PHYSIOLOGY OF DIGESTION IN THE MACROPODINE MARSUPIALS

A thesis submitted for the degree of Doctor of Philosophy of the University of New England

by

DAVID WILLIAM DELLOW B.Sc. (Massey)

> The Department of Biochemistry and Nutrition, The University of New England, Armidale, N.S.W., Australia.

> > December, 1979.

PREFACE

The studies presented in this dissertation were completed by the author while a postgraduate student in the Department of Biochemistry and Nutrition, the Faculty of Science, the University of New England, Armidale, N.S.W., Australia. Assistance given by other persons is indicated in the text or in the list of acknowledgements. All references cited are included in a bibliography. The work is otherwise original.

I certify that the substance of this thesis has not already been submitted for any degree and is not being currently submitted for any other degree.

I certify that any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

December 1979

D.W. Dellow

ACKNOWLEDGEMENTS

I sincerely thank my supervisor Dr I.D. Hume for his continued interest and encouragement throughout the study now presented. The assistance of Dr I.D. Hume and Dr T.M. Sutherland in discussions and in providing constructive criticism during the preparation of this manuscript is greatly appreciated.

I am also indebted to Dr J.V. Nolan and Dr P. Langer for many useful and stimulating discussions, and Dr V.J. Bofinger for advice on statistics.

My personal thanks to Mrs Lesley Jenkins for her help with many of the routine laboratory procedures, and to Mr F.M. Ball and Mr S. Stachiw for their advice and skilled technical assistance with the ¹⁴C and ¹⁵N analyses.

I wish to thank Professor M.A.E. Rex, Department of Veterinary Surgery, University of Queensland, for the use of an image intensifier and facilities during the radiology studies.

Thanks are also extended to Mr and Mrs C. Rogers, Megan, on whose property the <u>T. thetis</u> were trapped, to Mr G. Gray, Jeogla, on whose property the <u>M. giganteus</u> and <u>M. robustus robustus</u> were trapped, and to Dr H. Tyndale-Biscoe, CSIRO Wildlife Division, Canberra, for the <u>M. eugenii</u>. The macropodines were obtained and maintained in captivity under the provision of Licence No SLF 521 from the National Park Wildlife Service of New South Wales.

My personal thanks to Miss Dale Rosvall for the typing of this thesis.

The work presented in this thesis was undertaken while I was on study leave from Applied Biochemistry Division, DSIR, Palmerston North, New Zealand. This support is gratefully acknowledged. Last, but not least, I wish to thank my wife and my family for their considerable patience and moral support throughout the period of this study.

TABLE OF CONTENTS

CHAPTER			Page
PREFACE			ii
ACKNOWLE	DGEMENT	5	iii
LIST OF	FIGURES		xii
LIST OF	TABLES		xiv
ABBREVIA	TIONS		xvi
GENERIC	AND COM	MON NAMES OF MACROPODINE MARSUPIALS	xvii
SUMMARY CHAPTER		3	cviii
1 INTR	ODUCTIO	И	1
1.1	The rea	search topic	2
2 REVT	TEW OF T	HE LTTERATURE	4
2.1	Anaton	v of the digestive tract	° 4
C • 1	2.1.1	Anatomy of the stomach	4
	2.1.2	The large intestine	7
2.2	Passag	e of digesta through the ive tract	7
	2.2.1	Pattern of excretion of the marker	8
	2.2.2	Validity of the stained hay particle technique	10
2.3	Food i	ntake and digestion	11
	2.3.1	Intake requirements	11
	2.3.2	Digestibility of dry matter and fibre	12
2.4	Microb	ial digestion in the stomach	14
	2.4.1	Stomach microorganisms	14
	2.4.2	The stomach environment	15
•	2.4.3	Microbial activity in the stomach	15
		a) Volatile fatty acid production	15
		b) Ammonia	16
		c) Gas production	17
	2.4.4	Microbial protein production	18
2,5	Summar	\mathbf{y}	18

