
CHAPTER 5

EXTENSIONS TO THE BASIC DEA MODEL

FOR THE SELECTION OF OPTIMAL PATHS OF

ADJUSTMENT

5.1 Introduction

As previously stated, the main purpose of this thesis is the identification of optimal

paths of adjustment under DEA for handling the observed production data of a set of

comparable firms. Chapter 4 presents a basic DEA model for the selection of optimal

paths of adjustment. The basic DEA model is derived from the fundamental dual DEA

formulation. ) This chapter presents extensions to the basic model in Chapter 4. The

extensions are aimed to improve the basic model for practical applications.

The basic model optimises the present value of a profit function that includes the

revenue along the time horizon, the period-to-period costs of inputs used for producing

the outputs sold, and the period-to-period costs of adjusting the inputs.

1 The fundamental dual DEA problem, defined by equation (3.5.1), consists of a profit maximisation
objective function with the boundary of the technology described by X X _� xe, FX �ye and X � 0.
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The basic model considers symmetric costs of adjustment of inputs. This means that

the costs of increasing and decreasing an input are the same. Section 5.2 presents the

model of optimal paths of adjustment with asymmetric costs of adjustment. The basic

model has implicit that the time of adjustment and the time horizon are the same. For

cash flow evaluation purposes, Section 5.3 considers a time horizon longer than the

time of adjustment. Section 5.4 presents an example that includes both asymmetric

costs of adjustment and a time horizon longer than the time of adjustment. Section 5.5

presents the model of optimal paths of adjustment with dynamic (time-variable)

outputs. Section 5.6 presents an example with dynamic outputs, asymmetric costs of

adjustment, and period-to-period variable input prices, output prices, and costs of

adjustment. Section 5.7 presents the incorporation of quasi-fixed (nondiscretionary)

variables and an example. Section 5.8 presents the incorporation of a capital

investment constraint. Section 5.9 presents the general model of optimal paths of

adjustment with a dynamic (time-variable) boundary of technology. Without loss of

generality, the improved models consider input-orientated systems and constant

returns-to-scale technology. The output-orientated systems and variable returns-to-

scale cases are trivial extensions. Section 5.10 presents conclusions.

5.2 Optimal Paths of Adjustment: Asymmetric Costs of Adjustment

This section considers asymmetric costs of adjustment, which is more realistic than

symmetric costs of adjustment. Asymmetric costs of adjustment modify the cost of

adjustment part of the objective function, the budget and the transition constraints. The

modification makes explicit the character of increasing or decreasing inputs and of the
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corresponding price. Let x and xi; denote increases and decreases in inputs; w + and

w - denote the costs of increasing and decreasing inputs, respectively. The modified

mathematical expressions are:

T

maximise { Irk = E [s t (yk p-xkt w )— s t_1 (XL W + ± X kt W )1
4a- ,X kg ,),	 t=1

(5.2.1)

subject to the budget constraint,

x+ w+ +x w- < b 'la	 kt	 — kt 5

and the transition equation,

Xkt = Xkt-1+ X la+ - X ki- .

5.3 Optimal Paths of Adjustment: Time Horizon Longer than Adjustment Time

This section considers a time horizon that is greater than the adjustment time. The

basic model considers that there is no difference between the time horizon and the

adjustment time. However, it is more realistic that those times be different. Section 4.2

defines the concepts of time horizon and adjustment time (or time of adjustment).

If we view the adjustments of input quantities as an investment project, then the time

of adjustment represents the number of periods during which investments are done.

The investment is the period-to-period cost of adjustments. The number of periods that

a firm effectively uses to perform the adjustment, ta, is constrained by the maximum

prefixed time of adjustment, t: .
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As stated in Chapter 4, the time horizon is the pre-fixed number of periods that

management considers for the economic evaluation of each specific investment

project. In most cases, the number of periods considered for economic evaluation of an

investment project is larger than the number of periods the investment is done.

Because the savings derived from input adjustments are evaluated over the time

horizon, the present value of savings may be larger than the present value of costs of

adjustment that are evaluated only over the time of adjustment. Increasing the time

horizon increases the present value of savings. In Appendix 7 we demonstrate that,

with a constant time to adjust inputs, ta, the present value of profit increases with

increases in the time horizon.

This extension to the basic model modifies the budget constraint and transition

equation, making explicit the period of time for which they are valid. We also include

the constraint that the time taken to adjust inputs has to be less than or equal to the

time of adjustment. The modified mathematical expressions are:

Xki+ W+ ± Xkt- W- � bla , t = 1, 2, ..., ta	(Budget constraint) 	 (5.3.1)

xkt = xkt_i+ x a - xkt- , t = 1, 2, ..., ta	(Transition equation)

ta < tc*, .
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5.4 Example: Asymmetric Cost of Adjustment and Time Horizon Greater than

Adjustment Time.

This section presents an example of the modified model for the selection of optimal

paths of adjustment. The modified basic model includes asymmetric costs of

adjustment and a time horizon greater than the adjustment time. Without loss of

generality, we assume a constant returns-to-scale technology.

Consider the data of Table 3.1. We wish to determine the optimal path of adjustment

that maximises the present value of profit over a five-period adjustment time and eight-

period time horizon. The asymmetric adjustment costs (and the original data from

Table 3.1) are presented in Table 5.1.

Table 5.1: Inputs, Outputs, Prices, and Costs of Adjustment for Five Firms

Quantity at t = 0

Firm k y ikt Xikt X2kt

1 100 100 100

2 110 90 149

3 120 150 85.9

4 115 133 189

5 103 152 61

Price 8.0 2.0 3.0

Adjustment

Cost

Increase 0.8 1.2

Decrease 1.1 2.0
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Additionally, consider a rate of discount of 9.0 per cent by period and assume that the

budget constrains the expenditure of costs of adjustments up to $20.0 for the first

adjustment period, and up to $30.0 for the second adjustment period. Under these

conditions, the problem for firm 1 is:

8
maximise {71- =E[ s t (100x 8.0 – xllt x 2.0– X21t x3.0)1

.4, ,xL ,A, t=1
(5.4.1)

–	 _

– st-1 (x llt x1 ' 1+ x 4 x	 +2.0+x x 0.8+x + x12)11
21t	 llt	 1t	 •

subject to

Budget for period 1:

	

x1+11 x 0.8+ x111 x1.1+ x211 	 -Fx x 2.0 <200 .

	

211	 211	 -	 • 9

Budget for period 2:

x1+12 x0.8+ x11 2 x1.1+ x+ x1.21-x - x 2 0 <300 .

	

212	 212	 -	 • 9

Transition equations:

X111 = X111-1 + x111 - x11t }

X21t = X21t-1 + x21t X-21t	 21t

t =1,2,3,4,5 ;

Time to adjust inputs is less than or equal to the adjustment time, t a < 5;

boundary of technology at t = 1,2,3,4,5;

100 211 +90 221 +150 231 +133 241 +1 52 251 � X111

100 Alt +149 221 +85.9 231 +189 241 +61 .1,5,‹ X211

100 Ait +110.12t +120 231 +115 241 +103 251 > 100

= 	
X kT WEEt 	, t=1,2,3,4, 5 (Economic efficiency measurement); and
Xkt W

all variables are positive.
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It is assumed that at the start of the adjustment period 5, or earlier, the firm has

achieved the target input quantity vector and persists indefinitely with this optimal

input quantity vector. The evaluation of profit is along the time horizon of eight

periods.

As stated in the conclusions section of Chapter 4, the representation of the boundary of

the technology in five adjustment periods may be understood as five basic DEA

problems linked by the transition constraints and the objective function.

Similar LP problems must be written for firms 2, 3, 4 and 5. Table 5.2 shows the

optimal paths of adjustment for the five firms. As in Table 4.2, we use the extended

notation, ilekt ' to display unambiguously the weights of peers. In the extended notation,

e stands for the firm that is evaluated, whose profit is maximised, where e = 1, 2, 3 ,4,

5; k stands for the peer of Firm e„ k= 1, 2, 3, 4, 5; and t stands for the period to adjust

inputs, t = 1, 2, 3, 4, 5. Technical and economic efficiency measurements are included.

Comparison of Targets for Cobb-Douglas and DEA

The purpose of this subsection is to compare the target input quantity vectors

determined by the Cobb-Douglas and the DEA approximations of the production

function.

Consider that the data of Tabla 5.1 may be well represented by the Cobb-Douglas

production function, y = .4 6 x2" , as we presented in the Section 2.5.

