A Transdisciplinary Approach to Integrated Resource Management: A Pragmatic Application of Ecological Economics

John Andrew James Wolfenden

B.Ec. Hons UNE

Centre for Water Policy Research

University of New England

Australia

A thesis submitted for the degree of

Doctor of Philosophy of the University of New England

March 1999

Dedication

I wish to dedicate this thesis to the two greatest loves in my life my Lord, Jesus Christ and my family Verity, Adrian, Katrina, Blair and Callum.

I trust their experience of the PhD 'journey' has not been too onerous I thank them for standing with me throughout.

Abstract

This thesis reports how the best practice for dealing with complex environmental management problems has been advanced. This has resulted from the development of a series of tools that facilitate the use of participative decision making as an integrated part of the overall public decision making process. The methodological basis for these tools has been developed based on a synthesis of recent scholarship in the fields of ecological economics, systems theory, learning organisations, and the 'new sciences' of chaos and complexity. The case studies for this work were all related to the integrated management of catchments, and thus the findings are of direct relevance to practitioners in this area. As part of the research, some epistemological aspects of transdisciplinary research have been explored, and a number of indicators of transdisciplinarity identified. Following from this, a transdisciplinary methodology, Participative Environmental Management (PEM), has been articulated. PEM is a stakeholder driven, participative learning approach to complex anthropo-environmental problems such as are encountered within the general area of integrated resource management. PEM provides a structured approach so that effective integration across the social, economic and ecological dimensions of environmental problems can better be achieved than has been the case previously. As a fundamentally transdisciplinary approach, PEM has the potential to influence future theoretical and practical developments within the transdiscipline of ecological economics.

Certification

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree of qualification.

I certify that any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

John Andrew James Wolfenden

March 1999

Acknowledgments

I wish to acknowledge the support and assistance of the following organisations and people.

My principal supervisor, Dr Roderic A. Gill, has given a huge amount of help to me during this research, from the pre-funding stage through to completion. From the start, he has had to contend with a wilful student who goes about things in his own way – not an easy task! My other supervisor, Dr John Pigram, "saved the day" by providing a new institutional home for my studies at the Centre for Water Policy Research, when my former department was no longer able to provide appropriate facilities. His willingness to support this research, his encouragement based on years of experience, his keen eye for detail and his incomparable technical editing skills have all been of great assistance during the course of my studies.

The research project was supported with funding from the Australian Research Council through a scholarship awarded under the Australian Postgraduate Award (Industry) scheme. The industry partner for the research was the New South Wales Environmental Protection Authority. Each of these organisations provided funding to support me during the study, while the NSW EPA also provided in-kind support during the course of the work. In addition to Dr Roderic Gill, I wish to acknowledge the assistance of Dr Clive Hamilton of the Australia Institute, and Dr Gül Izmir of the NSW EPA in the preparation of a successful application for the scholarship award. I wish to thank Carolyn Davies of the NSW EPA for her assistance in helping me find a new case study, when my original case study within the beef cattle feedlot industry fell through.

My main case study work was undertaken with the Policy, Planning and Process subcommittee of the Throsby Creek Catchment Management Committee. I extend thanks to Dr Mike Mouritz of Newcastle City Council who facilitated my involvement with that committee. I also thank other members of the sub-committee for their assistance, particularly Ian Furner of the Hunter Valley Catchment Management Trust, and Leanne Graham of Newcastle City Council.

I wish to thank the administrative staff of the Centre for Water Policy Research for their assistance during my studies. I also recognise the valuable contribution made by fellow students, especially Tony Meppem and Crispin Butteriss, through their critical feedback during seminars and on other occasions.

The final preparation of this work has been greatly assisted by the excellent proof-reading skills of Marianne Enoch. Some of the grammatical mistakes and speeling (!) errors she found had completely eluded my own numerous attempts to find them. Of course, any remaining errors are entirely my responsibility.