3	MATE	RIALS A	ND N	ETHODS	20
	3.1	Captur	e, c	are and maintenance of animals	20
	3.2	The ex	peri	mental diets	21
		3.2.1	Cho	opped lucerne hay	21
		3.2.2	Pha	laris aquatica	23
	3.3	Experi	ment	al feeding and collection	23
	3.4	Sedati	on,	anaesthesia and surgery	25
		3.4.1	Sed	ation and euthanasia	25
~		3.4.2	Sur	gical anaesthesia and techniques	26
	3.5	Analyt	ical	methods	27
		a) Dr en	y ma ergy	tter, organic matter and grcss	27
		b) То	tal	nitrogen	28
		c) Am	moni	a N	28
		d) Ur	ea N		28
		e) Ch	romi	um sesquioxide (Cr ₂ O ₃)	28
		f) Vo	lati	le fatty acids	29
		g) So	lubl	e and structural carbohydrates	29
		h) Li	pid	and silicon content of the diets	29
		i) Ga	s an	alyses	29
		j) ⁵¹	Cr-E	DTA and ¹⁰³ Ru-P	30
		k) ¹⁴	C ur	ea and tritiated water	31
		1) 14	C la	belled volatile fatty acids	31
		m) 15	N an	alysis	31
4	OBSEI OF CO	RVATION ONTRAST	S ON MED	THE ANATOMY OF, AND DISPERSION IUM IN, THE DIGESTIVE TRACT OF	
	MAUA)EODTINE:			
	4.1	Introd	ucti	on	33
	4.2	Materi	als	and methods	34.
		4.2.1	Ana	tomy	34
· .		4.2.2	Dim dig	ensions and capacities of the estive tract	. 35
		4.2.3	Rad	iology	35
	4.3	Result	s		36
		4.3.1	Sto	mach anatomy	36
			a) -	Topography of the stomach	37
			b)	The mucosal surface of the stomach lumen	42

5

PTER				Page
	4.3.2	Sto rob T.	mach structure of <u>M.</u> robustus ustus, <u>T. billarderi</u> and stigmatica	48
	4.3.3	Sto W. M.	mach structure of <u>Me. rufa</u> , <u>bicolor</u> , <u>M. rufogriseus</u> and parma	51
	4.3.4	- The	large intestine	52
	4.3.5	Phy dig	sical dimensions of the estive tract	53
	4.3.6	Rad	iological observations	54
		a)	Dispersion of contrast medium in the stomach	57
		b)	Dispersion of contrast medium in the large intestine	62
		c)	Contractions of the stomach wall	62
4.4	Discus	sion	4	63
	4.4.1	Sto	mach structure of the Macropodine	63
		a)	The forestomach epithelia	65
	4.4.2	Pro	portions of the digestive tract	66
	4.4.3	Mix the	ing and flow of digesta within stomach	67
4.5	Conclu	sion	· · · ·	68
THE	FLOW OF	DIG	ESTA ALONG THE DIGESTIVE TRACT	69
5.1	Intrody	ucti	on	69
5.2	Materi	als	and methods	70
	5.2.1	Exp	eriment 1	70
	5.2.2	Exp	eriment 2	71
	5.2.3	Exp	eriment 3	71
	5.2.4	Ana	lytical procedures	72
	5.2.5	Cal	culations	72
	5.2.6	Sta	tistical analyses	74
5.3	Result	S .	4°	74
	5.3.1	Exp	eriment 1	74
		a)	Kinetics of the fluid marker	77
		b)	Kinetics of the particulate marker	81
		c)	Differential flow of the two markers	81
		a)	Food intake	82

Page

CHAPTER

6

	5.3.2	Experiment 2. Kinetics of the two markers in the intestine	82
	5.3.3	Experiment 3. Flow of digesta along the digestive tract	84
5.4	Discus	sion	88
	5.4.1	Validity of the dual phase marker technique	88
	5.4.2	The pattern of appearance of the markers in the faeces	89
		a) Differential flow of the two markers	89
		b) Transit time	90
		c) The rate constants	91
	5.4.3	Stomach structure and flow of digesta	92
		a) The sheep '	92
		b) The macropodines	93
5.5	Conclu	ision	95
THE HERI WATI	APPAREN BAGE DIN ER METAN	NT DIGESTION OF A DRIED AND A FRESH ST, AND THE DYNAMICS OF ¹⁴ C-UREA AND BOLISM	97
6.1	Intro	luction	98
6.2	Mater:	ials and methods)0
	6.2.1	Experiments 4a, 4b; the balance experiments 14-	98
	6.2.2	Experiments 5a, 5b; C-urea and THO metabolism	99
	6.2.3	Calculations	100
		a) Urea metabolism	100
		b) THO metabolism	102
	6.2.4	Statistical analyses	103
6.3	Resul	ts	104
	6.3.1	Balance experiments	104
		a) Intake and digestion of chopped lucerne hay	104
		b) Intake and digestion of Phalaris	106
		c) Comparison of the two diets	106
		d) Nitrogen intake, excretion and balance	106
	6.3.2	2 Urea metabolism	107
	-	a) The chopped lucerne hay diet	107

