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Abstract 26 

Leukocyte telomeres shorten with age and excessive shortening is associated with 27 

age-related cardio-metabolic diseases. Exercise training may prevent disease 28 

through telomere length maintenance though the optimal amount of exercise that 29 

attenuates telomere attrition is unknown. Furthermore, the underlying molecular 30 

mechanisms responsible for the enhanced telomere maintenance observed in 31 

endurance athletes is poorly understood.  32 

We quantified the leukocyte telomere length and analysed the expression of 33 

telomere-regulating genes in endurance athletes and healthy controls (both n = 61), 34 

using quantitative PCR.  35 

We found endurance athletes have significantly longer (7.1%, 208–416 nt) leukocyte 36 

telomeres and up-regulated TERT (2.0-fold) and TPP1 (1.3-fold) mRNA expression 37 

compared to controls in age-adjusted analysis. The telomere length and telomere-38 

regulating gene expression differences were no longer statistically significant after 39 

adjustment for resting heart rate and relative V̇O2max (all p > 0.05). Resting heart rate 40 

emerged as an independent predictor of leukocyte telomere length, TERT and TPP1 41 

mRNA expression in stepwise regression models. To gauge whether volume of 42 

exercise was associated with leukocyte telomere length, we divided subjects into 43 

running and cycling tertiles (distance covered per week) and found individuals in the 44 

middle and highest tertiles had longer telomeres than individuals in the lowest tertile. 45 

These data emphasise the importance of cardiorespiratory fitness and exercise 46 

training in the prevention of biological aging. They also support the concept that 47 

moderate amounts of exercise training protects against biological ageing, while 48 

higher amounts may not elicit additional benefits. 49 

 50 
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Introduction 51 

Telomeres are repetitive DNA (in mammals, 5’-TTAGGG-3’) positioned at the ends 52 

of chromosomes that protect against genomic DNA degradation and chromosomal 53 

fusion events (24, 25). Due to the end replication problem, telomeres shorten in the 54 

absence of telomerase with each round of cell-division and as such telomere length 55 

is an established marker of ageing (1, 36, 71). Telomeres and six telomere-56 

regulating proteins (telomere repeat-binding factor 1 [TRF1], telomere repeat-binding 57 

factor 2 [TRF2], TRF1-interacting nuclear factor 2 [TINF2], adrenocortical dysplasia 58 

homolog [TPP1], protection of telomeres 1 [POT1] and TRF2-interacting protein 59 

[TERF2IP]), collectively called shelterin, form nucleoprotein complexes that maintain 60 

genomic stability and regulate telomere length. Shelterin is crucial for telomerase-61 

mediated telomere length maintenance and genomic stability, as removal of shelterin 62 

causes severe telomere and chromosomal aberrations (46, 51, 61). Telomerase is 63 

comprised of telomerase reverse transcriptase (TERT) and the telomerase RNA 64 

component (TERC), and can combat premature ageing by extending telomeric DNA 65 

(23, 57). 66 

Telomere length of proliferative tissues, such as leukocytes, is longest at birth and 67 

shortening is dependent on genetic and lifestyle factors. Psychological stress (21), 68 

poor diet (63) and age-related diseases including coronary artery disease (56), 69 

obesity (68) and diabetes (55) are all associated with excessive leukocyte telomere 70 

shortening. Conversely, mounting evidence has unveiled a positive influence of 71 

physical activity levels on leukocyte telomere length (11, 20, 33, 39, 41, 52, 73). 72 

Lifestyle interventions including increases in moderate-intensity physical activity 73 

extends telomere length after a five-year period (49). Although exercise seems to 74 
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benefit telomere length, the ideal amount of exercise training for telomere length 75 

maintenance and the underlying molecular mechanisms remain elusive. 76 

We previously reported that relative to healthy controls, ultra-marathon runners had, 77 

on average, 11% longer leukocyte telomeres, indicating that they had prevented ~16 78 

years’ worth of age-related telomere attrition (18). German National Track and Field 79 

athletes have increased TRF2 protein content and up-regulated telomerase activity 80 

in peripheral blood mononuclear cells (PBMC) compared to sedentary controls (73). 81 

Furthermore, PBMC shelterin gene (TRF1, TRF2 and POT1) expression was up-82 

regulated after a seven day ultra-marathon event (34). Thus, shelterin and other 83 

telomere-regulating genes may underpin the longer leukocyte telomeres associated 84 

with long-term endurance exercise training. A comprehensive analysis of all shelterin 85 

and TERT gene expression between endurance athletes and healthy controls has 86 

not yet been performed.  87 

Subsequently, the purpose of our study was to extend previous findings by 88 

determining whether any association between telomere length and exercise was 89 

mediated through telomere-regulating gene expression in endurance athletes. A 90 

further aim was to establish whether linear associations exist between physical 91 

activity, cardiorespiratory fitness and leukocyte telomere length.  92 

 93 

Materials and Methods 94 

Participants 95 

A total of 122 Caucasian subjects were recruited from the general public and 96 

participated in this study. Subjects were deemed apparently healthy – non-smoking, 97 

not taking any medications and free from any age-related chronic diseases – 98 

according to self-reported health questionnaires. Endurance athletes (n = 61) and 99 
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recreationally active controls (n = 61), aged 18 to 55 y were analysed. Endurance- 100 

athletes trained were cyclists, triathletes, middle- or long-distance runners and ultra-101 

marathon runners at state through to international level. Endurance athletes trained 102 

