G in at most k steps. Thus for a G E G(n, d, k) to exist we must have

/UAUA2 U...UAk DE
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where I is the n x n identity matrix and E is the n x n unit matrix (that is, the n x n

matrix all of whose entries are 1).

Now, for every i E {1,	 , n}, the ith column of I contains one 1; the ith column of A

contains at most d l's; the ith column of A 2 contains at most d2 l's; and in general, the

i th column of A t contains at most dt l's. On the other hand, the ith column of E contains

exactly n l's.

Thus if G(n,d,k) is nonempty then

n < 1 + d+ d2	dk

or, equivalently,

n < k 1	 if d = 1

n < (dk+1 — 1)/(d — 1) if d > 1.

This relationship between n, d and k gives an upper bound for n given d and k; and lower

bounds for d (given n and k) and k (given n and d).

Denoting N(d, k) to be N(d, k) = max{n : G(n, d, k) (61 we have

k + 1 < n < N (d, k ) < 1 d + d2
	

+ dk

If d = 1 then N(1, k) < k + 1, that is, N(1, k) = k + 1 and G(n,1,k) is nonempty if and

only if n = k + 1 .

If k = 1 then 2 < n < N(d,1) < 1 + d.

Now, G(d + 1, d, 1) is nonempty for every d> 1; G E G(d+ 1, d, 1) is a complete symmetric

digraph on d + 1 vertices.

Thus N(d,1) = d + 1 and given d > 1 and k = 1, G(n,d,1) is nonempty if and only if

2 < n < d + 1 .
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Similarly, let us write K(n, d) = min{k : G(n, d, k)	 O}.

Then if d = 1 we have n – 1 < K(n, 1) < k < n – 1, that is K(n, 1) n – I and G(n,1,k)

is nonempty if and only if k = n – 1.

If n = 1 then K(1, d) = 0 and G(1, d, k) is nonempty if and only if k = 0.

If n > 1 and d > 1 then

logd (n(d – 1) + 1) – 1 < K(n, d) < k < n 1.

Lastly, writing D(n, k) = min{ d : G(n, d, k) 0} we have (given n and k, k < n – 1)

d* < D(n, k) < d < oo

where d* is the minimum d for which n < (dk-1--1 – 1)/(d – 1) holds.

If n = 1 then k = 0 and D(1,0) = 0 and G(1, d, 0) is nonempty for any d < oo.

If k = 1 then d* = n – 1. Since G(n,n – 1,1) is nonempty for all n (G E G(n,n – 1,1)

is a complete symmetric digraph on n vertices) we have D(n,1) = n – 1 and G(n, d, 1) is

nonempty if and only if d> n – 1.

Note that N(d, k) is defined for any d > 0 and k > 0 as well as in the case d = 0 and

k= 0.

K (n, d) is defined for any d > 0 and n > 0 as well as in the case d = 0 and n 1.

On the other hand, D(n, k) is not defined whenever for given n and k, G(n, d, k) is empty

for any d. That is, for D(n, k) to be defined we must have 0 < k < n – 1, or n 1 and

k= 0.

Let us call the problems of finding N(d,k), K(n,d) and D(n,k) the N(d,k) problem, the

K(n,d) problem and the D(n,k) problem respectively.

18



The following theorem, due to Fiol, Alegre and Yebra (1983) will be used in further dis-

cussion.

Theorem 1.

If d > 1 then G((d + ].)dk',d,k) is nonempty.

Proof.

If k = 1 then G(d + 1, d, 1) is nonempty.

Assume k > 2.

Let G be a digraph with n = (d+ ].)dk' vertices (d > 1), labelled 0,1,2,... n –1.

For each vertex i let there be arcs from i to the vertices

(–di t) mod n, t	 1,2,	 d.

We will show that G is a diregular digraph of degree d and diameter k.

Firstly, for every i E {0, 1,	 , n – 1} there is an arc from i to vertices

–di + 1, –di + 2, ... , –di + d (mod n).

As n > d, every vertex i goes to d distinct vertices of G so that G is a diregular

digraph of degree d.

Secondly, to show that the diameter of G is k, we will show that there is a directed

path of length k – 1 or k from each vertex of G to all other vertices of G.

From vertex i we arrive successively at the following vertices (mod n)

–di + 1, –di + 2, ... , –di + d	 in 1 step

d2 1– 0, d2 – 1,	 , d2 i – (d2 – 1)	 in 2 steps

–d3 i + 1, –d3 i + 2, ... , –d3 i + d3	in 3 steps

d4 1– 0, d4 1 – 1,	 , d4 1 – (d4 – 1)	 in 4 steps
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and so on.

If k is even then we reach in k - 1 or k steps the vertices (mod n)

+1,	 +	 -dk-11 + dk-1 in k - 1 steps

dk i - 0, dk i - 1,	 , dk i - (dk - 1)	 in k steps .