Page CHAPTER 110 The Phalaris diet b) Effect of diet on urea c) 110 metabolism 113 Intake and metabolism of water 6.3.3 113 a) Experiment 5a 115 Experiment 5b b) Effect of diet on water **c**) 115 metabolism 116 6.4 Discussion Digestion of lucerne in sheep 6.4.1 116 and macropodines 116 Digestion of dietary fibre a) Digestion of Phalaris in T. thetis 6.4.2 118 and M. eugenii Validity of the ¹⁴C-urea and THO 6.4.3 119 techniques 121 Nitrogen and urea metabolism 6.4.4 122 Water and THO metabolism 6.4.5 122 6.5 Conclusion DIGESTION IN THE STOMACH AND IN THE INTESTINE 124 7 124 Introduction 7.1 125 Materials and methods. 7.2 125 7.2.1 Experimental procedure 127 7.2.2 Analyses 127 7.2.3 Calculations 128 Results 7.3 The pH and concentrations of VFA, 7.3.1 urea and ammonia in digesta fluid 128 128 a) pН 128 VFA . **b**) 132 c) Urea 135 d) Ammonia Intake and apparent digestion in 7.3.2 135 the digestive tract Apparent digestion in the a) 135 stomach The pattern of apparent b) 138 digestion in the stomach 144 Digestion in the intestine c) 144 Discussion 7.4

ix

8

			· ·	
	7.4.1	Dige: stom	stion in the macropodine ach	144
		a) !	The pattern of digestion	145
•		ъ) (Comparison among the species	145
		c)	Digestion of dietary protein	146
		d)	VFA, ammonia and the flow of digesta fluid	146
	7.4.2	Dige	stion in the intestine	147
7.5	Conclu	sion		147
				440
MICR	OBIAL A	CTIVI	TY IN THE FORESTOMACH	149
8.1	Introd	uctio	n	149
8.2	Materi	als a	nd methods	150
	8.2.1	Meas prod	urement of VFA and ammonia uction	150
		a)	Experiment' 7. Production of VFA <u>in vitro</u> in <u>M. giganteus</u>	150
		b)	Experiment 8. Production of VFA and ammonia in vitro in T. thetis, M. eugenii and sheep	151
	•	c)	Experiment 9. Estimation of VFA and ammonia production in vivo	152
	8.2.2	Sampl	ing of specimens in the field	154
	,	a) 2	tomach microflora	154
		b) S	tomach gas samples	154
	8.2.3	Anal	yses	155
	8.2.4	Calc	ulations	155
		a)	Rate of production of VFA in vitro	155
		b)	Production of VFA and ammonia in vivo	156
		c)	Incorporation of NH ₂ N into plasma urea N and ⁹ bacterial	457
			N	127
8.3	Result	ts		158
	8.3.1	Expe	eriment 7	1,0
	8.3.2	Expe	eriment 8	460
		a)	Production of VFA in vitro	100
		b)	Production of ammonia in vitro	102
	8.3.3	Exp	eriment 9	102
		a)	Production of VFA in vivo	102
		<u>ъ)</u>	Production of ammonia in vivo	163

x

9

	•	c)	Transfer of ammonia N from the macropodine forestomach	166
	8.3.4	Fie	ld observations	168
		a)	Stomach capacity and organic matter content of stomach digesta	168
		b)	Plasma urea, and ammonia and VFA in digesta fluid	169
		c)	Stomach microflora	169
		d)	Stomach gas composition	170
8.4	Discus	sion	1	172
	8.4.1	Mic	crobial production of VFA	172
	8.4.2	Mic	crobial production of ammonia	173
	8.4.3	Irr fro	reversible loss of ammonia N om the forestomach	176
	8.4.4	St¢ fi€	omach microbial activity in eld macropodines	179
8.5	Conclu	sior	1	180
GENE	RAL DIS	CUSS	SION AND CONCLUSIONS	181
APPE	NDIX		й. Г	188
ਸਕਾਰ	PENCES			193
ברבינות			•	