>3 times per week and had trained consistently for a minimum of one year. The 103 

apparently healthy controls were recreationally active but were not engaged in any 104 

structured aerobic or resistance exercise training.   105 

All participants gave written informed consent and this study was approved by 106 

Federation University Australia’s Human Research Ethics Committee. 107 

 108 

Procedures 109 

Subjects physical activity levels and psychological stress was assessed by the self-110 

administered International Physical Activity Questionnaire (IPAQ) Long form (5) and 111 

Perceived Stress Scale (PSS) (14), respectively. Data cleaning and analysis was 112 

performed according to the IPAQ guidelines and average weekly Metabolic 113 

Equivalent of task (MET) – minutes and sitting were calculated and included as 114 

continuous variables in statistical analyses. Height, weight and body mass index 115 

(BMI) were recorded and subjects were seated for approximately 10 minutes before 116 

BP assessment. The SphygmoCor device (AtCor Medical, Australia) was used to 117 

assess brachial blood pressure, averaged from three separate measurements, taken 118 

one minute apart with subjects seated. Subjects’ cardiorespiratory fitness, 119 

determined as maximal oxygen consumption (V̇O2max), was assessed through a 120 

maximal graded treadmill or cycle ergometer test via pulmonary analysis. While 121 

control subjects completed a maximal treadmill test, the endurance cyclist completed 122 

a cycle ergometer test. Triathletes obtain a comparable V̇O2max value regardless of 123 

exercise mode (45) and as such, triathletes from the present study completed either 124 
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a cycle or treadmill test.  Before maximal exercise testing subjects were fitted with a 125 

two-way breathing valve (Hans Rudolph) and expired air was collected into an online 126 

metabolic system (Moxus, Modular, USA) for O2 and CO2 analysis. The metabolic 127 

system was calibrated prior to each test using ambient air and gas of known 128 

composition. The treadmill commenced at 10 km.h-1 and was progressively 129 

increased by 1 km.h-1 every two minutes until volitional exhaustion. Cycle ergometer 130 

V̇O2max tests commenced at 100 W and the load was increased by 30 W .min-1 every 131 

two minutes until pedalling cadence dropped below 50 RPM for 10 seconds or until 132 

volitional exhaustion. Subjects were asked to maintain 90–100 RPM throughout 133 

cycle ergometer-assessed exercise tests. Individual V̇O2max was determined as the 134 

highest O2 value averaged over 60 seconds.  135 

 136 

Telomere length quantification 137 

A preprandial blood sample (~20 ml) was drawn from the antecubital vein into EDTA 138 

tubes using standard phlebotomy procedures. All subjects gave a seated resting 139 

blood sample 24 to 48 hours after their last exercise session. DNA was extracted 140 

from whole-blood leukocytes using the Purelink Genomic DNA Mini Kit (Life 141 

Technologies, Australia). Telomere length was quantified using an established qPCR 142 

method (7, 17, 18, 42), previously validated by terminal restriction fragment analysis 143 

(7). Within each sample, the telomere repeat copy number (T) is compared to a 144 

single copy gene copy number (S) and expressed in arbitrary units as a (T/S) ratio. 145 

Briefly, 10µl reactions comprised of 2 × SensiFast SYBER Lo-ROX master mix 146 

(Bioline, Australia), primer sets and 10ng of DNA, were run in triplicate on the ViiA7 147 

Real Time PCR System (Life Technologies, Australia). Either 300nM of telomere-148 

specific forward (5’GGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTTTGGGTT3’) 149 
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and reverse (5’GGCTTGCCTTACCCTTACCCTTACCCTTACCCTTACCCT3’) 150 

primers, or 300nM of forward (5’CAGCAAGTGGGAAGGTGTAATCC3’) and 500nM 151 

of reverse (5’CCCATTCTATCATCAACGGGTACAA3’) primers for the 36B4 gene 152 

was used in reactions. All samples were run with a positive and no template controls 153 

on a single 384-well plate to prevent any inter-plate variability. The cycling conditions 154 

telomere assays was as follows: a hold at 95° for 10 min, followed by 40 cycles at 155 

95° for 15 s and 58° for 1 min. As a quality control, samples were excluded from the 156 

analysis if the difference between triplicates was greater than one cycle threshold 157 

(Ct), or the average of duplicates was taken for further analysis. The intra-assay 158 

coefficient of variation between triplicate samples was 2.5% and 1.4% for the 159 

telomere and 36B4 gene, respectively. 160 

 161 

Gene expression analysis 162 

Leukocytes were isolated as previously described (19) and RNA was extracted using 163 

the miRVana miRNA Isolation Kit (Life Technologies, Australia), following the 164 

manufacturer’s guidelines. RNA was reverse transcribed to cDNA using the High 165 