All the numbers in each of the above rows are different. For numbers in different

rows we have

(-dk-1i t) - (dk i - t') = -dk - 1 (d + 1)1+ t + t' (mod n)

and 0 < t t' < dk-1(d + 1) _ n.

Therefore they are all different and since we have dk - 1 + dk = n vertices, we have

reached all vertices in at most k steps.

If k is odd then we reach in k - 1 or k steps the vertices (mod n)

dk-li - dk-li _	 dk-li (dk-1 _ 1) in k - 1 steps

	

dk i + 1, -dk i + 2, ... , -dki dk
	

in k steps.

All these vertices are different and there are dk-1 + dk = n vertices in G, so again

we have reached all vertices in at most k steps.

Thus in either case, the diameter of G is at most k.

	Since n = (d 1)dk-1 > 1 d d2 +	 + dk - 1 for d > 1 it follows that the

diameter of G is more than k - 1, that is, the diameter of G is k 0

Corollary.

If k > 0 then N(d,k) > (d 1)dk-1.

Note that the digraphs used in the proof of Theorem 1 always contain ( d+2 1 ) digons. These

are the solutions of the transition scheme
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i -* -di + t i	d2i dt i + t 2 i (mod n).

For example, if t 1 = 1, t 2 = d we obtain the solutions

i = mdk , m = 0,1, 2,	 ,d.

Note also that the construction of G E G((d +1)dk-1,d,k) used in the proof of Theorem

1 is not the only one possible. Instead of joining vertex i to vertices

-di ± t (mod n), t = 1, 2, ... , d

we could have equally well used

-di - t (mod n), t = 1, 2, ... ,d

and thus obtained a digraph G* E G((d +1)dk-1,d,k). However, it is easy to show that

the digraphs G and G* are isomorphic.

Next we will show in Theorem 2 that K(N(d,k),d) = k and D(N(d,k),k) = d. This

means that if we have the maximum possible number of vertices N in a digraph of degree

d and diameter k then d is the minimum possible degree of a digraph with N vertices and

diameter k; and k is the minimum possible diameter of a digraph with N vertices and

degree d.

To prove Theorem 2 we will need the following two Lemmas.

• Lemma 1.

If d 1 < d2 then N(d i ,k) < N(d2 ,k) for all k > 0.

Proof.

Suppose d 1 < d2.

If k -= 1 then N(d i ,k) = d 1 +1 < d2 + 1 = N(d2,k).

If k > 1 then using Theorem 1,
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N	 k) < 1+ d 1 + di + ... + c/11 = (d11 +1 - 1)1 (d 1 - 1)

< (d2 +1)4-1 < N(d2,k).

Hence for any k > 0 , N(d i ,k) < N(d2 ,k) whenever d 1 < d2

• Lemma 2.

If k i < k2 then N(d,k i ) < N(d,k2 ) for all d > 0.

Proof.

Suppose k 1 < k2-

If d = 1 then N(1,k i ) = k 1 + 1 < k2 4- 1 = N(1,k2).

If d > 1 then using Theorem 1,

N(d,k i ) < (dk i + ' -1)1(d - 1 ) < (d + 1)dk2 - 1 < N(d,k2).

Hence for any d> 0 , N(d,k i ) < N(d,k2 ) whenever k 1 < k2

• Theorem 2.

If k > 0 then K(N(d,k),d) = k and D(N(d,k),k) = d.

Proof.

Let N(d,k) = n.

Then K(n,d) < k since there exists a digraph G E G(n,d,k).

Now, if K(n, d) k 1 < k then there exists a digraph G E G(n, d, k1).

Hence N(d,k i ) > n.

Then by Lemma 2 we have k 1 < k implies N(d,k i ) < N(d,k)

i.e., n < N(d,k i ) < N(d,k) = n

which is a contradiction.

Thus K(n,d) = k.
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Similarly, because G E G(n, d, k) exists we have D(n, k) < d.

If D(n, k) = d 1 < d then G E G(n, d 1 , k) exists. Then also N(di ,k) > n and by

Lemma 1, N(d i ,k) < N(d,k).

Thus we have n < N (d i , k) < N (d, k) = n which is a contradiction.

Hence D(n,k) = d 0

The next lemma shows that K(n,d) is monotonic in d.

• Lemma 3.

If d 1 < d2 then K(n,di ) > K(n,d2).

Proof.

Suppose d 1 < d2.

Let K(n,d i ) = k 1 , K(n,d2) = k2.

Then there exist a digraph C 1 E G(n,di ,k i ) and a digraph G2 E G(n,d2,k2)•

Suppose k 1 < k2.

Then we can construct G3 E G(n, d2 , k 1 ) from G 1 simply by inserting d2 — d1

loops at each vertex of G1.

Thus K(n,d2 ) < k 1 < k2 = K(n,d2 ) which is a contradiction.

Hence if d 1 < d2 then K (n, d i ) > K(n,d2) 0

To summarize, Lemmas 1,2 and 3 give the following relationships.