LIST OF FIGURES

2.1	Stomach of Macropus giganteus	ל י
4.1	External features of the stomach of <u>M. giganteus</u> , <u>M. eugenii</u> and <u>T. thetis</u>	38
4.2.a	Stomach and intestine of M. giganteus	40
4.2.b	Caecum-proximal colon of T. thetis	40
4.3.a	Squamous epithelium in the stomach of \underline{T} . thetis and \underline{M} . <u>giganteus</u>	43
4.3.0	Cardiac glandular epithelium in the stomach of \underline{T} . thetis and \underline{M} . giganteus	44
4.4	The mucosal surface of the stomach of <u>M. giganteus</u> , <u>M. eugenii</u> and <u>T. thetis</u>	45
4.5	Gastric sulcus of the pouch young <u>M. giganteus</u>	47
4.6	The stomach of M. robustus robustus	49
4.7	The stomach of T. billarderi	50
4.8	Left lateral (diagrammatic) view of the stomach in situ (M. giganteus)	56
4.9	Schematic presentation of the dispersion of contrast medium in the macropodine stomach	58
4.10	Dispersion of contrast medium in the stomach of M. giganteus and M. eugenii	60
4.11	Dispersion of contrast medium in the stomach of <u>T</u> . <u>thetis</u>	61
4.12	Schematic presentation of the contractions of the forestomach wall	64
5.1	Experiment 1. The pattern of excretion of ^{>1} Cr-EDTA and ¹⁰³ Ru-P in the faeces, of sheep and four species of macropodines,	75
_	after a single oral infusion	()
5.2	percentage recovery curves of 51Cr-EDTA and 103Ru-P for sheep and macropodines	79
5.3	Experiment 2. The pattern of excretion of $51_{Cr-EDTA}$ and 103_{Ru-P} in the facces of <u>T</u> . thetis and <u>M</u> . eugenii after a single infusion into the hindstomach	83
6.1	Experiment 5.14 The pattern of urinary excretion of ⁴ C-urea and THO in one <u>T. thetis</u> and one <u>M. eugenii</u> after a single intramuscular injection	101

Page

. FIGURE

6.2	Experiment 5. Urea metabolism in <u>T. thetis</u> and <u>M. eugenii</u> . Regression relationships between : nitrogen intake and urea entry rate; nitrogen intake and urea excretion rate; nitrogen intake and urea degradation rate	111
7.1	Schematic representation of regions of the macropedine digestive tract, the sites sampled, and the notation used for the tabulated results	129
. 7.2	Experiment 6. The apparent flow (g/d) of; (a) organic matter, (b) acid- detergent fibre, (c) crude protein, (d) total soluble sugars, along the stomach of <u>M. giganteus</u>	140
7.3	Experiment 6. The apparent proportion remaining (%) of the digestible component of dietary constituents flowing along the stomach of. <u>M. giganteus</u>	142
8.1	Schematic representation of the production, absorption and flow of VFA (mM/d) in the stomach of <u>M</u> . <u>eugenii</u> and <u>T</u> . <u>thetis</u>	174
8.2	Schematic representation of the irreversible loss and net flow of ammonia N in the stomach of <u>M. eugenii</u> and <u>T. thetis</u>	177

LIST OF TABLES

(abbreviated titles)

TABLE		PAGE
2.1	Dry matter intake and excretion times in three species of macropodines and sheep fed chopped lucerne hay <u>ad libitum</u>	9
2.2	Dry matter intake and apparent digestibility of dry matter and fibre in macropodines and sheep fed chopped lucerne hay	13
3.1	Chemical composition of the two experimental diets and composition of the mineral/vitamin mix	22
4.1	The relative capacities and dimensions of regions of the digestive tract of <u>M. eugenii, T. thetis</u> and <u>M. giganteus</u>	55
5.1	Experiment 1. Transit times, 10%, 50% and 90% excretion times and half-times for 51Cr-EDTA and ¹⁰³ Ru-P in sheep and macropodines	78
5.2	Experiment 2. 'Kinetics of digesta flow in the intestine of <u>T. thetis</u> and <u>M. eugenii</u>	85
5.3.a	Experiment 3. Dry matter intake and water intakes, flow of the fluid and the particulate phases of digesta along the digestive tract, and dry matter content of digesta in <u>T</u> . <u>thetis</u> and <u>M</u> . <u>eugenii</u>	86
5.3.0	Experiment 3. Means of the half-time for each marker in the three main regions of the stomach, and the caecum-proximal colon, and retention time in the colon of <u>T. thetis</u> and <u>M. eugenii</u>	87
6.1	Experiment 4. Intake and digestion in sheep and three species of macropodines fed chopped lucerne hay, and in two species of macropodines fed fresh Phalaris grass	105
6.2	Experiment 4. Nitrogen intake, excretion and retention in sheep and three species of macropodines fed chopped lucerne hay, and in two species of macropodines fed fresh Phalaris grass	108
6.3	Experiment 5. Nitrogen intake and "C- urea kinetics in <u>T</u> . thetis and <u>M. eugenii</u> fed chopped lucerne hay and fresh <u>Phalaris</u> grass	109
6.4	Experiment 5. Intake and excretion of water and body water kinetics in <u>T</u> . thetis and <u>M. eugenii</u> fed chopped lucerne hay and fresh <u>Phalaris</u> grass	114