In this case, for each of the five firms, there are two scenarios that determine two

different target input quantity vectors.
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Table 5.2: Optimal Path of Adjustment, Asymmetric Costs of Adjustment, and the
Time Horizon Greater than the Time of Adjustment

Firm 1 2 3"' 4 5

,/,
0

71

11-...•._,o

Y 100 110 120 115 103

xi 100 90 150 133 152

x2 100 149 85.9 189 61

TE 1.0 1.0 1.0 0.7567 1.0

EE 0.9295 0.8154 1.0 0.6416 0.9829

a.)

74

A°

ir„	 x 125.00 137.50 150 143.75 128.75

.7c2 71.585 78.742 85.9 82.32 73.731

TE 1.0 1.0 1.0 1.0 1.0

EE 1.0 1.0 1.0 1.0 1.0

H
Z
W

H

.1-,
0

'‹
°-'

Ell
a.,
0

.-8
•-.,
ta.,
t
.,,
;)
€1
.t

xi 105.83 94.00 150 133.00 140.62

x2 93.261 141.2 85.9 179.00 67.233

TE 1.0 1.0 1.0 1.0 1.0

EE 0.9453 0.8359 1.0 0.6656 0.9912

ilekl 2111	 0.763
2131	 0•197

2211	 0.220

2231 =0.800

A331 = 1 .0 2421	 0.508

x451 =0.575

2531=0.420

2 1 =0.51055 

N
'-,0•,-

el,)'-'f:1-(

72)
-5.

)
±-f

xi 114.82 100.00 150 133.00 128.75

x2 83.152 129.50 85.9 164.00 73.731

TE 1.0 1.0 1.0 1.0 1.0

EE 0.9700 0.8687 1.0 0.7051 1.0

Aek2 21 12 =0 '407

2132 =0.494

2212	 0.550
2232=0.500

2332	 1•0 2422 =1•048 2532 -0•853

-ia '0
11)	 -4'-'
..... '

;734 •2
•c	 t

ra4

xi 125.0 137.50 150 143.75 128.75

x2 71.583 78.742 85.9 82.32 73.731 

TE 1.0 1.0 1.0 1.0 1.0

EE 1.0 1.0 1.0 1.0 1.0
1

Aekt Ant	 0•833 2231=0.917 2331 =1.0 2431 =1.0 2532 =0•853

(1) Firm 3 is a peer for all firms, because it is the profit efficient firm.
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The first scenario is the minimisation of the costs of inputs. The mathematical

( 0.4 w  
"0.4

1	expression that defines the optimal quantity of the input 1 is x1*1 = y	 and
0.6 w2

of input 2 is x21 = y
(0.4 

x 	
1)0.6

, where xl*, is the optimal quantity of input 1, first
0.6 w2

scenario; x12 is the optimal quantity of input 2, first scenario; and w 1 and w2 are the

prices of one unit of inputs 1 and 2, respectively.

The second scenario is the minimisation of the sum of the present value of the costs of

inputs and the present value of the costs of adjustment of inputs. The present value of

the costs of inputs is evaluated over the prefixed horizon time, T. Assuming that input

1 increases from the initial quantity to the target, and that input 2 decreases, the

mathematical expression for the inputs 1 and 2 that minimise the sum of the present

value of inputs and the present value of the costs of adjustment of inputs is

)-
0. wi x f + WIl 

0.4	

'' 1 y
(0.4 II), x f +WIl 

0.6
 

forxx;	 an= y	 for input and .x;; = x
0 6 w x f —WD2•	 2	 0.6 w2 x f — WD2

input 2, where xr, is the optimal quantity of input 1, second scenario; x im2 is the

optimal quantity of input 2, second scenario; f is the present worth factor of the cost of

inputs over the prefixed time horizon; w 1 and w2 are as previously defined; WI1 is the

cost of increasing one unit of input 1; and WD2 is the cost of decreasing one unit of

input 2.2

2 From Table 5.2, firm 1 increases input 1 from 100 to 125.0 and decreases input 2 from 100 to 71.583
units.
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The second scenario reduces to the first if the costs of adjustment of inputs are zero.

Increasing the cost of adjustment increases the difference between the respective input

targets. Increasing the rate of discount, i, and increasing the time horizon increases f

Increasing f decreases the difference between the respective input targets. Nonetheless,

f has a finite value for an infinite time horizon. The largest value off is the reciprocal

of the rate of discount, r. The rate of discount is expressed in per unit terms.

The conclusion is that for a Cobb-Douglas production function, the target input

quantity vector that minimises the cost of inputs is different from the target input

quantity vector that minimises the sum of the present value of the costs of inputs and

the present value of the costs of adjustment of inputs.

For firm 1, Table 5.3 presents the input targets under both scenarios for the Cobb-

Douglas production function. The second scenario includes the input targets for the

largest value of f, which corresponds to a time horizon of infinite periods, and the

targets for a time horizon of eight periods. The values of Table 5.3 are determined with

the data of Table 5.1.

Consider now that the data of Table 5.1 are well represented by a DEA production

function, as we presented in the example of this Section. As in the Cobb-Douglas

production function case, for each of the five firms there are two scenarios that

determine two different target input quantity vectors.
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The first scenario is the minimisation of the costs of inputs. Figure 4.1 presents the

isocost line PP" that is tangent to the DEA boundary of the technology at firm 3 with

minimum costs of inputs. The slope of the isocost line is the ratio of the input prices.

Although it is not possible to determine a priori the value of the optimal inputs, we

know that they are on the lines that have slope (-w2/wi). From Figure 4.1, the minimum

costs of inputs is at firm 3, as long as the slope of the isocost line is larger than the

slope of the line defined by the firms 5 and 3, -m 53 , and smaller than the slope of the

line defined by the firms 3 and 1, -m31.

The second scenario is the minimisation of the sum of the present value of the costs of

inputs and the present value of the costs of adjustment of inputs. The present value of

the costs of inputs is evaluated over the prefixed horizon time, T.

Again, assuming that input 1 increases from the initial quantity to the target, and that

input 2 decreases, the sum of the present value of the costs of inputs and the present

value of the costs of adjustment of inputs is

PV = (wi x i"; +(w2 x2": -F( x i"; - x io)W11+(x20- x2, )WD2,

where x10 and x20 are the initial values of inputs 1 and 2, and the other variables and

parameters are as defined for the Cobb-Douglas case. Arranging terms, the expression

becomes

PV = (mt.+ WH)	 (w2f - WD2)	 + x20 WD2 - x10WH,

and the values of the optimal inputs xm and x21 are on the line which slope is

(w2f - WD2) 1(wif + WH).

Then, so long as

-m53 < -w2/144 < -m31 , and -m53 < - (w2, f - WD2) l(wif +WH)< -m31,
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there is only one target for inputs 1 and 2. This is an important difference from the

Cobb-Douglas case. While the Cobb-Douglas production function determines a

continuous change of the target inputs for continuous changes of parameters, the DEA

production function determines discrete changes of the target inputs for continuous

changes of parameters.

For firm 1, Table 5.3 presents the input targets for the data of Table 5.1 with DEA

production function. For this example, the input targets are independent of the scenario

involved. Without loss of generality, for both production functions and both scenarios,

the two target input quantity vectors are determined assuming that the adjustments are

done completely in the first adjustment period; this implies that there are no budget

constraints.

Table 5.3: Input Targets for Firm 1

Cobb-Douglas DEA

First
Scenario

Second Scenario

Time Horizon
Infinite Periods

Time Horizon
Eight Periods

Time Horizon
Eight Periods

Input 1 138.32 133,09 127.37 125.00

Input 2 61.474 65.167 69.5655 71.583

Cost of
Inputs

461.05 461.58 463.44 464.75

Conclusions from this Example

From the solution to this example, the main conclusions are the same as those derived

from the solution to the basic model in Section 4.4. Although the conclusions are the

same, the modified model is more realistic than the basic one. Nonetheless, it has to be
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pointed out that the modifications to the basic model do not modify the structure or the

basic concepts on which the basic model was developed.

This example illustrates the effect of a time horizon greater than the time of

adjustment. In this example, firm 5 performs adjustments to reach the target levels, but,

in the example of Section 4.4, firm 5 did not perform adjustments because the present

value of the costs of adjustment was larger than the present value of savings. In

Example 5.4, firm 5 performs adjustments because the present value of savings is

evaluated for three periods after the target input quantity vector is achieved. In this

case, the present value of savings is larger than the present value of the costs of

adjustment. In Appendix 7, we determine that increasing the time horizon over the

time of adjustment improves the economic feasibility for making the adjustments.