(a) d 1 < d2 implies N(d i ,k) < N(d2,k)

(b) k 1 < k2 implies N(d,k i ) < N(d,k2)

(c) d 1 < d 2 implies K(n, d i ) > K(n,d2)

On the other hand, we do not know whether or not any of the following implications hold.
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(i) k 1 < k2 implies D(n,k i ) > D(n,k2 ) (k 1 , k2 > n — 1)

n i < n2 implies K(n i ,d) < K(n2,d)

(iii) n i < n2 implies D(n i ,k) < D(n2 ,k) (n i , n2 < k + 1)

Thus it can be seen that the three problems are related but (as far as we know at present)

not equivalent.

Of course, if (i) were true then the solution of the K(n, d) problem would give the solution

of the D(n, k) problem.

If (ii) were true then the solution of the N(d, k) problem would give the solution of the

K(n,d) problem.

Finally, if (iii) were true then the solution of the N(d, k) problem would give the solution

of the D(n, k) problem.

As the situation is at present, we can deduce the following from Lemmas 1, 2 and 3.

(A) The solution of the K(n, d) problem would give the solution of the N(d, k) problem.

(B) The solution of the D(n,k) problem would give the solutions of both the N(d, k) and

the K(n, d) problems.

Thus it would be best to concentrate on the D(n,k) problem. Unfortunately, the D(n,k)

problem is the hardest one of the three problems to handle.
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CHAPTER 3. The N(d,k) problem.

The problem of finding the maximum possible number of vertices in a diregular digraph

of degree d and diameter k was the first of the three problems to be studied (Bridges and

Toueg, 1980). It is often called the (d, k) problem for directed graphs.

Bridges and Toueg introduced the notion of (d, k) Directed Moore Graphs, (d, k) DMG

for short. A (d, k) DMG is a diregular digraph G E G(Nm , d, k) which achieves the Moore

bound N,,,, = 1 d + d2 + . . . + dk . The problem of finding all the (d, k) DMGs is called the

Moore graph problem for directed graphs. The Moore graph problem for directed graphs

has been completely solved.

For k = 1, (d,1) DMGs are complete digraphs on d + 1 vertices.

For d = 1, (1, k) DMGs are circuits of k + 1 vertices.

For d > 1 and k > 1 Bridges and Toueg showed that there are no DMGs.

Theorem 3.

If d > 1 and k > 1 then N (d, k) � 1 + d + d2 + . . . + dk

Proof.

Suppose n N (d , k) = 1 + d + d2 + . . . + dk

Then u A Lj A 2 ...0 A k E

and also – A -h A 2 + + Ak = E

where denotes the ordinary matrix addition.

Obviously, the eigenvalues of E are n (simple) and 0 (n – 1 times).

Thus (I A + . . . + A k )Y = nY

and (I + A	 + Ak )X =0X
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for some eigenvectors X and Y.

Thus the eigenvalues of A are d and some of the roots of

1 + A + A 2 +	 Ak = 0

i.e., Ak+1 — 1 = 0 (A � 1)

i.e., the (k + 1)" roots of unity.

Now Trace A3 = 0, j = 1,2, ... , k and so for j = 1,2, ... , k we have

d3 +
i=1

where A l . A2,	 A n _ i are the eigenvalues of A. That is,

n-1
>2, = d .

i=1

Now
n-1	 n-1	 n-1

— d =	 Ai =	 Ai = >2, = dk
i=1	 i=1

since A z =

Thus —d= —dk . This is true only if d = 1 or k = 1.0

Combining Theorem 1 and Theorem 3 we have

Corollary.

If d > 1 then N(d, 2) = d + d2 and for k > 2 N(d, k) < d + d2 + . . . + dk

Interestingly, if n = 1 + d + d2 + . . . + dk , k > 1, d > 1 and if k does not divide do then

we can prove that G(n, d, k) is empty in a very simple way.

• Theorem 3*.

If d > 1 and k > 1 and k does not divide d(1 + d + d 2 + .. + dk ) then

G(1 + d d2 + . . . + dk , d, k) is empty.
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Proof.

Suppose G E G(1 + d d2 + . . . + dk , d, k) , d > 1, k > 1.

Then every vertex of G reaches itself in k + 1 steps in d distinct ways.

Thus a vertex v of G lies on d circuits each consisting of k distinct vertices.

These d circuits have only the vertex v in common.

Thus G is composed of some x circuits, each consisting of k vertices.

Now, each vertex of G occurs exactly d times in these x circuits and so we have

k x = d(1 + d d2 + . . . + dk)

If k does not divide d(1 + d + d 2 + . . . d k ) then such a digraph G cannot exist 0

Let us now summarize our present state of knowledge of the N (d, k) problem.

We have

N(1, k) = k + 1

N (d , 1) = d + 1

N (d , 2) = d + d2

(d 1)dk-1 < N (d, k) < d + d 2 + . . . + dk , d > 1, k > 2.