Table of Contents

1.	1. INTRODUCTION	
1.1	The Research Problem and Research Objectives	1
1.1	Research Problem 1 – A failure to integrate effectively	2
1.1	2 Research Problem 2 – Lack of an identifiable transdisciplinary framework	2
1.1	Research Objective 1 (addressing Research Problem 2 as the basis for dealing with the fin	rst
ide	tified research problem)	3
1.1	4 Research Objective 2	3
1.2	Chapter Overview	4
1.3	General Background to the Research	4
1.3	Sustainable Development	4
1.3	2 Ecological Economics	5
1.3	3 Integrated Resource Management	7
1.3	4 Stakeholder Participation and Learning	9
1.4	Justification for the research	10
1.5	Methodological Framework	11
1.6	The Australian context	13
1.7	Outline of the thesis	13
1.8	Delimitations of scope and key assumptions	14
1.9	Conclusion	15
2.	HE THEORETICAL FOUNDATIONS	16
2.1	Sustainability Issues	17
2.1	Sustainability and Governance	17
2.1	2 What is Sustainability?	22
2.1	ESD and the Systems Approach	26

2.2	Ecological Economics and Transdisciplinarity	27
2.2	2.1 Ecological Economics - a Normative Focus	28
2.2	Perspectives on Transdisciplinarity	33
2.2	2.3 Transdisciplinarity Revealed?	48
2.3	Complex Systems and the Systems Approach	50
2.3	3.1 Chaos	58
2.3	3.2 Complexity	61
2.4	Concluding Comments	62
3.	SYSTEMS PRAXIS	64
3.1	System Dynamics	64
3.1	.1 Qualitative and Quantitative System Dynamics	67
	3.1.1.1 Influence Diagrams	68
	3.1.1.2 System Flow Diagrams	69
	3.1.1.3 Computer-based System Dynamics	71
3.1	.2 In Pursuit of Leverage	73
3.2	Learning organisations	75
3.2	.1 Mental models and learning	78
3.2	.2 Team learning – not just aggregated individual learning	81
3.3	Towards a New Methodology	85
4.	INTEGRATED RESOURCE MANAGEMENT	88
4.1	IRM as ESD in Action	88
4.2	The Use of Participative Processes in IRM	92
4.3	Perspectives on Community Participation	95
4.3	.1 Empowering the powerless	95
4.3	.2 Community development	96
4.3	.3 Local government planning	98
4.4	IRM in Australia	102
4.4	.1 Institutional Setting for IRM in Australia	102
4.4	.2 Australian Examples of IRM Praxis	105
	4.4.2.1 The Liverpool Plains – New South Wales	105