In general terms, the targets determined with a Cobb-Douglas production function

change with continuous changes of the parameters, the DEA production function

determines discrete changes of the target inputs for continuous changes of the

parameters. This is an important property of LP DEA, because some managers may

feel more confident when pursuing input targets if these are independent among

scenarios.

5.5 Optimal Paths of Adjustment: Dynamic Outputs

This section considers dynamic outputs. The basic model considers that outputs do not

change along the time horizon. In this section, we present a model of optimal paths of
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adjustment with dynamic outputs. The term dynamic output stands for outputs that

change its quantity from period to period, without modification of the technology.

Future period-to-period target output quantity vectors may be estimated by experts or

may be set by managers.

The existence of dynamic outputs implies that as long as the output quantity vector

changes from period to period, the input quantity vector will also change from period

to period. With dynamic output quantity vector, as long as outputs change over the

time horizon there are period to period specific target input quantity vectors for each

particular output quantity vector, and because of this there are no practical reasons for

differentiating the time horizon and the time of adjustment.

This extension to the basic DEA model modifies the objective function and the output

quantity vector on the right hand side of the boundaries of the technology. The

modified mathematical expressions, including asymmetric costs of adjustment are

presented in problem (5.5.1), where the subscript t indicates that a variable may change

from period to period. These mathematical expressions allow for changes in input and

output prices from one period to the next. The economic efficiency at time of

adjustment t, EEt is measured as the ratio of the cost of optimal input quantity vector at

t, over the cost of input quantity vector at t.

maximise { 2rk =E[st ( yk, P t - exit, w t )–s t_ 1 (xkt÷ wt + xkt- w,-)]
t ,Xki	

t=1

subject to the boundary of the technology,

Ykr=Ykr}l � t � T;
X?■, = x kt

and the transition equation,

(5.5.1)
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Xkt = Xict-1± X kt+ — X kr

	
t=1, 2, ..., T.

The significant difference between period to period constant output quantity vectors

and period to period variable output quantity vectors is that at each period the

corresponding expected or forecasted output quantity vector replaces the constant

output quantity vector. This case is equivalent to solving as many basic static DEA

models as time horizon periods are; each model has a specific output quantity vector.

5.6 Dynamic Outputs Example

This section presents another example of a modified model for the selection of optimal

paths of adjustment. The modified basic model includes dynamic outputs and period-

to-period variable asymmetric costs of adjustment, input prices, output prices and costs

of adjustment variable with time. We continue to assume a constant returns-to-scale

technology.

Consider the data of Table 3.1. We determine the optimal path of adjustment that

maximises the present value of profit over an eight-period time horizon. The

asymmetric adjustment costs (and the original data from Table 3.1) are presented in

Table 5.1.

Data for estimating the expected future values of outputs, input prices and output

prices, and of costs of adjustment are presented in Table 5.4. The values of the
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expansion factors in Table 5.4 are the ratios of the value of a variable of interest at

time t over the value at time 0. The period-to-period variation of prices and costs of

adjustment does not necessarily follow the assumption of ordinary differential equation

for expectations of Luh and Stefanou (1996), which were presented as equations

(2.8.5) to (2.8.8).

Let yfyi, denote the expansion factor for outputs; v pi, the expansion factor for output

prices; v	 tp,„	 anthe expansion factor for input 1 prices; ,„ the expansion factor for input,,	 2, 

2 prices; yiw., the expansion factor for cost of adjustment of input 1; and yrwll 
the

expansion factor for cost of adjustment of input 2. Without loss of generality, we

assume that the dynamic expansion factors of Table 5.4 are valid for all firms.

Table 5.4: Expansion Factors for Estimating Outputs,

Prices and Costs of Adjustment at Period t

Period t 0 1 2 3 4 5 6 7 8

Vy, 1.000 1.025 1.045 1.070 1.095 1.120 1.150 1.175 1.200

Wpj, 1.000 1.012 1.025 1.035 1.050 1.060 1.075 1.085 1.100

Vw„ 1.000 1.010 1.020 1.030 1.040 1.050 1.060 1.070 1.080

Vi ,,,,,,
1.000 1.006 1.010 1.018 1.025 1.030 1.038 1.045 1.050

4 1.000 1.006 1.010 1.018 1.025 1.030 1.038 1.045 1.050 

///,,„; 1.000 1.015 1.035 1.055 1.070 1.090 1.110 1.130 1.150

With these conditions, the problem for firm 1 is:
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8

maximise {71-1 =E[ st (100vy, x 8.0/gpt – x11 , x 2.0v,vit – x21 , x 3.0 cvn, )
xkr rrkt	 t=1

- S t-1 (X/it X 1.1v , + x21 , x2.0y/wzt + 4, t x0•8Y N,lt 
+ x2-4-1t x1.2y/ w1 )] }
	

(5.6.1)

subject to the transition equation,

Xlit = X1 It-1 + X - X11,It 	 t =1,2,. • •,8 ;
X21t = X211-1 + X211 - x211

the boundary of the technology for adjustment period t, t =1,2,• • :

1004 +90k2, + 150k3t +133k4t +152X5t � x111

100X5t +149X51 +85.9X51 +189X51 +61k51 x211

100k i1 +110k2t +120k3t +115X4t +103X5t > 100 yfyit ;

and

all variables are positive.

X21t
The economic efficiency is measurement is EEt 	

lt x 2.0Wwu +	 x 3.0Tw2,xl

t =1,2,. • -,8

There are two important differences between this model and the model given by

problem (5.4.1). The first difference is that instead of a constant output quantity vector

at each of the eight periods in the time horizon, period-to-period output quantity

vectors are considered. This situation is equivalent to considering that, at each period,

a new firm is incorporated to the system. This difference is not real, because we may

x11, x 2 . 0tYwi, + .x21t x 3 ' 0111w2,
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consider that, in each model and at each period, the pertinent output quantity vector is

considered.

The second difference is that, in this model, the time of adjustment and the time

horizon are the same. For this reason, in this model, we consider that the boundary of

technology does not change over the whole time horizon, while, in the model to solve

problem (5.4.1), the boundaries of the technology are considered only over the time of

adjustment. This difference is only apparent because, in the model for solving problem

(5.4.1), we may include T-tc, times the boundary of the technology that is valid at t a and

assign to each firm the weight assigned at ta.

The solution to problem (5.6.1) for the five firms is in Table 5.5.

Conclusions from this Example

From the solution to the example presented in Section 5.6, the main conclusions are

the same as for the solution to the basic model. Although the conclusions are the same,

the modified model is more realistic than the basic one. The modifications introduced

to the basic model do not modify the structure or the basic concepts on which the basic

model is developed. As mentioned above, in the dynamic output case, there is a

specific period-to-period optimal input quantity vector.

Systems with dynamic outputs present a similar behaviour to static systems. The

similarity is in the sense that, once a firm achieves the target input quantity vector, the

peer is the same firm as the one that is its peer in the static output case. From this point

of view, the dynamic outputs problem is similar to the static outputs problem, but with

target quantities for inputs moving over the boundary of the technology. Nonetheless,
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if period-to-period prices are different from firm to firm, the economically efficient

firm may change from period to period.

Table 5.5: Optimal Paths of Adjustment:
Dynamic Outputs, Asymmetric Costs of Adjustment,

Dynamic Prices and Costs of Adjustment of Three Firms

Initial
Conditions

Firm 1 4 5

Y 100 115 103
xi 100 133 152
x2 100 189 61
TE 1.0 0.7567 1.0
EE 0.9295 0.6415 0.9829

Optimal
Path

Target Optimal
Path

Target Optimal
Path

Target

'El
4§z
:
.-,v
4..
o

1.50
at•

l
;
a.
0

Period 1 y 102.5 102.5 117.88 117.88 105.58 105.58
x 1 123.72 128.13 142.27 147.34 151.28 131.97
x2 78.384 73.373 90.141 84.379 64.999 75.57
EE 0.9872 1.0 0.9872 1.0 0.9859 1.0

Period 2

y 104.50 104.50 120.18 120.18 107.64 107.64
x 1 127.48 130.63 146.60 150.22 151.28 134.54
x2 78.384 74.805 90.1413 86.025 67.88 77.049
EE 0.9911 1.0 0.9911 1.0 0.9876 1.0

Period 3

y 107.00 107.00 123.05 123.05 110.21 110.21
x 1 132.176 133.75 152.00 153.81 151.28 137.76
x2 78.384 76.594 90.141 88.083 71.490 78.892
EE 0.9957 1.0 0.9957 1.0 0.9903 1.0