In the remainder of this chapter we will turn our attention to the case when d = 2.

For d = 2 we can prove G(2k+1 — 1, 2, k) is empty (Theorem 3 for d = 2) in a more direct

way as follows.

• Theorem 3'.

If k > 1 then G(2k+1 — 1,2, k) is empty.
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3•Z' '_2 5214 3 2" 5.2,k-'41	 4L2 2k44-1

• •	 • • •	 •

Proof.

Suppose k > 1 and G E G(2 k ' - 1.2, k)

Denoting the vertices of G by 1,2, ... 2 k - 1 -1 we can partly draw the digraph G

as follows.

\4
A A A ,A,

2
k-1	 3.2k-1

	
2k-1

Now, to reach every other vertex from vertex 2 in at most k steps there must be

arcs from the vertices 2 k , 2 k	,3 x 2k-1 - 1 to the vertices

1,3,6,7,12,13,14,15,...,3 x 2 k-1 ,..	 -1

Similarly, to reach every other vertex from vertex 3 in at most k steps there must

be arcs from the vertices 3 x 2 k-1 , 3 x 2k-1 +	 - 1 to the vertices

1,2,4,5,8,9,10,11,• • • ,2 k , 2 k	1,...,3 x 2k-1 - 1 .

Two arcs go to every vertex and two arcs come from every vertex.

Let x	 2 (x � 1) and let y be the end point of the second arc from x. Then
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y	 - 1,...,3 2k-i - 1}. But then we reach the

vertex y from x in two different ways in k steps or less. Then there must be a

vertex z E {1,3,6, 7,12,13.14,15,....3 x 2k-1,...,2k-1 - 1} which cannot be

reached from x in k steps or less and so the diameter of G is not k.

Hence G(2k41 - 1,2, k) is empty ‹>

Corollary.

If k > 1 then N(2, k) <2k-1 -2

Now, G(6,2,2) is nonempty. For example, the following digraph belongs to G(6.2.2).

Since by Corollary to Theorem 3, N(2,2) < 2 3 - 2 = 6, it follows that N(2,2) = 6.

However, if k > 2 then we can prove that G (2 k - 2,2, k) is empty.

• Theorem 4.

If k > 2 then G(2 k+1 - 2,2, k) is empty.

Proof.

Suppose k > 2 and G E G(2k ' 1 - 2,2,k)

Denoting the vertices of G by 1,2, ... , n we can partly draw G as follows.
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/\AA AA

2
k-i . .	 .

where x i is a duplicate of one of the nodes 1,2, ... 2k±1 — 2. We shall call such a

node the repeat from 1, or just the repeat when the node from which it is a repeat

is understood.

It is obvious that a repeat from the vertex v always occurs k steps from vertex v.

2k + 1, ... ,3.2k-1 —One of the elements 2 k ,	 1 must go to 1 so that we can reach

1 from 2, say 2 k	1.

Denote L = {2k ± 1.... , 3.2k-1 — 1} and R = {3.2k-1,	 , k2	 — 2}.

Thus we have
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2
k-.1

3e l2 321-21 32 -/ 5 .2 - 1 • 2 	 xt

.	 .	 . 3 •42.k4,. / 	 2k.1

Then we can reach from 2 k through 1 the vertices 1,2,3,...,2k — 1 in k or less

steps.

The number of elements in L is 2k- — 1 and the number of elements in R is also

2 k - I	 1 .

Now, no element of R can go to an element of R. For suppose r 1 , r2 E R and

r i	 r 2 . Then we could not reach r2 from 2 in k or less steps.

Further, at most one element of L 2 k , say / 0 can go to 1 E L.

This can only happen if
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(i) x i E {2k-1	 3  91 2 — 1} so that x i — / 1 and x i -- 12,

1 1 ,1 2 E Lu2k . Then for some element lo E L J2 k we have l 0	1 1 or 1 0 	 12;

or

(ii) x i = 10.

We will compare the number of elements of L, say N1 and the number of elements

of R, say Nr that can be reached from vertex 2 k in k or less steps.

If G E G(2 1` - ' - 2,2,k) exists then

N1 - N, = 2k - 2 and ./V, = Nt.

However,we will show that if k > 2 then N1 � Nr for all the possible cases; this

contradiction shows that G(2 k - 1 - 2,2,k) is empty.

Case 1. If x E L then 2 k = /0 and there cannot be any more elements of L

that go to an element of L.

In this case we can only have

2k

A A
AA AA	 •

where either all r E R and all I E L u x 2k or all r E R U x 2k and all I E L,

where x 2 k is the repeat from 2k.
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(a) all r E R and all 1 E L U 1 2 k . Then k is obviously odd.

Then
(k-1)

= 1-4- 4 + ...4 (k-1) / 2 -	 E	 _1
=0

k-1)/2

N, = 2k - 2 - = 2k -	 4' - 1

(b) all / E L and all r ERU 1 2 k . Then k is obviously even.