	4.4.2.2	The North West Region of New South Wales	106
	4.4.2.3	The Macleay River Catchment of New South Wales	108
	4.4.2.4	The Johnstone River Catchment of Queensland	109
	4.4.2.5	The Onkaparinga Catchment of South Australia – Leading the Way?	111
4.	4.3 \$	ome Comments on IRM in Australia	114
5.	SYNTH	ESIS OF THE METHODOLOGY	117
5.1	Anthr	opo-Environmental Systems and Transdisciplinary Methodology	117
5.2	A met	nodology is outlined (Participative Environmental Management)	118
5.	2.1 H	EM Stage One	120
5.	2.2 H	EM Stage Two	121
5.	2.3 H	EM Stage Three	125
5.	2.4 H	EM Stage Four	126
5.	2.5 H	EM Stage Five	127
5.3	Partic	pative Environmental Management and System Dynamics	128
5.4	Ratior	ale for a case study - testing PEM	132
c	CASE		
n.	LASE :	STUDY APPLICATIONS OF PARTICIPATIVE ENVIRONMEN	AL
6. MA		STUDY APPLICATIONS OF PARTICIPATIVE ENVIRONMEN ENT (PEM)	1AL 133
•-	NAGEM		
MA 6.1	NAGEM	ENT (PEM)	133
MA 6.1 6.	NAGEM Thros	ENT (PEM) Dy Creek	133 133
MA 6.1 6. 6.	Thros 1.1 H 1.2 I	ENT (PEM) Dy Creek Background	133 133 133
MA 6.1 6. 6. 6.	Thros 1.1 H 1.2 H 1.3 H	ENT (PEM) by Creek Background nvolvement of the Researcher	133 133 133 138
MA 6.1 6. 6. 6.	Thros 1.1 H 1.2 H 1.3 H	ENT (PEM) by Creek Background involvement of the Researcher First Workshop Presentation Subsequent Workshops and Development of the Stakeholder Defined Model	133 133 138 138
MA 6.1 6. 6. 6. 6.	Thros 1.1 H 1.2 H 1.3 H 1.4 S Malpa	ENT (PEM) by Creek Background involvement of the Researcher First Workshop Presentation Subsequent Workshops and Development of the Stakeholder Defined Model	133 133 138 138 138 146
 MA 6.1 6. 6. 6.2 6.3 	Thros 1.1 H 1.2 H 1.3 H 1.4 S Malpa Pymm	ENT (PEM) by Creek Background involvement of the Researcher First Workshop Presentation Subsequent Workshops and Development of the Stakeholder Defined Model	133 133 138 138 146 169
MA 6.1 6. 6. 6. 6. 6.2 6.3 6.	Thros 1.1 H 1.2 H 1.3 H 1.4 S Malpa Pymm 3.1 H	ENT (PEM) by Creek Background involvement of the Researcher First Workshop Presentation Subsequent Workshops and Development of the Stakeholder Defined Model as Dam es Brook	133 133 133 138 138 146 169 173
MA 6.1 6. 6. 6. 6. 6.2 6.3 6.	Thros 1.1 H 1.2 H 1.3 H 1.4 S Malpa Pymm 3.1 H	ENT (PEM) by Creek Background nvolvement of the Researcher First Workshop Presentation Subsequent Workshops and Development of the Stakeholder Defined Model as Dam es Brook Background Vorkshop with Environment Agency and Others	 133 133 133 138 138 146 169 173 174
 MA 6.1 6. 6.2 6.3 6. 6. 	Thros 1.1 H 1.2 H 1.3 H 1.4 S Malpa Pymm 3.1 H 3.2 N DISCUS	ENT (PEM) by Creek Background nvolvement of the Researcher First Workshop Presentation Subsequent Workshops and Development of the Stakeholder Defined Model as Dam es Brook Background Vorkshop with Environment Agency and Others	 133 133 133 138 138 146 169 173 174 176
 MA 6.1 6. 6. 6.2 6.3 6. 6. 7. 	Thros 1.1 H 1.2 H 1.3 H 1.4 S Malpa Pymm 3.1 H 3.2 N DISCUS The D	ENT (PEM) by Creek Background nvolvement of the Researcher First Workshop Presentation Bubsequent Workshops and Development of the Stakeholder Defined Model as Dam es Brook Background Vorkshop with Environment Agency and Others	 133 133 133 138 138 146 169 173 174 176 182

7.3	.1 Strengths	190
7.3	.2 Weaknesses	193
7.3	.3 Opportunities	195
7.3	.4 Threats	198
7.4	Adaptive Environmental Assessment and Management (AEAM): a similar approach	198
7.5	General Observations	203
8.	CONCLUSIONS AND IMPLICATIONS	205
8.1	Introduction	205
8.2	Conclusion about research problem	205
8.3	Conclusions in relation to the research objectives	206
8.4	Limitations	209
8.5	Implications for further research	210
8.6	Implications for theory	212
8.7	Implications for policy and practice	213
REF	ERENCES	215
APP	ENDIX A	231
APP	ENDIX B	237
APP	ENDIX C	249