Period 4

y 109.50 109.50 125.93 125.93 112.785 112.785
x1 136.88 136.88 157.41 157.41 151.28 140.98
x2 78.384 78.384 90.14 90.14 75.095 80.735
EE 1.0 1.0 1.0 1.0 0.9925 1.0

Period 5

y 112.00 112.00 128.80 128.80 115.36 115.36
x1 140.00 140.00 161.00 161.00 151.28 144.20
x2 80.173 80.173 92.199 92.199 78.701 82.579

1.0 1.0 1.0 1.0 0.9948 1.0

Period 6

115.00 115.00 132.25 132.25 118.45 118.45
x1 143.75 143.75 165.31 165.31 151.28 148.06
x2 82.320 82.320 94.669 94.669 83.028 84.791
EE 1.0 1.0 1.0 1.0 0.9977 1.0

Period 7
Y 117.50 117.50 135.125 135.125 121.025 121.025
x1 146.88 146.88 168.91 168.91 151.28 151.28
x2 84.11 84.11 96.727 96.727 86.634 86.634
EE 1.0 1.0 1.0 1.0 1.0 1.0

Period 8
Y 120.00 120.00 138.00 138.00 123.6 123.6
x1 150.00 150.00 172.5 172.5 154.5 154.5
x2 85.90 85.90 98.785 98.785 88.477 88.477
EE 1.0 1.0 1.0 1.0 1.0 1.0
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In the example, firm 3 is the peer of all firms with the inputs and outputs at initial

conditions, time of adjustment 0. The firms 1 and 4 achieve the dynamic targets (target

input quantity vectors) at periods 4, 5, 6, 7 and 8.

In this example, firm 5 performs adjustments because the present value of savings is

larger than the present value of the costs of adjustment, evaluated along the eight

periods. Recall that firm 5 did not perform adjustments in the example of Section 4.4.

Firm 5 achieves the dynamic targets at periods 7 and 8.

5.7 Incorporation of Quasi-fixed Variables

The variables considered in the preceding chapters and sections are discretionary, in

the sense that they may be modified at management's discretion. Labour is an example

of a discretionary variable. Quasi-fixed or non-discretionary variables are variables

that may not be modified at management's discretion in a short time horizon. Only

quasi-fixed variables that are relevant to productivity and efficiency measurement are

considered in this thesis. The acres of land in a farm, the location of a firm, and the

number of competitors close to a firm are examples of quasi-fixed variables. The terms

quasi-fixed and non-discretionary are used interchangeably.

Staat (1999, p. 42) discusses DEA-techniques for modelling continuous and

categorical non-discretionary variables. Staat (1999) presents the model developed by

Golany and Roll (1993, p. 4230. For the purpose of this thesis, we adapt to profit

maximisation the model of Banker and Morey (1986) that Cooper, Seiford and Tone
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(2000, p. 63) present for technical efficiency measurement. The adapted model with

discretionary outputs and discretionary and non-discretionary inputs is model (5.7.1):

T

maximise { Irk =E[s t ( y kt p, - xkt n, )–s 1, (xkt+ w tf. + xkt w t-)]	 (5.7.1)
x,:;,x7„,A,

1=1

subject to

xi; w+ + x- w- � bkt	 t---1, 2, .• •, ta (budget constraint);

Xkt = xkt_i - 1 - x la+ - X kt-	 1=1, 2, . • •, to (transition equation);

YX t � Ykt

XX t � xk, 1 < t <T . (boundary of technology);

X nd At � X ndk

ta < t:
	

(Time to adjust inputs is lower than or equal to adjustment time);

and

all variables are non-negative;

where Xnd is the matrix of non-discretionary input quantity vectors (Lox K); xndk is the

non-discretionary input quantity vector (1 x Ind) of evaluated firm k; wnd is the price

vector of non-discretionary inputs; Ind is the number of the non-discretionary inputs;

and K is the number of observed firms.

This model, which considers constant returns to scale, is similar to previous models,

but includes the non-discretionary variables that are forced to equality instead of to

greater than or equal to the boundary of technology restriction.
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We consider the data of Table 3.1 for an example. We determine the optimal path of

adjustment that maximises the present value of profit over a three-period adjustment

time and eight-period time horizon. For this example, input 2 is considered a non-

discretionary input, the asymmetric adjustment costs (and the original data from Table

3.1) are presented in Table 5.6. For this example, the boundary of the technology is

static and no budget constraints are considered.

Under these conditions, the problem for firm 4 is:

8

maximise flr i =E{ s t (115 x 8.0 – x141 x 2.0 )— st_i (x141 x 1.1 + x141 x 0.8)]) (5.7.2)
4.,,xkfA 	 t=1

subject to the transition equations,

X	 = x14 x141 X+-114t	 14t-1 14t 141 t =1,2,3 ;
Xnd24t = X nd240

the time to adjust inputs is less than or equal to the adjustment time, ta < 3 ;

the boundary of the technology for t = 1,2,3:

1004 +90X2t+150X31 +1334 +152X5t � x111

1002q t +149X21 +85.9X31 +189X41 +61 X51=189

1002q t+110X2t+120X3t+115X4t+103X5t > 115

,c141 = x143 t=4,5,6,7,8;

and

all variables are positive.
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Table 5.6: Discretionary, Non-discretionary Inputs,

Outputs, Prices, and Costs of Adjustment

Quantity at t = 0

Firm k
Ylkt xlkt x nd 2kt

1 100 100 100

2 110 90 149

3 120 150 85.9

4 115 133 189

5 103 152 75

Price 8.0 2.0 3.0

Adjustment

Cost

Increase 0.8

Decrease 1.1

The solution to problem (5.7.2) for four values of quasi-fixed input 2 is in Table 5.7.

The economic efficiency measurements presented in Table 5.7 are referred to as the

costs of the target input quantity vector attainable with non-discretionary input 2 fixed

at 189. The target input quantity vector is more expensive than the target input quantity

vector attainable if both inputs are discretionary.

Table 5.7: Optimal Paths of Adjustment, Problem (5.7.2)

Period xi t Economic

Efficiency

X2t X4t Fixed

Output

Quasi-fixed

Input

0 133.0 0.9547 0.0168 0.9867 115 189

1 123.91 0.9761 0.6289 0.5042 115 189

2 114.16 1.0 1.2685 0 115 189

3 114.16 1.0 1.0455 0 115 189
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Table 5.8 presents the target input quantity vector for firm 4, for discretionary and non-

discretionary input 2; the target input quantity vector, when both inputs are

discretionary, is from Table 5.2.

Figure 5.1 represents the data of Table 5.6. Bold numbers 2, 1, 3 and 5 represent the

inputs by unit of output of firms 2, 1, 3 and 5, respectively. Assuming constant returns-

to-scale technology, segments horizontal to 2, 2-1, 1-3, 3-5, and vertical from 5, define

the boundary of the technology. Firm 4 is a non-efficient firm. Dotted line OB

represents a pseudo boundary of the technology.

The dotted arrow from firm 4 to dotted line OB represents the optimal path of

adjustment of this firm. It should be expected that the target of input 1 is on the

horizontal part of the boundary of the technology, starting from firm 2, but the target is

on the pseudo boundary of the technology, defined by the line OB, that starts at 0 and

passes by firm 2. For initial values of input 2 less than 114.16, there is no feasible

solution to problem (5.7.2).

Table 5.8: Cost of Inputs of Initial and Target Input Quantity Vector(1)

x1 x2 Cost

Initial 133 189 833.0

Target d-d 143.75 82.32 534.46

Target d-nd 114.16 189 795.32

d-d stands for discretionary input 1 and discretionary input 2
d-nd stands for discretionary input 1 and non-discretionary input 2
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Keeping input 1 constant, input 2 may be increased up to the frontier OB. This point,

not shown in Figure 5.1, is at 133 units for input 1 and 220.189 units for input 2. For

initial values of input 2 larger than 220.189, there is no feasible solution to problem

(5.7.2). The minimum value of input 1 is (189 x 90)/149=114.16 and the maximum

value of input 2 is (133 x 149)/90 =220.189.

Input 1 by unit
of output

0
	

x2	 Input 2 by unit

y	 of output

Figure 5.1: Optimal Path of Adjustment of Firm 4
Non-discretionary Input 2

5.8 Incorporation of Capital Investment Constraint

In addition to non-discretionary variables, we now present capital investment as a

special input variable, which may be modified at management's discretion, but under

prefixed constraints. We refer to such variables as constrained discretionary variables.