PAGE

130

TABLE The pH of digesta in T. thetis, 7.1 M. eugenii and M. giganteus

7.2

7.3

7.4

7.5

7.6

7.7

8.1

8.2

8.3

8.4

The concentration of total VFA (μ M/ml) in digesta fluid in <u>T</u> . thetis, <u>M</u> . eugenii and <u>M</u> . giganteus	131
The proportions (%) of the individual volatile fatty acids in digesta fluid from the forestomach and the caecum-proximal colon of T. thetis, M. eugenii and	133
<u>M. giganteus</u> The concentrations of urea-N (mg N/100 ml)	177
in plasma and digesta fluid in <u>T</u> . thetis, <u>M. eugenii</u> and <u>M. giganteus</u>	134
The concentration of ammonia N (mg N/100 ml) in digesta fluid in <u>T. thetis</u> , <u>M. eugenii</u> and <u>M. giganteus</u>	136
Experiment 6. Intake and the apparent digestion of dietary constituents in the digestive tract of <u>T</u> . <u>thetis</u> , <u>M</u> . <u>eugenii</u> and <u>M</u> . <u>giganteus</u> ,	137
Experiment 6. The apparent flow of organic matter (g/d) along the stomach of <u>T. thetis</u> , <u>M. eugenii</u> and <u>M. giganteus</u>	139
Experiment 7. Production of VFA in vitro in the forestomach and the caecum-proximal colon of M. giganteus	159
Experiment 8. Production of VFA and NH ₃ in vitro in the forestomach of <u>T. thetis</u> , <u>M. eugenii</u> and sheep.	161
Experiment 9. Production of VFA in vivo in T. thetis, M. eugenii and sheep	164
Experiment 9. Net production of ammonia N in the forestomach of T. thetis,	
M. eugenii and sheep	165

The transfer of ammonia 8.5 Experiment 9. 167 N from the macropodine stomach The composition of forestomach gas and 8.6 pH of forestomach digesta fluid in macropodines shot in the field

171

LIST OF ABBREVIATIONS

ADF		acid-detergent fibre		
CP	-	crude protein		
CPC	-	caecum-proximal colon		
51 Cr-EDTA		⁵¹ Cr complex of ethylenediaminetetra-acetic acid		
đ	-	day		
DC	•••	distal colon		
DE		digestible energy		
DM .		dry matter		
DOM		digestible organic matter		
ET	-	excretion time		
g	-	gram		
h	-	hour		
HS	-	hindstomach		
I.L.		irreversible loss		
k	6×10	fractional, rate constant		
$\texttt{kgW}^{\mathbf{X}}$	-	body weight, in kilograms, raised to the power of x.		
l, ml		litre, millilitre		
μCi		microcurie		
min		minute		
mM, M	-	millimoles, moles		
N		nitrogen		
NAN	-	non-ammonia nitrogen		
OM		organic matter		
RT	-	retention time		
103 _{Ru-} P		¹⁰³ Ruthenium-labelled tris (1,10- phenanthroline)-ruthenium II chloride		
s.e.	-	standard error		
SFS	**	sacciform forestomach		
SI		small intestine		
T1		half-time of a marker		
TFS		tubiform forestomach		
THO	-	tritiated water		
TT	—	transit time		
(U- ¹⁴ C)		uniformly labelled compound		
VFA	-	volatile fatty acids		

GENERIC AND COMMON NAMES OF MACROPODINE MARSUPIALS

<u>Macropus eugenii</u>	-	tammar wallaby
M. giganteus	-	eastern grey kangaroo
M. parma	· -	parma wallaby
<u>M. parryi</u>	-	whiptail wallaby
M. robustus cervinus	-	western euro
M. robustus robustus	- "	eastern wallaroo
M. rufogriseus	: . -	red-necked wallaby
Megaleia rufa	, 	red kangaroo
Petrogale penicillata	_	brush-tailed rock-wallaby
Setonix brachyurus	-	quokka
Thylogale billarderi	-	red-bellied pademelon
T. stigmatica	-	red-legged pademelon
T. thetis		red-necked pademelon
Wallabia bicolor	-	swamp wallaby
Dorcopsis luctuosa	-	New Guinea wallaby
Dendrolagus spp.	-	tree kangaroos
Largorchestes spp.		hare-wallabies
<u>Onychogalea</u> spp.		nailtail wallabies