Capacity Reverse Transcription Kit (Life Technologies). Telomere-regulating gene 166 

expression was quantified using SYBR or TaqMan chemistries. Primer-sets and 167 

TaqMan Assays (Life Technologies) are outlined in Table 1. An efficiency curve was 168 

generated for each primer-set using cDNA diluted 1:2 from 50ng to 3.125ng. The 169 

qPCR product was run on an agarose gel to ensure appropriate amplicon length and 170 

a single product. Triplicate samples were run on a single 384-well plate with negative 171 

controls. The cycling conditions for primer-based assays was: a hold at 95° for 2 min, 172 

followed by 40 cycles at 95° for 5 s, 60° for 10 s and 72° for 20 s. Cycling for 173 

TaqMan assays was: a hold at 50° for 2 min and another at 95° for 20 sec, followed 174 
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by 40 cycles at 95° for 1 s and 60° for 20 s. Relative gene expression was assessed 175 

using the 2–ΔΔCt method (38). Whilst differential gene expression between athletes 176 

and controls was represented by fold-difference, gene expression analysis involving 177 

all subjects was represented using relative gene expression compared to the control 178 

mRNA, GAPDH. The coefficient of variation between triplicates for each of the 179 

mRNAs ranged from 0.66 to 1.49% (Table 1). 180 

 181 

Statistical analysis 182 

Using data from our previous cross-sectional study (18), our a priori power analysis 183 

revealed we required a sample size of 88 (44 in each group) in order to achieve 184 

>90% power to detect a difference (d > 0.7) in leukocyte telomere length between 185 

athletes and controls (G*Power, version 3.1.5). All statistical analyses were 186 

performed using IBM SPSS Statistics for Windows (Version 21, IBM Corp, NY). Data 187 

were tested for normality using the Kolmogorov-Smirnov and Shapiro-Wilk tests. 188 

Two-way independent samples t-tests or Mann-Whitney U-tests were used to 189 

examine differences in physical characteristics and fitness parameters, and telomere 190 

length between athletes and controls. To control for covariates, an ANCOVA was 191 

used to establish differences between athlete and control telomere length and 192 

telomere-regulating gene expression. An ANOVA was also used to determine 193 

telomere length differences between subjects divided into cycling and running 194 

distance tertiles. Spearman’s correlations were used on to examine associations 195 

between physical characteristics and fitness parameters, with telomere length and 196 

telomere-regulating gene expression. Stepwise linear regression was performed to 197 

identify predictors of telomere length and telomere-regulating gene expression. 198 

Statistical significance was set at p < 0.05. The difference in biological age and 199 
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telomere length – expressed as nucleotides (nt) – between athletes and controls was 200 

estimated using the same calculations as described previously (18). 201 

Results 202 

Physical characteristics  203 

The controls were five years younger than the athletes (p = 0.06). Relative to the 204 

controls, the athletes had a lower body weight, resting heart rate and had a higher 205 

cardiorespiratory fitness as indicated by their V̇O2max and maximal treadmill speed (all 206 

p < 0.001, Table 2). Athletes engaged in less sitting and were more physically active 207 

compared to their non-athletic peers (all p < 0.01, Table 2).  208 

 209 

Linear correlations between telomere length, age, health and exercise phenotypes 210 

Age was not statistically correlated to telomere length in all subjects or when athletes 211 

and controls were analysed separately (all p > 0.05, Table 3). When athletes and 212 

controls were pooled we found weak to moderate correlations between telomere 213 

length and weight, BMI, systolic blood pressure and resting heart rate (n = 122, all p 214 

< 0.05, Figure 1). Furthermore, we found correlations between cardiorespiratory 215 

fitness and physical activity parameters – Metabolic equivalent of task-min per week, 216 

time spent sitting and maximal treadmill speed – and leukocyte telomere length (all p 217 

< 0.05, Figure 2). In athletes, years spent training was not associated with telomere 218 

length (n = 60, r = -0.12, p = 0.37). 219 

 220 

Telomere length analysis 221 

Relative to the controls, the endurance athletes had 7.1% longer leukocyte 222 

telomeres after age-adjustment (T/S ratio ± SE: 3.64 ± 0.06 v 3.38 ± 0.06, p = 0.002, 223 

Figure 3A). The biological age difference between endurance athletes and controls 224 
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translated to 10.4 years, meaning the athletes had prevented 10.4 years of biological 225 

ageing. We estimated the biological age difference was equivalent to the athletes 226 

possessing 208–416 nt longer telomeres compared to the controls. Compared to 227 

controls, athletes had lower body weight and resting heart rate, and a higher 228 

cardiorespiratory fitness (Table 2, all p < 0.001). To determine whether these 229 

phenotypes mediated the leukocyte telomere length difference found between 230 

athletes and controls, we performed an additional analysis including these 231 

phenotypes as covariates. After adjusting for age, weight, resting heart rate and 232 

relative V̇O2max, however, the difference between athletes and controls was no longer 233 

statistically significant (T/S ratio ± SE: 3.58 ± 0.08 vs 3.45 ± 0.08, p = 0.36).  234 

We then performed a stepwise linear regression to determine predictors of leukocyte 235 

telomere length. After including health and fitness parameters – age, height, weight, 236 

body mass index, systolic, diastolic, mean arterial and pulse pressure, and relative 237 