The constraints to capital investment may come from a specific investment policy that

is derived from a strategic planning process or from short-term capital allocation
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priorities. Two constraints are considered here: fixed assets, K(t), and capital

investment I(t) at period t.

Rewriting equation (2.8.5) as, K(t) = I(t) - 8 K(t) ; K(0)= k, the discrete-time version

of this first-order ordinary differential equation is:

K(t) = K(t-1) + I(t) - 8 K(t-1) ; K(0) = k,	 (5.8.1)

where K(t) is the fixed asset at the start of period t; I(t) is the capital investment in

period t; 8 is the rate of depreciation of assets; and K(0)= k is the amount of capital at

the time that the decisions are made.

Equation (5.8.1) is similar to the transition equations of the basic DEA model (4.3.3).

The difference is that the adjustments to these transition equations are either increases

or decreases, while the adjustments for the constrained discretionary variables may be

both, increases and decreases; increase with investment and decrease with

depreciation.

Under this perspective, the constrained discretionary variables may be considered as

discretionary variables with a special transition equation. To be consistent with

previous definitions of variables, let xakt, instead of K(t), be the constrained

discretionary input quantity vector of firm k in period t; xc*dk, be the maximum quantity

of the constrained discretionary input quantity vector for firm k in period t; and rk, be

the maximum quantity of capital investment vector for firm k in period t. The cost per

period of Xcdk,t is denoted W cdk,t•

136



Finally, the inclusion of constrained discretionary variables in the DEA model for

optimal paths of adjustment results in the following:

+ xkt- w � bk„t=1, 2, . • ta

Xcdk,t X c* dkt

kt < kt*

Xkt = Xk,t_i+	 - xki t=1, 2, .• •, ta

Xak, t = Xcdk,t-1± 1kt - Xcdk,t-1

Y kt
Xkt � Xt	 ,1<t<T
X cd k t � X cdx,

X nd k t = X ndk 0

(budget constraint);

(transition equations)

(boundary of the technology);

and

ta <

5.9 General DEA Model for Optimal Paths of Adjustment

This section presents a general DEA model for optimal paths of adjustment with

dynamic technology boundaries. The basic DEA model of Chapter 4 considers that

outputs, prices, costs of adjustment and the technology boundary do not change from

period to period. In this section, we present a model of optimal paths of adjustment,

with a dynamic technology boundary, dynamic outputs, and period-to-period variable

prices and costs of adjustment.

137



As stated in Section 5.6, the term dynamic output means that outputs change from

period to period. With dynamic technology boundaries, as long as outputs and inputs

change over the horizon time, it does not make sense to differentiate between the time

horizon and the time of adjustment (as in dynamic outputs). However, budget

constraints may be included. Dynamic boundaries of technology modify the objective

function, the output quantity vector at the right-hand side of the technology boundaries

and the boundary of the technology. The modification to the boundary of the

technology affects the matrix of inputs and outputs, Yt and Xt, respectively.

Problem (5.9.1) below presents a general DEA model for the design of optimal paths

of adjustment. This general DEA model maximises the present value, over the horizon

time, of period-to-period revenue less cost of inputs and less cost of adjustment of

inputs, and allows for a dynamic technology boundary, dynamic outputs, and period-

to-period variable prices and costs of adjustment. The problem is defined by:

maximise { 7rk'E[st( Y kt Pt xkt wt xcdt wat) – S t-i (xltt wt X ltt Wt- )1	 (5.9.1)4,xL,At	 t=1

subject to

xkt+ w +	 bkt, t=1, 2, . • ., ta
	 (budget constraints);

Xcdk,t X:dia

'id < I kt*

Xkt =	 -	 t=1, 2, • • •, ta 	 (transition equations);

Xcdk,t = Xcdk,t-1 ± 1kt - 5 Xcdk,t-1
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Yk t Ykt
XXt
X cd X t

X nd k t X ndk0

1<t<T (boundaries of the technology)

ta<ta.

[ 1' At = 1, variable returns to scale if applicable)

s = (l+r/100)-t,	 (present value factor);

and

all variables positive.

Solving this problem is equivalent to solving as many basic DEA models as there are

time horizon periods. For each period, the specific basic DEA problem is defined by its

specific technology boundary, input quantity vector, prices and costs of adjustment.

The transition constraints and the objective function link the basic DEA models

implicit in problem (5.9.1).

5.10 Conclusions

The first conclusion is that, starting from the basic DEA model, it is possible to

formulate general DEA models that include period-to-period variable input and output

quantity vectors. These general models reduce to the known special cases when fixing

the vectors that do not change from period to period. For example, if the forecast is

presented as in Table5.3, the static variables should have expansion factors valued at

1.0 for the periods they are static.
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The second conclusion is that our general DEA model accounts for intertemporal

optimisation. In Section 3.7, we present five of the limitations that one may encounter

with DEA, as stated by Coelli, Rao and Battese (1998, pp. 180-181). The first four of

these limitations remain in the basic and in the general DEA models. The limitation,

that DEA does not account for intertemporal optimisation, deserves comment. If we

understand standard DEA as the primal DEA LP, then it does not account for multi-

period optimisation, because, to date, no one has developed an aggregate form of

intertemporal total factor productivity. But if we understand standard DEA as the dual

DEA LP that maximises the present value of period-to-period revenue, or minimises

the present value of period-to-period cost, then it may account for multi-period

optimisation.

Our basic DEA model derives from the dual DEA LP with an objective function that

optimises an aggregative form of period-to-period present value of profits.

Additionally, the period-to-period input variables are linked by the transition

equations. Those two facts allow our general DEA model to account for intertemporal

relationships of inputs and outputs. The key for dealing with intertemporal

relationships of inputs and outputs is to consider that the peers and the weights of peers

may change from period to period.
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CHAPTER 6

DETERMINATION OF OPTIMAL PATHS FOR STORES

OF THE CHILEAN RETAILING FIRM, DIJON

6.1 Introduction

This chapter presents a realistic application of the models of optimal path of adjustment,

developed in Chapter 4 and extended in Chapter 5. The application uses relevant data of

35 comparable retail-level stores. The stores are branches of the Chilean retailing firm,

Dijon.

Section 6.2 is a general overview of Dijon. Section 6.3 presents the relevant data to be

considered in this application. Because of a confidentiality agreement with Dijon, the

data are encrypted by a simple escalation procedure. Section 6.4 presents the optimal

path of adjustment LP model for Dijon's stores. Section 6.5 presents the optimal paths

of adjustment obtained from the LP model. Section 6.6 presents the main economic

results of these optimal paths of adjustment. Section 6.7 presents the comparison of

period-to-period changes of weights of the stores with respect to the constant weight

model. Sections 6.8 and 6.9 present the main results derived from the application of

optimal paths of adjustment to one specific store, considering the expected and optimal

period-to-period variations of output, input prices and input costs of adjustment,
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respectively. Finally, Section 6.10 presents conclusions derived from the application of

the optimal path of adjustment LP model to the 35 stores.

6.2 An Overview of Dijon

This overview includes a general description of the processes that Dijon has developed

for managing its stores. Special attention is given to the features that indicate that Dijon

is appropriate for the application of the model for optimal paths of adjustment.

By 1974, Chile moved from a tightly State-controlled economy to an open market

economy. Chilean manufacturing industries had to update their production technology

to one that could cope in a global market. Since 1974, prices have been determined in

the markets instead of being fixed by the government. Importation taxes have been

reduced to a flat 10 per cent and a value added tax (VAT) of 20 per cent is imposed on

trade and service transactions, education excluded. Under this competitive scenario,

Dijon developed its strategic policy.'

Dijon Limited is a Chilean family business that started in late 1978, after merging five

non-competitive small textile manufacturing installations. By July 1979, the first

business diversification took place, importing T-shirts and parkas made in Asia, for

distribution to retailers. By April 1980, the second diversification started with the

opening of the first three Dijon retailing stores that had a mix of products orientated to

the clothing needs of medium and medium-low income people.

1 The VAT was decreased from 20 to 16 per cent in 1988, but it was increased to 18 per cent in 1991 and
then to 19 per cent on 9 July 2003.
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From 1980 to 1986, Dijon grew to a national chain of retailing stores. By 1985, Dijon

was vertically integrated in the clothing business, manufacturing its own brand

products, while still importing goods from Asia. By 1995, the firm offered the Dijon

credit card. In December 2001, Dijon opened its fifty-seventh store.