List of Figures

Figure 2.1	A representation of the disciplinary to transdisciplinary transition, including the explicit li	nking of
	the concepts "integrated" and "holistic" with transdisciplinary ecological economics.	35
Figure 2.2	A simple feedback system (after Parker and Stacey 1995)	60
Figure 3.1	A Causal Loop Diagram (source Richardson 1986, p.159)	69
Figure 3.2	Example of a Positive Feedback Causal Loop (Source Senge 1992, p.82)	70
Figure 3.3	A qualitative system dynamics model constructed with the <i>ithink</i> software package.	73
Figure 3.4	Single-loop learning (Sterman 1994)	79
Figure 3.5	Double-loop learning (adapted from Sterman 1994)	80
Figure 3.6	Representation of a non-aligned group (after Senge 1992)	82
Figure 3.7	Representation of an aligned group (note that some difference in direction still exists, but the	
	substantive thrust is in same direction as the overall goal). (After Senge 1992)	83
Figure 4.8	The Ladder of Citizen Participation (after Arnstein 1969).	96
Figure 4.9	Degree of consultation in Local Government decision making	99
Figure 5.1	Schematic of the Participative Environmental Management process	119
Figure 5.2.	A fragment of the mud map developed in the case study.	123
Figure 6.1	The conceptual map layer of the hypothetical model of Throsby Creek	141
Figure 6.2	Alpha model simulation of <i>Citizen Environmental Awareness</i> and <i>Diffuse Pollution</i> with no	
	expenditure on environmental education.	142
Figure 6.3	The Alpha model simulation of Citizen Environmental Awareness and Diffuse Pollution w	vith
	maximum feasible expenditure on environmental education.	143
Figure 6.4	A portion of the Alpha model taken from the Socioeconomic subsector.	144
Figure 6.5	A model fragment showing a feedback loop	145
Figure 6.6	The mud map constructed with the Throsby Creek stakeholder group.	147
Figure 6.7	The conceptual map layer of the stakeholder developed model	149
Figure 6.8	A fragment of the model showing the physical flow of effluent from the Industry Sector (on he
	left) to the Environment Sector. Effluent combines with other pollutants to make up total	
	Biochemical Water Pollutants.	149
Figure 6.9	The start of the trace process. The dot in the middle of the stock means that there are com	nections
	to it that have not yet been revealed.	151
Figure 6.10	Flows in and out of Gross Water Pollutants have been revealed.	151
Figure 6.11	The source of the gross pollutants in runoff flow has now been revealed.	152
Figure 6.12	The complete interconnecting series of flows that make up Gross Water Pollutants has no	w been
	revealed.	153
Figure 6.13	Factors influencing the flow rates of gross pollution sources are identified.	154
Figure 6.14	Factors influencing levels of Commitment to Environmental Management.	156
Figure 6.15	The variable land clean up is shown to be a function of the stock of Gross Land Pollutant	s and the
	community's commitment for environmental management.	157