V̇O2max – in the stepwise regression model, resting heart rate emerged as the only 238 

independent predictor of leukocyte telomere length amongst athletes and controls, 239 

such that it explained 10.1% of the overall variation (B = -0.012, CI: 3.85–4.625, p < 240 

0.001). 241 

 242 

Telomere-regulating gene expression analysis 243 

Relative to controls, endurance athletes had 2.0-fold and 1.3-fold up-regulated TERT  244 

(Figure 3B) and TPP1 (Figure 3C) mRNA expression, respectively. No other 245 

telomere-regulating genes – TERC, TERF2IP, TINF2, TERF1, TERF2 and POT1 – 246 

were differentially regulated between athletes and controls (p > 0.05, Table 4). The 247 

up-regulated TERT and TPP1 mRNA expression remained statistically significant 248 

after adjusting for health phenotypes (p = 0.005 and p = 0.05, respectively). After 249 
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further adjustment for heart rate and relative V̇O2max, however, the difference was no 250 

longer statistically significant (p = 0.16 and p = 0.41). Besides TERC (r = -0.28, p = 251 

0.003), there were no other statistically significant correlations between telomere 252 

length and expression of any of the telomere-regulating genes analysed (p > 0.05, 253 

Table 5). TERT and TPP1 were both correlated with resting heart rate and relative 254 

V̇O2max (Figure 3D–G).  255 

Again, we performed stepwise regression including health and fitness parameters 256 

and found that resting heart rate was an independent predictor of TERT mRNA 257 

expression, explaining 9.4% of the variation (Table 6). Age, height and resting heart 258 

rate were independent predictors of TPP1 mRNA expression, together explaining 259 

9.5% of the variation (Table 6).  260 

 261 

Moderate amounts of exercise training associated with long telomeres and increased 262 

TERT and TPP1 mRNA expression 263 

To establish associations between volume of exercise training and telomere length, 264 

we divided subjects into tertiles for weekly running and cycling distance and 265 

analysed telomere length. We found that age-adjusted telomere length was 266 

significantly longer in subjects in the middle and highest tertiles for weekly running 267 

and cycling distance (Figure 4A and B, respectively) compared to those in the lowest 268 

tertile. A similar relationship was observed between weekly training distances and 269 

TERT and TPP1 mRNA expression (Figure 4D, E, G and H). Moreover, individuals 270 

with the highest cardiorespiratory fitness had longer leukocyte telomeres, up-271 

regulated TERT and TPP1 mRNA expression compared to those in the lowest tertile 272 

with poor cardiorespiratory fitness (Figure 4C, F and I, respectively). No statistically 273 

significant differences were found between those in the middle and highest 274 
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cardiorespiratory fitness tertiles for telomere length, TERT and TPP1 mRNA 275 

expression. 276 

 277 

Lower resting heart rate is associated with longer telomeres 278 

To investigate the association between resting heart rate and telomere length we 279 

divided our subjects into resting heart rate tertiles and found a linear decrease in 280 

leukocyte telomere length with a higher resting heart rate (Figure 4J). Subjects with a 281 

resting heart rate below 50 beats.min-1, on average, exhibited 14.4% and 8.5% 282 

longer telomeres compared to those with a resting heart rate 51–74 and >75 283 

beats.min-1, respectively (Figure 4J). A similar relationship was also observed 284 

between resting heart rate and TERT and TPP1 mRNA expression (Figure 4K and L, 285 

respectively). 286 

 287 

Discussion 288 

Endurance athletes who regularly engage in high volumes of exercise training have 289 

preserved leukocyte telomeres (18, 33, 73) though the underlying molecular and 290 

physiological determinants remain incompletely understood. Here, we not only 291 

verified that endurance athletes have significantly longer leukocyte telomeres, but we 292 

also wanted to determine if the longer telomeres observed in athletes was caused by 293 

the modulation of gene expression in telomere length regulating genes. We found 294 

that the adrenocortical dysplasia homolog (TPP1) and TERT genes were both up-295 

regulated in leukocytes from athletes compared to controls. The longer leukocyte 296 

telomeres and increased TERT and TPP1 mRNA expression observed in endurance 297 

athletes appears to be associated with their lower resting heart rate and superior 298 

V̇O2max.  299 
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The majority of previous research has shown physical activity is positively correlated 300 

to leukocyte telomere length (11, 20, 33, 41, 52, 73), though the optimal amount for 301 

telomere length maintenance remains unclear. For instance, some researchers 302 

suggest moderate amounts of physical activity is ideal for telomere maintenance (41, 303 