Of the 57 stores, 15 stores target children of medium-income families, seven stores are

outlet-stores, and 35 stores target adults and children of medium and medium-low

income families. Only these last 35 stores are involved in this thesis. Dijon estimates

that it commands 25 per cent of the clothing market for medium- and low-income

people, whose socio-economic classifications are C and D.

About 35 per cent of the population has socio-economic classification D, which had

average monthly income of AU$410 in 2001. The percentages of the population in the

socio-economic classifications C3, C2 and Cl are 25, 20 and 8 per cent, respectively;

whose average monthly incomes in 2001 were AU$760, AU$1,640 and AU$5,300,

respectively.

Dijon's managing process is tightly controlled from the Branches Manager's Office, at

Dijon's headquarters, located in Huechuraba, which is 25 kilometres north-west from

central Santiago. The Branches Manager (BMO) is responsible for the allocation of

resources at each store. For each store, the BMO decides the assignment of the sales

quantity target, the number of employee-hours, the number of cashier-hours, the sales

and administration expenditures, and the marketing budget.
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The BMO tries to apply, to the actual business, the same organization and operation

policies that were developed by the owners many years ago. The 35 stores under study

are organized according to the following pattern:

(a) Each store has a chief executive officer (CEO) who manages the store,

carries out the policies from the BMO, to whom the CEO reports.

(b) The BMO assigns the number of employee-hours to each store:

salespersons, cashiers, office white-collar workers, juniors and blue-collar

workers.

(c) The BMO distributes the marketing budget for the whole system, assigning

the corresponding amount to each store.

Since 1985, stores in Chile that sell clothes at the retail level are under aggressive

competition from the fast-growing hypermarket industry. This competition has reduced

the profits of Dijon because of the forced price reductions. To reverse this situation,

Dijon is looking for cost reductions and for a more efficient resource allocation.

The above organizational pattern configures a system of partially indexed assignment of

resources. In addition to this situation, and considering that the firm includes one non-

discretionary input, in addition to four discretionary ones, Dijon is a valid study case to

illustrate the application of the adjustment models that are developed in Chapters 4 and

5. The 35 stores to be considered are comparable in the sense indicated in Chapter 3. In

this context, the model for optimal path of adjustment, as developed in previous

chapters, is appropriate for application to Dijon.
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6.3 Relevant Data for this Application

This section presents and discusses the data for the 35 stores in our study. Data were

extracted from the accounting information for the years, 2000 and 2001. The BMO gave

access to the data sources. The labour-related costs of adjustment were evaluated

according to the Chilean labour regulations.

Under a confidentiality agreement with Dijon, data are encrypted by simple escalation

transformations. The escalation factor is specific to each kind of variable. This simple

encryption of data does not change the optimal value of the decision variables when

transformed back to the original scale. The reason for this is that when using the dual

LP model, at both sides of each constraint the same variable appears. There is no reason

for expecting different optimal values if a variable is measured in a metric or any other

system. Thus, the floor surface of the store may be measured in square metres or in

square feet or sales expressed in Chilean pesos or in Australian dollars. Nonetheless,

consistency is required, for easy interpretation of results.

After being encrypted, the monetary data are in "Dijon Monetary Units" (D$) and the

store floor data are in "Dijon Surface Units" (DSU). The observed data are presented in

Appendix 1. The monetary values are expressed in AU$, relative to December 29, 2001.

For all purposes, period refers to a time period of six months.

Output

For performance evaluation of the stores, Dijon's senior managers consider that gross

sales is the only tangible output. The gross sales data that are presented in Appendix 1
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are encrypted average data for the six-month period, from January 1, 2000 to December

31, 2001. The original data are taken from the accounting records that the BMO uses for

decision making.

Inputs

Dijon's senior managers consider that five inputs are relevant for branch performance

evaluation. Four of these inputs are discretionary variables and a fifth is a non-

discretionary variable. These five variables are:

1) Salesperson-hours by period. There is no legal constraint or contractual

agreement with Dijon's Labour Union regulating salesperson-hours by period.

The BMO tries to keep the ratio of salesperson hours to the total employee

hours, around 0.50. For the purposes of this thesis, this variable is assumed to be

continuous, although, in real terms, this is not true. Nonetheless, the assumption

is based on the fact that a part-time employee counts as the fraction of time that

the person works with respect to the time a full-time employee works. In Chile,

a full-time employee works 48 hours per week. This discretionary variable is

measured in thousands of hours by period (khour/period).

2) Cashier-hours by period. There is no legal or contractual agreement with

Dijon's Labour Union regulating cashier-hours by period. The BMO tries to

keep the ratio of cashier- hours to the total employee hours about 0.15. This

discretionary variable is measured in thousand hours by period (khour/period).

3) Sales and Administration Expenses. This item includes the institutional

administration cost, and the sales and administration expenses of the specific

store. The BMO charges a fraction of the institutional administration cost to

each store. The general criterion is to charge each store close to five per cent of
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its gross sales. The CEO is responsible for the sales and administration expenses

of the store. This discretionary variable is measured in D$ by period.

4) Marketing. This item includes the cost of institutional marketing and the cost of

marketing that the specific branch does. The BMO charges a fraction of the

institutional marketing cost to each store. The general criterion is to charge each

store about seven per cent of its gross sales. This discretionary variable is

measured in D$ by period.

5) Store Floor Surface. The total store floor surface is constant in a short time

horizon. Nonetheless, the store is regularly remodelled and the floor surface

redistributed, especially for end-of-season events. This is the non-discretionary

variable, which is measured in DSU.

Analysis of Data

The five inputs described above are not highly correlated. Appendix 3 presents the

correlation matrix generated with the software, STATISTICA. The highest sample

correlation coefficient is 0.589 between Marketing and Cashier-hours.

Dyson et al. (2001, p. 248) indicate that for achieving a reasonable level of

discrimination, the minimum number of units (stores) to be observed must be at least

twice the product of the number of inputs and the number of outputs involved. For this

application, the number of stores observed is 3.5 times this suggested minimum

(2x5x 1=10).
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Costs of Adjustment

As previously presented, cost of adjustment is the cost of changing the operational

conditions of a store. In general terms, cost of adjustment is the cost of changing the

terms of a contract or of an agreement. For the purpose of this research, the cost of

adjustment of an input is the cost of changing the quantity of that input. For example,

the Chilean labour legislation grants to employees the property of their posts. For this

reason, employers must indemnify any fired employee. This payment is part of the cost

of adjustment of labour.

Only discretionary variables are susceptible to adjustment in a short- or medium-time

horizon. In this application, the cost of adjustment is asymmetric, in the sense that the

cost of increasing the quantity of an input is different from the cost of decreasing it. For

example, in general terms, the cost of firing is higher than the cost of hiring an

employee. Appendix 2 presents asymmetric costs of adjustment for the four

discretionary inputs.

Time of Adjustment and Time Horizon for Economic Evaluation

Dijon's Vice-President defined up to four consecutive periods as the time for

performing the adjustments. If and only if the adjustments are not feasible in four

periods, up to two additional periods may be considered. Thus, the time of adjustment is

four periods, extendable up to six.

Dijon's Vice-President defined that the time horizon or the number of periods for

economic evaluation of the adjustment project is eight periods.
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Rate of Discount

Dijon's Vice-President considers a rate of discount of 9.0 per cent per period as

adequate for this project. 2 This rate of discount includes an estimated inflation of 1.5 per

cent per period.

Budget Constraints

Dijon's Vice-President determined that, at the first and second adjustment periods, no

store could spend in this project more than the one per cent of its gross profit in the

period just before the adjustments start. This gross profit is evaluated as the residual of

output and the cost of inputs.

Returns to Scale

The returns to scale of the boundary of the technology were investigated at the observed

input-output data set of each of the technically efficient stores. The method used to

determine the returns to scale is that proposed by Thanassoulis (2001, p. 125) and

presented in Section 3.4 of this thesis.

For each of the technically efficient stores, a five per cent increase of all observed data

of inputs returns a five per cent increase of output, at 100 per cent technical efficiency.

For this reason, constant returns to scale are expected for the Dijon system

2 For this project, Dijon expects that the rate of return of investment be no less than its weighted average
cost of capital (WACC).
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6. 4 The Optimal Path of Adjustment Program for Dijon's Stores

Based on the information provided in Sections 6.2 and 6.3, it is concluded that the

optimal path of adjustment model, as developed in Chapter 5, is applicable to Dijon's

35 stores.