SUMMARY

The macropodines (kangaroos and wallabies) are herbivorous marsupials with a digestive system comparable to the ruminants. Ingested food is subjected to extensive microbial fermentation and modification in a capacious forestomach and secondary fermentation occurs in the caecum-proximal colon. The macropodine stomach is essentially a long tubular structure, markedly different to that of the ruminants, and relationships between stomach structure and digesta flow have not been previously investigated. Similarly, little is known of the mode of microbial activity in the forestomach and quantitative estimates of the extent of microbial fermentation have not been reported.

The present comparative study was undertaken to examine some of these aspects of the physiology of fermentative digestion in three macropodine species; <u>Thylogale thetis</u> (red-necked pademelon), <u>Macropus</u> <u>giganteus</u> (eastern grey kangaroo) and <u>Macropus eugenii</u> (tammar wallaby). These species represent adaptation to widely different habitats. Reference was also made to other macropodine species and some direct comparisons were made with sheep.

1. Differences in structural features and dimensions of the stomach occurred among the three species and were defined. Radiographic techniques were used to determine the initial dispersion pattern of orally infused contrast medium in the forestomach of adult animals. This varied among the three species and was related, in particular, to the position of the cardia and the degree of development, or absence, of a gastric sulcus (oesophageal groove).

2. The dynamics of flow of the fluid and particulate phases of digesta along the digestive tract of the three species were defined. The pattern of flow of digesta through the macropodine stomach was very different to that observed in sheep and defined as tubular flow. Ingested food entering the cranial regions of the stomach slowly traversed the length of the forestomach but total mixing of forestomach contents did not occur. In addition, the fluid phase of digesta traversed the forestomach more rapidly than the particulate phase but this was not due to preferential retention of larger dietary particles. A similar pattern of digesta flow was observed in both <u>T</u>. thetis and <u>M</u>. eugenii when fed either chopped lucerne hay or fresh <u>Phalaris aquatica</u> grass.

3. Parameters of intake and digestibility were measured in all three species, and sheep, fed chopped lucerne hay and in <u>T</u>. <u>thetis</u> and <u>M</u>. <u>eugenii</u> fed fresh <u>Phalaris</u>. All species were similar in efficiency of utilisation of acid-detergent fibre but less efficient than the sheep. <u>M</u>. <u>eugenii</u> maintained nitrogen balance on a much lower <u>ad libitum</u> intake of diet than observed in the other species.

4. The dynamics of ¹⁴C-urea and tritiated water (THO) metabolism were examined in <u>T</u>. <u>thetis</u> and <u>M</u>. <u>eugenii</u>. In both species a similar proportion of urea was recycled to the digestive tract and degraded by microorganisms. This was observed on both diets. However, THO turnover was faster in <u>T</u>. <u>thetis</u> and independent of diet. Collectively, the results suggested that <u>M</u>. <u>eugenii</u> may have a lower standard metabolic rate than <u>T</u>. <u>thetis</u>, rather than a more efficient mode of fermentative digestion.

5. Quantitative estimates of the partitioning of digestion in the stomach and intestine were measured in the three species fed chopped lucerne hay. Apparent fermentation of dietary constituents in the forestomach were extensive and similar in all three species and comparable to published estimates for the sheep. A pattern of decreasing rate of apparent digestion of dietary constituents along the length of the forestomach was defined and related to the tubular pattern of digesta flow. Among the three species, minor differences in the extent of digestion in different regions of the forestomach were related to stomach structure.

6. Estimates of microbial activity in the forestomach were obtained by <u>in vitro</u> and <u>in vivo</u> techniques. Microbial production of volatile fatty acids and ammonia and incorporation of ammonia nitrogen into bacterial protein were measured <u>in vivo</u> in <u>T. thetis</u> and <u>M. eugenii</u> fed chopped lucerne hay. Estimates were similar for both species. The efficiency of microbial utilisation of dietary organic matter and nitrogen was similar in both species and although comparable to published estimates for the ruminants, the mode of microbial activity in the macropodine forestomach is very different.