Then
k-2)/2

4'
1=0

k-2)/2

Nr = 2 k - 2 - = 2k -	 - 2
i=0

If k > 2 then in both these cases Ni N,..

Case 2. If x E R and either 10 does not exist or 1 0 occurs at k th step from

2 k . Then

JA,

'A A nn
where either all r E R and alllELUx2k; or all rERU x2k and all / E L. It is

easy to see that this is the same as case 1 if we interchange NI and N., . Thus in

this case also NI N,. for k > 2.
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Case 3. If x E R and 1 0 occurs at pth step , p < k — 1. Then obviously p

must be even.

The following diagram illustrates this case.

/\
AA AA

(a) all r E R and k odd.

Then
(k-3)/ 2	 (k-p-1)/2	 (k-p-3)/2

=-- 2
	 E 4 — 2	 — 1

i=0	 i=0	 i=0

(k-3)/2	 (k-p-1)/2

=2	 V	 4i-4-	 — 1
i=(k-p-1)/2	 i=0

-3)/2	 ( -p-1)/2

N, = 2 k — 2 —	 = 2 k — 2
	

4 —	 4: -1

	k-p-1)/2	 i=0

(b) all r E R and k even.

Then
(k-2)/2	 (k--p-2)	 (k-p--2)/2

= 2	 + E — 2 E — 1
i=o	 i=o	 i=o
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(k-2)/2	 (k-p-2)/2
= 2	 42+	 42-1

	

i= k-p)/2	 i=0

	

(k-2)/2	 (k-p-2)/2

	

Nr = 2 k -2— N1 = 2k -2	 — y 4 2 —1

	

i= (k-p)/2
	 i=0

(c) all 1 E L and k odd.

Then

	

(k-3)/2	 (k-p-1)/2
N1 = 2
	

+ 1: 42

	

i=(k-p-1)	 i—o

(k-3)/2	 (k-p-1)/2

	

/Vr = 2k — 2 — = 2 k — 2
	

4 2 — Z 42-2
i=(k-p-1)/ 2	 i=o

(d) all 1 E L and k even.

Then

	

(k-2)/2	 (k-p-2)/2
N1 = 2	 E 42

	=(k-p)/2	 2=0

(k-2)/2	 (k-p-2)/2

	

Nr = 2 k -2— Nl = 2 k -2	 —	 42-2

	

z=(k-p)/2	 i=0

If k = 3 and p = 2 then in case (c)	 = Nr;

in all the other cases and for all the possible values of k and p, Nl Nr.

Thus it remains to show that G E G(14.2,3) does not exist in case (c).

If G did exist then we could partly draw it as follows.
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S

2
	 'At	 its	 ,c2.	 4	 5	 6

A A A
8	 I to it 12 5 14 Xi

where / 0 ,/ i ./ 2 E L = {9,10,11} and all r, E R U xs. where xs is the repeat from

8.

Since 10 -74 11 and 11 -714 10 (else we cannot reach all from 5), one of {1 0 .1 2 } must

be 9.

(i) If /0	9. Take l l = 10, / 2 = 11. Then 7	 (9 or 5) (to reach 11 from 3). If

7 — 9 then we have case 1. Hence take 7 	 5 i.e., x1 = 5. To reach 9 from

3. we need (12,13 or 14) -4 9. But 14 -74 9 so 12 —* 9 (say). That is. r 0 = 12.

Then we have

3	 3

VVVV

	

2	 7

5

Thus we need to reach vertex 10 from vertices 9,11,13 and 14. To also reach

2 and 8 from 3 we have either 13	 2 and 14	 8, or 13 —> 8 and 14 	 2.

In either case we caLnot have 13 —+ 4 or 14	 4 and so we cannot reach 4
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from 3.

(ii) If 1 2 = 9. Take / 0 = 10. / 1 = 11. Then x 1 = 4 (to reach 9 from 3) and we

have

where placing (12) is explained below.

To reach 9 from 6, we must have 12	 10 or 13 — 10. Take 12 -4 10. i.e.,

r0 = 12. To reach 9 from 11, we need 11 -4 7 (as 11 	 2,5 - else cannot

reach 2 or 5 from 3). But then we cannot reach 10 from 7.

Hence for all k > 2, G(2k± ' - 2,2,k) is empty <>

Corollary.

If k > 2 then N(2.10 < 2 k+ 1 -3

Thus for k = 3 we have 12 < N(2,3) < 2 4 - 3 = 13.

In order to show that N(2,3) = 12 , we will prove that G(13, 2, 3) is empty. To do this we

will use the following lemmas.
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• Lemma 4.

If G E G(13, 2, 3) then it does not contain the following subdigraphs.

• 2 i• •2 /2 \ 3

Proof.

Obvious as in each of the above cases we cannot reach all the other 12 vertices

from vertex 1 0

• Lemma 5.

If G E G(13, 2.3) then it does not contain the following subdigraph.