The optimal path of adjustment program determines the period-to-period adjustments

that a specific store must undertake to perform at 100 per cent economic efficiency. The

period-to-period adjustments are specified for each discretionary variable. The

adjustments are to be performed at the start of each adjustment period. The sequence of

period-to-period adjustments of the inputs is optimal in the sense that it minimises the

total of the present values of period-to-period costs of the inputs and the period-to-

period costs of adjustment of the inputs.

The general optimal path of adjustment program is presented in Appendix 4, with the

specific data of Store 202. The general LP with the store-specific data is run store by

store, independently of the other stores.

Program Description

The path of adjustment program is divided into five parts, as explained below:

1) Part One contains the identification and specific data of the store under study.

The identification is the three-digit number assigned to each store. The specific

data are the initial input quantity vector, the output, and the floor area of the
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store, the price of inputs, the cost of increasing the inputs and the cost of

decreasing them.

2) Part Two performs economic evaluations. This part determines the present worth

factors for discounting the value of money to the present; the cost of inputs and

its present value for each of the eight evaluation periods; the cost of adjustment

of inputs and its present value at each of the four adjustment periods, and the

economic efficiency at initial conditions and at each adjustment period.

3) Part Three is the objective function. The objective function is to minimise the

value of two independent terms. The first term is the summation of the present

value of the cost of inputs at each of the eight evaluation periods or time horizon

and the summation of the present value of the cost of adjustment at each of the

four adjustment periods. The second term is the cost of the input quantity vector

that minimises the cost of inputs; this vector is the target input quantity vector.

This term may be included because the optimisation variables of the second term

are independent of the path of adjustment optimisation variables.

4) Part Four are the transition equations. The transition equations define the input

quantity vector at each adjustment period, in terms of the cumulated

adjustments. In real terms, the decision variables are the period-to-period input

adjustment variables.

5) Part Five contains the production function and data envelopment analysis. This

part is divided into three sections.

i. The target input quantity vector is determined. The target input quantity

vector minimises the cost of inputs. This target input quantity vector and

the input quantity vector at each adjustment period are compared term by

term. The purpose of the comparison is to determine if the path of
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adjustment of the inputs arrives to the target quantity vector. In this

section, the weight of any store k is LTk.

ii. The path of adjustment is determined. The adjustments to the input

quantity vector are to be done in four adjustment periods under budget

constraints for the first two adjustment periods. As previously indicated,

budget constraints indicate that, at the first and second adjustment

periods, no more than the one per cent of the gross profit at the initial

conditions may be spent. In this section, the weights of any store k are

LAk, LBk, LCk, and LDk, respectively, for the first, second, third, and

fourth adjustment periods. The period-to-period changes of weights of

stores are for allowing period-to-period specific weights of peers and for

allowing changes of peers from one period to the next.3

iii. If all elements of the error input vector are zero then the path of

adjustment is optimal and is accepted. If one or more elements of the

error input vector are not zero then the path of adjustment found under

this condition is not the best and may be improved. The error input

vector is the vector of the differences between the values of the inputs at

the end of the path of adjustment and the target values of the inputs.

Two conditions may be considered for improving the non-optimal path of adjustment.

The first condition to be considered is increasing the time horizon. The shortest time

horizon, T, may be determined using equation (3.6) of Appendix 7. The second

condition to be considered is relaxing the budget constraints. Relaxing the budget

3 This dynamic aspect of DEA is presented in Section 4.3 of the basic model for the selection of optimal
paths of adjustment.
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constraints improves the quality of the path of adjustment. Increasing the time horizon

and relaxing the budget constraints may be considered simultaneously.

For practical applications, it is advisable to re-design the optimal path of adjustment

each period, with the new available data. In this case, the initial period is the period at

which the re-design is started, including the new technical and economic data.

6. 5 Optimal Paths of Adjustment for Five Stores

As indicated above, for each of the 35 stores, the optimal path of adjustment program

determines the period-to-period adjustments that must be undertaken for that store to

perform at 100 per cent economic efficiency. The results indicate that for each of the 35

stores, the optimal path of adjustment program determines as the target the input

quantity vector that minimises the cost of inputs. This means that the optimal path of

adjustment program assigns, in a one-step procedure, the target input quantity vector

that minimises the present value of the cost of period-to-period inputs and the period-to-

period vector of inputs that minimise the total present value of both costs, the cost of

period-to-period inputs and the cost of period-to-period adjustments of inputs.

Table 6.1 presents the optimal paths of adjustment and some relevant results for stores

202, 211, 232, 243 and 258. These firms were selected for the following reasons. Store

202 has one of the lowest economic and technical efficiencies of the 35 stores, when

measured at initial input-output conditions. Store 202 has an optimal path of adjustment

that is independent of whether constant or variable weights of firms are considered from

period-to-period for the firms. For Store 202, the data and results are analysed at each of
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the four intended adjustment periods. For the other four stores, only relevant deviations

from the behaviour of Store 202 are included.

Store 211 has a high economic efficiency and is fully technically efficient, when

measured at initial input-output conditions. Store 211 has an optimal path of adjustment

for variable period-to-period weights of firms that differs slightly from its optimal path

of adjustment for constant weights of firms.

Store 232 has the lowest economic efficiency of the 35 stores, when measured at initial

input-output conditions. Store 232 is technically efficient and has an optimal path of

adjustment for variable period-to-period weights of firms that is different from the

optimal path of adjustment for constant weights of firms.

Store 243 has a low economic efficiency, when measured at initial input-output

conditions. Store 243 is technically efficient and has an optimal path of adjustment,

considering variable period-to-period weights of firms that is also different from its

optimal path of adjustment considering constant weights of firms.

Store 258 has full economic and technical efficiency, when measured with initial and

any period-to-period input-output data. Store 258 is peer of 26 stores, itself included.

For each store in period 0, Table 6.1 gives the initial input quantity vector and the cost

of inputs. From these data, the technical efficiency, the peers and their weights are

calculated and presented.
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Table 6.1: Optimal Paths of Adjustment for Five Stores.

Store 202 211 232 243 258
Output, D$ 1,669.40 2,153.81 1,987.10 3,025.80 2,689.50

Period Area, DS 10.90 7.55 7.31 17.86 17.76

0

Salesperson Hours, khours 5.539 6.120 4.287 5.959 6.699
Cashier Hours, khours 1.790 1.532 2.143 1.190 1.340
Sales & General Expenses, D$ 18.350 14.534 41.013 25.765 15.135
Marketing, D$ 13.346 11.672 9.829 16.211 13.674
Cost of Inputs, D$ 407.51 419.92 1,172.96 941.78 459.25
Technical Efficiency 0.6132 1.000 1.00 1.000 1.000
Economic Efficiency 0.5801 0.9834 0.4039 0.7455 1.000

Weight
Peer 204 0.0576
Peer 235 0.0365
Peer 240 0.0038
Peer 254 0.5235

1

Salesperson Hours, khours 5.539 5.134 4.287 6.814 6.699
Cashier Hours, khours 1.790 1.136 2.143 1.462 1.340
Sales & General Expenses, D$ 9.395 12.284 37.022 17.275 15.135
Marketing, D$ 11.778 13.912 10.137 15.399 13.674
Cost of Inputs, D$ 288.79 415.12 1,080.64 708.00 459.25
Cost of Adjustment, D$ 12.619 17.339 8.1414 20.840 0.00
Economic Efficiency 0.8185 0.9948 0.4384 0.9917 1.000

Weight

Peer 211 0.3121 0.0176
Peer 232 0.8580
Peer 236 0.0184 0.4431 0.0413
Peer 237 0.3418
Peer 246
Peer 247 0.0417 0.0240
Peer 251 0.0488
Peer 254
Peer 256
Peer 258 0.630 0.7217 1.000

2

Salesperson Hours, khours 5.182 4.687 4.287 7.4267 6.699
Cashier Hours, khours 0.8361 0.9562 2.143 1.5826 1.340
Sales & General Expenses, D$ 9.395 11.264 33.031 17.043 15.135
Marketing, D$ 8.480 14.928 10.445 15.262 13.674
Cost of Inputs, D$ 240.88 412.94 988.32 702.11 459.25
Cost of Adjustment, D$ 12.619 7.867 8.1414 4.471 0.00
Economic Efficiency 0.9814 1.000 0.4793 1.000 1.000

Weight

Peer 211 0.03526
Peer 232 0.7159
Peer 236 0.6442 0.0826
Peer 251 0.0975
Peer 247 0.0184 0.0607 0.3144
Peer 258 0.6030 0.8214 1.000