r

Figure 6.16	The movement of gross pollutants from land to water is modelled as depending on how muc	ch land
	pollution there is, and an impact factor gross pollutant movement, which is elsewhere calcul	lated as
	related to storm flows.	158
Figure 6.17	The variable gross pollutant movement is a function of flood flow. The latter is modelled as	;
	depending on stochastic flood events, and the standard of flood control infrastructure.	158
Figure 6.18	With the addition of factors influencing the dispersal and clean up of pollution, the picture i	s now
	complete.	159
Figure 6.19	One possible future path for the variables total diffuse pollution and Commitment to	
	Environmental Management for the given and continuing level of environment	
	education funding.	160
Figure 6.20	Indicative trends for total pollution and environmental commitment for negligible levels of	
	funding for environmental education.	161
Figure 6.21	Model output under relatively high levels of expenditure on environmental education	162
Figure 6.22	Model fragment depicting the factors that influence the variable Commitment to Environment	ntal
	Management	163
Figure 6.23	The table function that relates aesthetic appeal to its impact on community commitment to	
	environmental management.	164
Figure 6.24	An alternative form for the relationship depicted in Figure 6.23.	165
Figure 6.25	The table function that relates expenditure on environmental education expenditure, and the	2
	expected percentage increase on environmental commitment that would result.	166
Figure 6.26	The table function that shows the relationship between the level of commitment to environn	nental
	management and the effectiveness of environmental education.	167
Figure 6.27	Mud map developed at the Malpas community stakeholder workshop (source: Gill 1998)	171
Figure 6.28	The Pymmes Brook catchment mud map	178
Figure 6.29	A detailed subsystem map exploring the factors surrounding the community's perceptions o	of the
	Pymmes Brook as a recreational asset.	179
Figure 6.30	Some of the factors affecting access to the stream corridor	180
Figure 7.1	The overall context for the thesis	183
Figure 7.2	The problem – lack of a suitable methodology	184
Figure 7.3	Towards a new methodology	185
Figure 7.4	The PEM methodology as articulated, tested and refined	187
Figure 7.5	Excerpt from the AEAM model of Macquarie Marshes	201
Figure 7.6	Participative Environmental Management – fitting it all together	204
Figure 8.1	The articulation and refinement of the methodology (cf. Figure 7.4)	207
Figure 8.2	Implications for theory and practice (cf. Figure 6.5)	213
Figure 8.3	PEM – directly influencing sustainability	214

List of Tables

Table 2.1	Classification of problems	37
Table 2.2	Goals and characteristics of inter-, multi- and transdisciplinary research (following Nicolescu	
	1997)	41
Table 2.3	Indicators of Transdisciplinarity	49
Table 3.4	The basic modelling elements of the <i>ithink</i> software.	72
Table 4.1	The RRA-PRA Continuum (after Chambers 1997)	98
Table 6.1	Land Use in the Throsby Creek catchment	134

Glossary

AEAM	Adaptive Environmental Assessment and Management
ANZSEE	Australia New Zealand Society for Ecological Economics
ВМР	Best Management Practice
CIRET	International Centre for Transdisciplinary Studies
СМС	Catchment Management Committee
СWMB	Catchment Water Management Board
CWPR	Centre for Water Policy Research
dt	A small time interval used in a system dynamics simulation model
epistemology	The branch of philosophy that investigates the origin, nature, methods, and limits of human knowledge
ESD	Ecological Sustainable Development
GIS	Geographic Information System
ICM	Integrated Catchment Management
IEM	Integrated Environmental Management
IRM	Integrated Resource Management
ISEE	International Society for Ecological Economics
ithink	A system dynamics systems mapping and simulation software package
Landcare	A landholder-based movement in Australia involving Federal funding and local organisations to remediate degraded land
LEAP	Local Environment Agency Plan (UK)
learning organisation theory	A contemporary approach to business management generally attributed to Peter Senge of MIT
LPLMC	Liverpool Plains Land Management Committee
methodology	The science of method – in particular a systematic approach based on an articulated epistemology and a set of identified methods that are consistent with that epistemology

NSESD	National Strategy for Ecologically Sustainable Development (Australia)
PEM	Participative Environmental Management
PRA	Participative Rural Appraisal
Powersim	A system dynamics systems mapping and simulation software package
RRA	Rapid Rural Appraisal
SWOT	Strengths, Weaknesses, Opportunities and Threats (a critical review framework)
system dynamics	A discipline specialising in understanding feedback loops and non-linear relationships in systems
ТСМ	Total Catchment Management (New South Wales)
transdisciplinary	An approach to intellectual investigation in which there is an intentional holistic problem focus consistent with identifying synergy. It requires the transcendence of existing disciplinary boundaries.
UNCED	United Nations Conference on Environment and Development
UNCSD	United Nations Commission on Sustainable Development
UNEP	United Nations Environment Program
Vensim	A system dynamics systems mapping and simulation software package
WCED	World Commission on Environment and Development