Proof.

See Appendix 0

• Theorem 5.

G(13,2,3) is empty.

Proof.

Suppose G E G(13, 2, 3) .

Labelling the vertices of G by 1,2,...,13, G must contain one of the following

subdigraphs.
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A 
A A AA A3 A A
AAA'	 A4;\ AN,AI 9 to It 12 13	 8	 lo	 f2	 13	 8 1 so	 it IL 13

In any case, the vertex 1 must reach itself in 3 or 4 steps in at least two different

ways (once through vertex 2 and once through vertex 3 so that vertices 2 and 3

reach 1 in at most 3 steps).

On the other hand, suppose x 	 1 and y	 1.

Then obviously x	 y and the vertex 1 must reach itself in 3 or 4 steps in at

least two different ways (once through vertex x and once through vertex y so

that vertex 1 reaches vertices x and y in at most 3 steps).

We will show that 1 reaches itself in 3 or 4 steps in exactly two different ways.

Suppose the contrary. Then one of the following cases must occur.
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‘9	 3	 6	 3

g IN	 t\
1- • -"• "•41■• 4116■•••	 8 •••■•••••■•■•••••••• •

E4..411---• • 2..-.40P• • 5	 _	 • 4

6

4..	 • de?. 5"

3
(k)

7

3
(1)

Cases (b),(c),(d),(e),(f),(k),(1),(m) are obviously impossible as we cannot reach

all the other 12 vertices from vertex 1.

Case (a) is a subcase of case (g).
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2

Case (g). We have

3 V
	 2	 3

VVY

4#7\5 7\7
AA A A

8	 9	 g

To reach all from 1, we need to reach vertices 10,11,12,13 through the vertices 4,5,6,7.

That is, (4	 10 or 5	 10 or 6 -4 10 or 7 — 10) and (4 — 11 or 5 --4 11 or 6	 11 or

7 --4 11) and (4	 12 or 5	 12 or 6 --4 12 or 7 — 12) and (4 -4 13 or 5 -4 13 or 6 -4 13

or 7	 13). This will be written as {4,5,6,7}	 { 10,11,12,13} for brevity.

(i) Let 4 -4 10,5 -4 11,5 --4 12 and (6 or 7) -4 13.

To reach 1 from 5, we need (11 or 12) - 4 9, say 11-+9; to reach 8 from 5, we need (11

or 12)	 7 (as 11,12 -74 4).

Then (10 and 13) -4 (4 and 6) (to reach 1 from all).

Now 10 744 so 10-+6 and 13-44; and 12 7411 so 12-47.

But now we cannot reach 3 from 2 as none of 8,10,11,12 can go to 3.

(ii) Let 6-410, 7-411, 5-412 and (4 or 5) 	 13.

-If 5-413 then to reach 1 from 5, we must have (12 or 13) -4 9, say 12-49.

To reach 9 from 7, we need 11--12 (as 8 74 6,8	 12,11 74 6).

Now 10 746, 10 747 so 10-4 (to reach 1 from 10).
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2

V V
3	 5

2

Since 9	 .	 10742 we have 11-2 (to reach 2 from 3).

To reach 8 from 5, we need (12 or 13) — 7.

Now 1274 7 (else cannot reach 8 from 9) so 13-47.

To reach 2 from 5, we must have 13-41 (since 12	 11).

But then we cannot reach all from 13.

-If 4-43 then to reach 8 from 6. we need (9 or 10) — 4. Now 9 744 so 10-*4.

To reach 2 from 3, we must have 11-42 (as 8.9.10 	 2).

To reach 5 from 3, we need 10-45 (since 8,9.10 	 5).

To reach 5 from 4. we need 13-}10 (as 8 74 10).

To reach 10 from 7, we must have 11-*13 (as 8 74 {6.13}, and 11 74 6).

But now we cannot reach 13 from 6 as 9411.

Case (h). We have

3\

A A4A
8	 12	 13
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where placing (11) is explained below and where we have labelled 9,10.11.12.13 arbitrarily.

To reach all from 3. we need {11,12,13}	 {4,5,8.9.10}.

To reach all from 2, we need {8,9,10} 4-4 {3,6,11,12,13}.

To reach 1 from 6, we must have 11 or 12	 8. say 11.-48.

To reach 1 from all, we need {9. 10} —4 {3,11} and {12,13} —+ {4, 5}

To reach 7 from 4. we must have 9--3 (as 8-7/-4 (3 or 5): 9-745) and so also 10-41

To reach 7 from 6. we must have (11 or 12) 	 5.

Now 11 745 (else we cannot reach 1 from all) so 12-5 and then also 13-4.

To reach 12 from 7. we need 13-4 10 and 10-42.

But then we cannot reach 7 from 13.

Case (i). We have

2	 3

VVVV
6	 fr,))\/.

8	 7

A A A ,A„
8	 'I	 to	 g	 12

where we have labelled vertices 9,10,11,12,13 arbitrarily.