59), whilst studies on endurance athletes – who regularly engage in strenuous 304 

endurance exercise training – supports the premise that higher volumes of 305 

endurance exercise is conducive to telomere protection (18, 33, 73). Here, we verify 306 

previous studies (18, 33) indicating endurance athletes possess significantly longer 307 

leukocyte telomeres (by 7.1%, 208–416 nt) compared to controls of average 308 

cardiorespiratory fitness. Our previous investigation on ultra-marathon runners 309 

revealed they had 324–648 nt longer telomeres, which translated to 16.2 years less 310 

telomere attrition compared to healthy controls (18). The endurance athletes in the 311 

present study were, on average, five years older than the controls yet possessed 312 

longer leukocyte telomeres to a relatively similar magnitude as found in our previous 313 

study (18). The average telomere length difference between endurance athletes and 314 

controls from the present study indicated the endurance athletes possessed 315 

telomeres as long as controls 10.4 years their junior, providing additional evidence 316 

that endurance exercise training attenuates biological ageing.  317 

Although previous studies (18, 33, 73) and our findings indicate endurance exercise 318 

training is associated with longer telomeres, the molecular mechanisms leading to 319 

longer leukocyte telomeres in endurance athletes is unclear. Up-regulation of 320 

telomerase is a likely mechanism of longer telomeres in athletes. German track and 321 

field and endurance athletes accumulating an average of >70 km of running per 322 

week, exhibited up-regulated peripheral blood mononuclear TRF2 mRNA and protein 323 

expression, with increased telomerase activity (73). Here, we found increased whole-324 



 14 

blood leukocyte TERT and TPP1 mRNA expression in endurance athletes. It is 325 

possible that repeat bouts of exercise training may reprogram TERT and TPP1 326 

mRNA expression, which would improve telomerase activity and processivity, and 327 

ultimately preserve telomere length. Previous analyses involving mononuclear cells 328 

(73), TRF2 mRNA was not differentially expressed in our endurance athletes, 329 

potentially due to the different cell type studied – whole blood leukocytes. Increased 330 

mononuclear cell TRF1, TRF2 and POT1 mRNA expression was observed in 331 

endurance athletes the day after a 183-mile ultra-marathon race (34), but these 332 

shelterin genes were not differentially expressed in our athletes in a rested state. 333 

TERT is the major protein component of the reverse transcriptase, telomerase (9), 334 

with a known role in preventing replication-induced telomere shortening (13, 69). 335 

Interestingly, leukocyte TERT mRNA expression was increased (19.4-fold) after a 336 

30-min run at 80% of V̇O2max in healthy men (12). Therefore, considering POT1 337 

together with TPP1 help recruit and increase the repeat processivity of telomerase 338 

(72), the increased TERT and TPP1 mRNA expression found in athletes from our 339 

study and up-regulated leukocyte telomerase activity in athletes’ from others (73) 340 

may contribute to the underlying molecular mechanisms by which endurance 341 

exercise training preserves leukocyte telomeres. Pathways activated by aerobic 342 

exercise training, such as the nitric oxide synthase, Akt protein kinase, insulin growth 343 

factor-1 signalling (73, 74) and p38 mitogen-activated protein kinase (40) are 344 

candidate signalling cascades that may regulate telomerase activity-dependent 345 

telomere maintenance via TERT activation.  346 

Interestingly, age was not negatively correlated to leukocyte telomeres in athletes, 347 

control or pooled subjects. This may be due to the narrow age range (18–55 y) or 348 

alternatively because the controls were recreationally active. Body weight, body 349 
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mass index, systolic BP, mean arterial pressure and resting heart rate were all 350 

inversely correlated to leukocyte telomere length. Consistent with previous studies 351 

(31, 33, 44, 50), we found a positive correlation between cardiorespiratory fitness, 352 

assessed by V̇O2max testing, and telomere length. Interestingly, TERC mRNA 353 

expression was inversely correlated to telomere length. Potential explanations for 354 

this finding is that elevated TERC mRNA expression may not be required in the 355 

absence of excessive telomere shortening, experimental noise or because TERC is 356 

not the rate limiting factor for telomerase activity. Providing evidence that longer 357 

leukocyte telomeres are reflective of physical performance capabilities and physical 358 

activity, we found maximal treadmill speed and physical activity were positively 359 

correlated to leukocyte telomere length. A recent randomised, controlled trial 360 

revealed reduced time spent sitting was associated with telomere lengthening in a 361 

group of sedentary older adult (68 y) men and women (65). We found time spent 362 

sitting per week was inversely correlated to leukocyte telomere length in younger 363 

(~30 y) subjects. Notably, the athletes in the present study reported sitting much less 364 

relative to controls (4.8 v 10.8 hr.day-1). It may be that the longer leukocyte telomeres 365 

possessed by endurance athletes is result of both extensive exercise training and 366 

less sedentary time (i.e. more physical activity). Therefore, these data suggest 367 

increased physical activity, cardiorespiratory fitness and limited time spent sitting 368 

contribute to telomere maintenance, in turn, protecting against cardiovascular 369 

disease and biological ageing. 370 

We also found TERT and TPP1 mRNA expression were positively and inversely 371 

correlated to V̇O2max and resting heart rate, respectively. To our knowledge we are 372 

the first to show such a relationship between parameters of cardiorespiratory fitness 373 

– V̇O2max and resting heart rate – and telomere-regulating gene expression. An 374 
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increase in V̇O2max and lowering of resting heart rate are adaptations to endurance 375 

exercise training (8, 62). Interestingly, the differences in leukocyte telomere length, 376 