To reach 1 from 5, we need (10 or 11) 	 7, say 10--+7.

Now 9-74 10 (else cannot reach 10 from 3) and 9744 so 9—+(6 or 3) (to reach 1 from 9).
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Similarly, 11 74 10, 11-4 4 so 11-4(6 or 3). Then {12. 13) — {4, 10).

Then 13	 12 (else we cannot reach 12 from 2), and 13 74 {10,11} and so we cannot reach

all from 7.

If 12- *4 and 13-40 then we cannot reach 8 from 7.

Case (j). We have

1	 2	 3yv vv
6	 (10)

1/4///+	 Nft/
7614.9

Air-1/4

A A, A A
7 9 10	 8 a 13

where we have labelled the vertices 9,10,11,12,13 arbitrarily.

To reach 1 from 5, we need (10 or 11) -4 8, say 10--48.

To reach 1 from all, we must have {9,11,12,13} -+ {3,4,6,10}.

To reach all from 3. we must have {8 , 12, 13} -4 {4,5,9,10.11}.

Hence {12,13) -+ {4,10} and since 10-+8, 127410 and so 12-44, and 13-10.

To reach 8 from 4, we need 9-46 (as 7746).

Then also 11-+3 and 13-11 (to reach 7 from 13 and since 9,10 74 11 - else we cannot

reach 11 from 3).

But then we cannot reach 9 from 7 as 10 749 and 11749.
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Hence 1 (and every other vertex of G) reaches itself in at most 4 steps in exactly two

different ways, i.e.. any vertex lies exactly on either

(a) two 4-circuits

or

(b) one 4-circuit and one 3-circuit

Or

two 3-circuits;

i.e., one of the following three cases must occur

Hence also any two 3- or 4-circuits have at most one point in common. Now, there are

2 x 13 = 26 arcs in G. All these arcs lie on the 3- or 4-circuits. If there are x 3-circuits and

y 4-circuits in G then we have

3x 4y = 26

which gives

(i) x = 6 and y = 2

or

(ii) = 2 and y = 5.

Case (i).

For some vertex, say vertex 1 we have
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A AA

We will show that it is not possible to have such a subdigraph in G(13,2,3).

We have

To reach 1 from 5, we need (9 or 10)	 7 (as 9,10 --/4 4), say 9-7.

To reach 1 from 6, we must have (11 or 12) 	 4, say 11-44.

Now 8 74(2 or 3) so 8—(9 or 11) (to reach 1 from 8).

Since 8-/-49 (else cannot reach 9 from 3) we have 8—q1.

To reach 4 from 5, we must have 10,2 (as 9742 - else we cannot reach all from 9).

Now 9 7410, 9748 (else cannot reach 8 from 3) so 9-46 (to reach 4 from 9).

Then 13-9 (to reach 1 from 13 and since 13 743) and so also 123.
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Now 8	 12 so 10	 12 (to reach 12 from 2).

To reach 8 from 5 we need 12 ---- 8.

But now we cannot reach 8 from all.

Case (ii).

Since by (i) G cannot contain

4	 •	 • 5

3
there must be in G the following subdigraph

f

5 

6 1/3
• ---■• • 	 • --ob. a

b̂ i ^

Certainly, the vertices 1,2,3,4,5,6 must all be distinct since the circuits (1,3,5) and (1,2,4,6)

already have one point in common.

It is obvious that also a and c must be distinct from 1,2,3,4.5,6 and from each other, say

a = 7. c = 8.

It is also obvious that b and d must be distinct from 1,2,3.4,5,6.7.8 and from each other,

say b = 9. d = 10.

Now, e obviously cannot be 1,2,3,5,6,7,8,9.10.

Suppose e = 4.
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Then we have

/7/\ 5,■\)
A A
t	 8	 4-

If	 x (x � 4) then x 1,2,3,4,5,6,7,8.9,10, say x = 11.

Now 7 7410 so 11-40 (to reach 10 from 1) and 11-412, 7-43 (say).

To reach 10 from 3, we need (8 or 13) 	 10; and 8 7410 so 13-40.

To reach 11 from 3. we must have 8-41 (as 137411).

But 6 cannot go to (9 and 13): 9 cannot go to (6 and 13); and 13 cannot go to (6 and 9)

and so we cannot reach all from 5.

Thus e � 4, say e 11.

By symmetry, if e cannot be 1.2.3,4.5,6,7,8,9,10 then also f cannot be 1,2,3,4,5,6, 7,8,9,10.

It remains to show that f

Suppose f = 11.
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Then we have # • 7\07

\r/ 	 6

otA
A.(_:L2) 5/■
AAs 1Ai

7\8
A A Au A
2 3 11	 9 10

If 2—* x (x 7--6-4) then x r 1,2.3,4,5,6,7,8,9,10,11 so x = 12 (say).

To reach 3 from 2, we must have (4 or 12) 	 9.