TERT and TPP1 mRNA expression between athletes and controls was no longer 377 

statistically significant after adjustment for  V̇O2max and resting heart rate, indicating 378 

these parameters may be important for telomere length maintenance.  379 

Exceptional arterial health and cardiac capacity (primarily stroke volume) are 380 

required for a high V̇O2max and maybe the underlying biological mechanisms 381 

explaining the observed association with telomere length maintenance. The shorter 382 

leukocyte telomeres observed in patients with atherosclerosis is well known (7, 42, 383 

47, 56) and shortening of leukocyte telomeres is more pronounced in individuals with 384 

atherosclerotic progression over a six (4) and ten (43) year time period. Leukocyte 385 

telomere length reflects the telomere length of haematopoietic stem cells (29), which 386 

are precursors for endothelial progenitor cells (3). Subsequently, endurance exercise 387 

training may attenuate telomere shortening in haematopoietic stem cells and, in turn, 388 

conserve the replicative potential of endothelial progenitor cells to ultimately 389 

conserve arterial health and function.  390 

The stepwise inverse association between lower resting heart rate and leukocyte 391 

telomere length has multiple explanations. For example, exercise-training induced 392 

bradycardia involves decreased sympathetic nervous system activation and 393 

increased peripheral arterial compliance (8). Increased oxidative stress production in 394 

medulla of rats leads to sympathetic activation and hypertension (48). Telomeres are 395 

particularly vulnerable to shortening caused by inflammation (54) and oxidative 396 

stress (32, 70), and both are implicated in cardiovascular disease (10, 28, 37). 397 

Endurance athletes, however, have low circulating markers of inflammation (67) and 398 

exercise training leads to up-regulated antioxidant enzyme activity (22, 30). 399 
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Therefore, whilst speculative, ameliorated inflammation and oxidative stress, with up-400 

regulate telomere-associated genes caused by endurance exercise training may 401 

protect against telomere shortening, but this requires additional investigation.  402 

Most studies have found a positive relationship between the amount of physical 403 

activity and leukocyte telomere length, but the optimal amount of exercise for 404 

telomere preservation is not known. Another novel aspect of our study was that after 405 

dividing subjects into tertiles for running and cycling distance covered per week, we 406 

found individuals in the middle and highest tertiles for exercise training possessed 407 

similar leukocyte telomere lengths that were longer compared to those in the lowest 408 

exercise tertile. A similar relationship was observed with TERT and TPP1 mRNA 409 

expression, suggesting that exercise-induced benefits to telomere length 410 

maintenance maybe conferred by moderate and high amounts of exercise training. 411 

The practical application of these findings are that individuals who wish to maintain 412 

their leukocyte telomere length could benefit from running more than 10 km a week, 413 

but running more than 25 km a week may not provide additional telomere 414 

preservation. Similarly, cycling greater than 200 km a week may be unnecessary for 415 

telomere length maintenance, rather a minimum of 30 km cycling a week could elicit 416 

attenuate age-related telomere attrition. These data are somewhat supported by 417 

findings from epidemiological studies on physical activity measured in context with 418 

cardiovascular disease and mortality risk. A meta-analysis indicated the risk of 419 

coronary heart disease is reduced by 14% and 20% in individuals engaging in the 420 

recommended 150 and 300 minutes, respectively, of moderate-intensity physical 421 

activity per week (58). The relative risk of coronary heart disease, however, was only 422 

modestly lower in those engaging in the highest amount – 750 minutes – of physical 423 

activity per week (58). In a cohort of 55,137 adults, the relative risk reduction in all-424 
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cause and cardiovascular mortality was reduced in runners compared to non-runners 425 

but the decreased risk was achieved with as little as running ~10 km per week (35). 426 

We found a linear relationship between leukocyte telomere length and resting heart 427 

rate. Resting heart rate has long been recognised an independent risk factor for 428 

cardiovascular disease and all-cause mortality, with higher resting heart rates 429 

eliciting a greater risk (27, 60, 66). Leukocyte telomere length is also a predictor of 430 

cardiovascular disease (7, 75) and all-cause mortality (16, 53). Therefore, it is 431 

possible that aerobic exercise training-induced telomere maintenance could occur in 432 

conjunction with lowering of resting heart rate and this, in turn, may ameliorate the 433 

risk of cardiovascular disease and mortality. This study was not designed to 434 

investigate the possible causal role exercise-induced lowering of resting heart rate 435 

has on leukocyte telomere length and disease and mortality risk. Future research 436 

should establish how improvement to cardiorespiratory fitness and a reduction of 437 

resting heart rate maintains telomere length. 438 

We had over 90% power to detect a difference in leukocyte telomeres, which is a 439 

strength of the study. Whilst we acknowledge our data does not directly show that 440 

endurance exercise training maintains leukocyte telomere length, the alternative 441 

explanation would be that being born with long telomeres might be associated with a 442 

markedly higher cardiorespiratory performance and instinctive willingness to engage 443 

in extensive exercise training; an alternative and plausible explanation. A limitation of 444 

the study is that dietary analysis was not performed therefore we cannot account for 445 

the potential impact of diet on leukocyte telomere biology. Leukocyte protein was not 446 