To reach 5 from 2, we need (4 or 12) —10.

-If 4—*9 and 12-40 then to reach 11 from 2, we need 12—q7 or 8) so 7-43 (to reach 13

from 1).

To reach 1 from 7, we must have 13—+6.

To reach 11 from 2 we need (6 or 9),(7 or 8).

To reach 4 from 3 we must have (8 or 13) 	 4.

But 13 ./-4 4 and 8	 4.

-If 4-40 and 12---9 then to reach 11 from 2, we must have 12 7 or 8) and so 7-43

(to reach 13 from 1).

To reach 1 from 7, we need 13—,6 .

But now we cannot reach 5 from 13 (since 13 -74 4).

-If 12	 9 and 12	 10 then we cannot reach 5 from all.
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Thus f = 12 (say) and all the 12 vertices are distinct. We will show that the second

3-circuit in G must contain the 13 th point of G.
We have

To construct the second 3-circuit using only vertices 1, 2. 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 we

have the following possibilities.

(a) 4 (b) 4-41-412---+ 4 (c)	 6

(d) 6--41--+12-- 6 (e) 6---*12—*11--* 6 (f) 2-41-412---*2

(g) 2-42-411—) 2

Case (a). We have1	 I	 2

1\1(	 3 y v
o/

6- %°///'

5

6
1/\
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3
I/\■I/\

A A I.\
\12

If 2— x then x =1. 2. 3. 4. 5. 6. 7, 8, 9. 10. 11, 12 so x = 13.

To reach 9 from 1. we need 13— * 9 (as 7 74 9).

To reach 10 from 1, we need 13-10 (as 77410).

Now 7 748 and 8 .-/-7 so to reach 1 from 7 and 8, we need 7-4 x.	 x and x -46.

But no such x can exist.

Case (b). We hay,. ik

03)

5

Since 7i410; 7746 (else we cannot reach all from 3) we need 7-4 x -46 (to reach 1 from 7)

and so x= 13.

To reach 1 from 8, we must have 8-43 (as 87/410).

But then we cannot reach 1 from 11.
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Case (c). We have

1i	
A /N

6	 4-	 t12)

A 	 3 \ A A A 1A‘8

F	 L g

2--4 x(x 74 4) then x	
1.2,3,4,5,6,7,8,9.10,11 so x = 12 or z = 13.

If 

y	 11) then y -74 1,2,3,4,5,6,7,8,9.10,11 so y = 12 or y = 13.
Ify ( 

Now, to reach all from 3, we must have 7-(4,10 or 13).

Thus y = 13 and x = 12.

Then to reach all from 3, we need 13-4 and 13—+10.

cannot reach 13 from 5.

Case (d). We have	 Y	 2 g#
i	 9	 12

\,fr/

A A	 fo cA A A i\

But then since 12-1-13 we
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To reach 1 from 7, we must have 7—A (as 74410).

To reach 1 from 13, we need 13---* 10.

But then we cannot reach 10 from 3.

Case (e). We have
I	 7	 2	 7	 12

y/1

A A A fi
To reach 1 from 8, we need 8-01 (as 8 7410); then also 13-40 to reach 1 from 13.

To reach 10 and 13 from 3, we must have 7-43.

But then we cannot reach 12 from 1 as 2 746 and 2748.

Case (f). We have I 12	 2

y SO

.7\k,
AAAA
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To reach I from 11. we need 9	 6.

To reach 1 from 8. we need 8,(10 or 4 or 9).

Now 8-7L 10, 8	 9 (else we cannot reach 5 from all) and 8	 4 (else we cannot reach all

from 5).

Case (g). We have

7\ (7\ .7\2	 #/\
A 12 9 2	 6 ,A ,A„, ,A, A„

To reach 1 from 11. we need 9,6.

To reach all from 1, we need {4,7} 	 {9,13}. Now 7 749 so 7,13 and 4-9.

But then we cannot reach 1 from 7.

Hence the second 3-circuit must contain the 13 th point of G.

But then we still need two more 4-circuits and since we can use the 13 th vertex only once

more, and since any two 3 or 4-circuits can have at most one point in common, this is not

possible.

Hence G(13,2,3) is empty 0
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Corollary.

N(2,3) = 12.

Next, for d = 2. k = 4 we have N(2,4) > 24. However. Alegre (1983) constructed a digraph

G E G(25.2,4) as follows.

Hence N(2,4) > 25.

As shown later (Theorem 8) the existence of G E	 k) guarantees the existence of

E G(nd,d, k 1). thus we have the following table.
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k N(2, k)

0 1

1 3

2 6

3 12

4 25 < N(2,4) < 29

5 50 < N(2,5) < 61

6 100 < N(2,6) < 125

7 200 < N(2,7) < 253

8 400 < N(2,8) < 509

9 800 < N(2,9) < 1021

10 1600 < N(2,10) < 2045

t 2t-4 x 25 < N(2, t) < 2t+1 - 3
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