collected therefore future studies should confirm the TERT and TPP1 mRNA 447 

expression differences amongst athletes and controls at the translational level. Given 448 

that critically short telomeres promote cellular senescence (26), it would be 449 
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advantageous to study the percentage of short telomeres in context with physical 450 

activity and cardiorespiratory fitness, rather than mean telomere length outlined in 451 

the present study. Although our statistical analysis indicated key cardiorespiratory 452 

fitness adaptations – lower resting heart rate and superior  V̇O2max – partly explained 453 

the telomere length difference found between athletes and controls, additional 454 

studies are required to delineate the physiological mechanism. Our data was 455 

correlative and does not infer causation. Future work should focus on the molecular 456 

mechanisms regulating telomere length dynamics in context with exercise training. It 457 

will be important to determine the genetic contribution of long telomeres from the 458 

influence of exercise training. Considering V̇O2max and resting heart rate are heritable 459 

traits, accounting for ~50% (6) and 13 to 60% (2, 15, 64) of the variation, 460 

respectively, it could be that endurance athletes from our study inherited long 461 

telomeres and their involvement in exercise training is coincidental. Longitudinal 462 

analyses are required to appreciate whether and what type of exercise training, and 463 

underlying physiological adaptations, attenuates the rate of telomere shortening in 464 

humans, to prevent biological ageing and disease.  465 

In summary, endurance athletes possess longer leukocyte telomeres and up-466 

regulated TERT and TPP1 mRNA expression. Our findings indicate a role for  V̇O2max 467 

and lower resting heart rate in the benefits that endurance exercise training has on 468 

leukocyte telomere maintenance. We also found a plateauing effect between the 469 

amount of running and cycling distance covered per week and increasing leukocyte 470 

telomere length. Therefore, this suggests that moderate amounts of exercise 471 

(running: 10 to 25 km.week-1; cycling: 30 to 200 km.week-1) may be as sufficient as 472 

large amounts of exercise to prevent age-associated telomere erosion.  473 

 474 
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Tables 742 

Table 1. Primer-sets and assay identification numbers. 743 

Gene symbol Primer-sets/Assay ID CV (%) 

TERT F: GAA GAA GCC ACC TCT TTG GA 

R: AGA GAG CTG AGT AGG AAG GAG 

1.36 

POT1 F: GCT CTG GCT TTG CAT CTT TG 

R: GGT GCC ATC CCA TAC CTT TAG 

0.82 

TINF2 F: CAA GTC CTG AAA GCC CTG AA 

R: CTT TCT CCA GCT GAC ACA AGT A 

1.32 

TPP1 F: CCA CGC TGC TTG TGT CT 

R: GCG GTC CAC CTG GAG ATA 

1.05 

TERF1 F: ACC CTT GAT GCA CAG TTT GA 

R: CTG CCT TCA TTA GAA AGG TTG ATG 

1.49 

TERF2 F: CAC ACC ACT GGA ATC AGC TAT C 

R: CAG GAT GGG CCA AGT TCT TT 

0.66 

GAPDH (control) F: GGG TGT GAA CCA TGA GAA GT 

R: AGT AGA GGC AGG GAT GAT GT 

0.98 

TERF2IP Hs00430292_m1 0.71 

TERC Hs03454202_s1 1.30 

GAPDH (control) Hs02786624_g1 1.03 

Legend: ID, identification number (Life Technologies); CV, coefficient of variation 744 

(intra-plate). 745 

 746 

 747 

 748 
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Table 2. Characteristics of endurance athletes and controls. 749 

Variable Endurance athletes  

(n = 61) 

Controls  

(n = 61) 

p-value 

Men/women (n) 46/15 47/14  

Age (y) 33.7 ± 11.03 28.7  ± 10.64 0.06 

Ht (cm) 176.36 ± 10.10 173.82 ± 8.97 0.14 

Wt (kg) 70.56 ± 10.69 78.65 ± 10.96 < 0.001 

BMI (Wt/Ht2) 22.6 ± 2.23 26.02 ± 2.95 < 0.001 

SBP (mm Hg) 124.96 ± 10.91 125.75 ± 10.65 0.68 

DBP (mm Hg) 73.44 ± 8.08 75.95 ± 9.11 0.11 

PP (mm Hg) 51.52 ± 7.97 49.46 ± 9.45 0.20 

MAP* (mm Hg) 90.46 ± 8.3 92.44 ± 8.73 0.20 

Resting HR (beats.min-1) 51.62 ± 7.58 68.67 ± 10.62 < 0.001 

V̇O2max (ml.kg-1.min-1) 58.77 ± 8.75 43.73 ± 7.03 < 0.001 

Maximum treadmill speed 

(km.h-1) 

17.02 ± 1.97 13.23 ± 1.92 < 0.001 

Maximum wattage (w) 370.23 ± 69.38 - - 

PSS 12.21 ± 4.81 11.36 ± 5.74 0.39 

Sitting (min.wk-1) 2010 (1290–2700) 4560 (2220–8460) < 0.001 

EEE (Mj.wk-1) 32.43 (23.23–55.7) 23.64 (8.92–40.65) 0.002 

METs (min.wk-1) 6976 (4878–13116) 3528 (1556.5–7520.5) < 0.001 

Years trained (y) 5.5 (2.62–12) 2.25 (0–8.5) < 0.001 

Run distance (km.wk-1) 40 (30–60) 2.5 (0–10) < 0.001 

Cycle distance (km.wk-1) 150 (0–237.5) - - 

Swim distance (km.wk-1) 4.5 (0–8) - - 
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Data are expressed as mean ± standard deviation or median (interquartile range) 750 

from two-tailed independent samples t-tests or Mann-Whitney U-tests.  751 

Legend: Ht, Height; Wt, Weight; BMI, body mass index; SBP, systolic BP; DBP, 752 

diastolic BP; PP, pulse pressure (SBP-DBP); MAP, mean arterial pressure 753 

*calculated by ((2×diastolic)+systolic)÷3; HR, heart rate; V̇O2max, maximal aerobic  754 

(cardiorespiratory) fitness; PSS, perceived stress scale; EEE, estimated energy 755 

expenditure; METs, metabolic equivalent of task. 756 
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Table 3. Linear correlations between age and telomere length in athletes and 775 

controls.  776 

 All subjects 

(n = 122) 

Athletes  

(n = 61) 

Controls 

(n = 61) 

Variable r  p-value r  p-value r  p-value 

Age 0.03 0.74 0.04 0.78 -0.12 0.35 

Data are from Spearman’s correlations. 777 
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Table 4. Telomere-regulating gene expression in athletes and controls (p > 0.05). 796 

Gene FD 

TERC 1.27 

TRF1 0.91 

TRF2 0.93 

TINF2 0.90 

POT1 0.97 

TERF2IP 1.03 

Data are expressed as fold-difference relative to controls (FD = 1). 797 
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Table 5. Linear correlations between telomere length and telomere-associated gene 813 

expression. 814 

 All subjects 

(n = 121) 

Gene r p-value 

TERT 0.09 0.315 

TERC -0.28 0.003 

TRF1 -0.08 0.35 

TRF2 0.05 0.55 

TPP1 0.12 0.25 

TINF2 0.07 0.48 

POT1 -0.007 0.93 

TERF2IP 0.05 0.61 

Data are from two-tailed Spearman’s Correlation.  815 
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Table 6. Stepwise regression models for TERT and TPP1 mRNA expression. 827 

Dependent 

variable 

Predictors Unstandardised 

B-value 

SE t-value p-value r2 
(adj) 

TERT  HR -1.24 0.34 -3.64 < 0.001 0.094 

TPP1  Age 

Height 

HR 

0.33 

0.45 

-0.26 

0.16 

0.18 

0.14 

2.01 

2.15 

-1.89 

0.047 

0.01 

0.06 

0.095 

Data are from stepwise linear regression. Variables excluded from the models for 828 

TERT include: age, height, weight, body mass index, systolic, diastolic, pulse and 829 

mean arterial pressure, and V̇O2max. Variables excluded from the models for TPP1 830 

include: weight, body mass index, systolic, diastolic, pulse and mean arterial 831 

pressure, and V̇O2max. 832 

Legend: SE, standard error; HR, resting heart rate. 833 
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Figure legends 846 

 847 

Figure 1. Linear correlations between leukocyte telomere length and health 848 

parameters. Data are from Spearman’s correlations. 849 
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 850 

Figure 2. Linear correlations between leukocyte telomere length and exercise 851 

parameters. Data are from Spearman’s correlations. 852 
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 853 

Figure 3. Endurance exercise, telomere length, and TERT and TPP1 mRNA 854 

expression. A) Leukocyte telomere lengths adjusted for age are from an ANCOVA 855 
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including 61 athletes and controls. Bars and whiskers indicate mean and standard 856 

error, respectively. Relative to controls, endurance athlete had increased TERT (B) 857 

and TPP1 (C) mRNA expression (athletes vs controls [relative expression ± SE]: 858 

68.31 ± 7.03 vs 34.07 ± 4.3, p < 0.001 and 31.39 ± 2.93 vs 21.53 ± 1.56, p = 0.004, 859 

respectively). Data are from Mann-Whitney U test. Correlations between TERT 860 

mRNA expression, V̇O2max (D) and resting heart rate (E). Correlations between TPP1 861 

mRNA expression, V̇O2max (F) and resting heart rate (G). Data are from Spearman’s 862 

correlations. **p < 0.01; ***p < 0.001. 863 
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 864 

Figure 4. Moderate amounts of exercise training and lower resting hear rates 865 

are associated with longer leukocyte telomeres. Telomere length was analysed 866 

in context with running (A) and cycling (B) distance, and V̇O2max tertiles (C). Similarly, 867 
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TERT (D, E and F) and TPP1 (G, H and I) mRNA expression was analysed in 868 

context with running, cycling and V̇O2max, respectively. Heart rate tertiles were 869 

formed and analysed in context with telomere length (J), TERT (K) and TPP1 (L) 870 

mRNA expression. Bars and whiskers indicate mean±SE from an ANCOVA, 871 

adjusted for age. *p < 0.05; **p < 0.01; ***p < 0.001. 872 