3

Salesperson Hours, khours 4.152 4.687 4.448 7.4267 6.699
Cashier Hours, kours 0.8361 0.9562 0.9827 1.5826 1.340
Sales & General Expenses, D$ 9.395 11.265 10.679 17.043 15.135
Marketing, D$ 8.480 14.928 12.401 15.262 13.674
Cost of Inputs, D$ 236.39 412.94 473.73 702.11 459.25
Cost of Adjustment, D$ 13.006 0.00 50.456 4.471 0.00
Economic Efficiency 1.000 1.000 1.000 1.000 1.000

Weight
Peer 236 0.6442 0.3888
Peer 247 0.0184 0.0607 0.3012 0.3144
Peer 258 0.6030 0.8214 1.000

4

Salesperson Hours, khours 4.152 4.687 4.448 7.4267 6.699
Cashier Hours, khours 0.8361 0.9562 0.9827 1.5826 1.340
Sales & General Expenses, D$ 9.395 11.265 10.679 17.043 15.135
Marketing, D$ 8.480 14.928 12.401 15.262 13.674
Cost of Inputs, D$ 236.39 412.94 473.73 702.11 459.25
Cost of Adjustment, D$ 0.00 0.00 0.00 4.471 0.00
Economic Efficiency 1.000 1.000 1.000 1.000 1.000

Weight
Peer 236 0.6442 0.3888
Peer 247 0.0184 0.0607 0.3012 0.3144
Peer 258 0.6030 0.8214 1.000

155



Store 202

From Table 6.1, the cost of inputs for Store 202 at period 0 is D$407.51; the technical

efficiency is 0.6132 and the economic efficiency is 0.5801. Radial reduction of inputs to

the boundary of the technology determines that the peers of Store 202 are Stores 204,

235, 240, and 254 with weights 0.0576, 0.0365, 0.0038, and 0.5235, respectively. Under

these conditions, the input cashier-hours has a surplus of 0.1504 thousand hours.4

The period-1 entries in Table 6.1 contain the input quantity vector for each store, as a

result of the first adjustment at the start of the period. For this period, the input quantity

vector, the peers and their weights, the economic efficiency, the cost of inputs and the

cost of adjustment are presented. These variables are evaluated with the input quantity

vector for period 0 and with the specific economic, floor surface and output data of each

store. From Table 6.1, in period 1, the input quantity vector for Store 202 has 5.539

thousand salesperson-hours, 1.790 thousand cashier-hours, D$9.395 for sales and

general expenses, and D$11.778 for marketing. These inputs cost D$288.79 and the cost

of adjustment of inputs from the initial input quantity vector to the optimal of this

period is D$12.619. This cost is the highest feasible cost of adjustment that the budget

constraint permits for this period. The cost of adjustment is 10.6 per cent of the

reduction of the cost of inputs. 5 In this period, the technical efficiency of Store 202 is

0.9981. For this measurement, Stores 236 and 258 are peers, with weights 0.0127 and

0.6060, respectively. Note that the peers of Store 202, when measuring technical

efficiency and when defining the optimal path of adjustment are different.

4 The technical efficiency is measured using a DEA technical efficiency measurement program.
5 The budget constraint limits the costs of adjustment for periods 1 and 2 up to one per cent of the gross

income at period 0; namely, 0.01 x (1,669.4 — 407.51) = D$12.619
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In Table 6.1, we omit the technical efficiency measurement from period 1 on, because

the technical efficiency measurements of the five firms from this period on are 1.0. In

period 1, the economic efficiency of Store 202 is 0.8185. This input quantity vector is

not the target one because the economic efficiency is not one and two inputs have a

surplus over their target values. Salesperson hours have a surplus of 1.404 thousand

hours and cashier hours have a surplus of 0.9609 thousand hours.6

The adjustment to the input quantity vector is not a radial reduction from the initial to

the optimal input quantity vector. The peers and slacks that define the optimal input

quantity vector for period 1 are not necessarily the same when measuring technical and

economic efficiency. At the next adjustment period, the adjustments are expected to be

such that the optimal input quantity vector is on the frontier of the technology, towards

the target input quantity vector. The extension of the adjustments depends on the budget

constraint for the period, as previously indicated.

The period-2 entries in Table 6.1, contain the input quantity vector for each store, as a

result of the second adjustment at the start of the period. For this period, the input

quantity vector, the peers and their weights, the economic efficiency, the cost of inputs

and the cost of adjustment are presented. When pertinent, these variables are evaluated

with the input quantity vector for periods 0 and 1, and with the specific economic, floor

surface and output data of each store. From Table 6.1, the period-2 input quantity vector

of Store 202 has 5.182 thousand salesperson-hours, 0.8361 thousand cashier-hours,

D$9.395 for sales and general expenses, and D$8.480 for marketing. These inputs cost

6 The slack or surplus of input quantities is not shown in Table 6.1 or in Appendix 8.
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D$240.88 and the cost of adjustments is D$12.619. As in period 1, this cost of

adjustment is the highest feasible cost that the budget constraint permits for this period.

In period 2, the economic efficiency of Store 202 is 0.9814, the peers are stores 247 and

258 with weights of 0.0184 and 0.6030. These peers with these weights determine the

target input quantity vector for Store 202. Nonetheless, the optimal input quantity vector

for this period is not the target one because the economic efficiency is not unity.

Salesperson hours have a surplus of 1.030 thousand hours over the target value. The

inputs, cashier-hours, sales and general cost, and marketing, are at the target values. The

peers of Store 202 for this period differ from the peers for period 1. The optimal input

quantity vector is on the hyperplane of the target input quantity vector.

As for period 1, the adjustment to the input quantity vector is not a radial reduction from

the initial to the optimal input quantity vector, which is on the frontier of the

technology. In general terms, the peers and slacks that define the optimal input quantity

vector for period 2 are not necessarily the same when measuring technical and

economic efficiency. For the same input quantity vector, the peers and slacks are

specific to the efficiency that is measured. Although technical efficiency is one,

additional adjustments are required because the economic efficiency is not one. At the

next adjustment period, the adjustments are expected to be such that the optimal input

quantity vector remains on the frontier of the technology towards the target input

quantity vector. The amounts of the adjustments depend on the budget constraint for the

period, as previously indicated.
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For period 3, Table 6.1 contains the input quantity vector for each store, as result of the

third adjustment at the start of the period. For this period, the input quantity vector, the

peers and their weights, the economic efficiency, the cost of inputs and the cost of

adjustment are presented. When pertinent, these variables are evaluated with input

quantity vector for periods 0, 1 and 2, and with the specific economic, floor surface and

output data of each store. From Table 6.1, the period-3 input quantity vector of Store

202 has 4.152 thousand salesperson-hours; 0.8361 thousand cashier-hours; D$9.395 for

sales and general expenses, and D$8.480 for marketing. These inputs cost a total of

D$236.39 and the cost of adjustments is D$13.006. Because this period has no budget

constraint, the adjustments are done as long as it is required for the optimal input

quantity vector to be the target one. With the adjustments setting the input quantity

vector at the target one, both the economic and technical efficiencies are one, and inputs

do not have any surpluses.

For period 4, Table 6.1 contains the input quantity vector for each store. For this period,

the input quantity vector, the peers and their weights, the economic efficiency, the cost

of inputs and the cost of adjustment are presented. From Table 6.1, the period-4 input

quantity vector for Store 202 is the same as in period 3 and, for this reason, the cost of

adjustment is zero and the economic and the technical efficiencies are one.

The peers that define the period-to-period optimal input quantity vector for any store at

any adjustment period are generally not the same peers that define the period-to-period

measurement of technical efficiency. For any store, when the technical and economic

efficiencies are one, and no input has slack, the peers and their weights that define the

target input quantity vector and those that define the measurement of technical
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efficiency are the same. The peers of Store 202 and their weights do not change from

period 2 to period 4.

Store 211

Basically, the analysis of the period-to-period information derived from the application

of the optimal path of adjustment program to Store 211 is the same as for Store 202.

In period 1, the peers of Store 211 are itself and Stores 236 and 247, with weights

0.3121, 0.4431 and 0.0417, respectively. From period 2 to period 4, only Stores 236 and

247 are the peers, with weights 0.6442 and 0.0607, respectively. The peers with their

respective weights determine the target input quantity vector. The weight of peer Store

236 in period 1 is different from its weight in the last three periods, where it is constant.

The same is true for peer Store 247.

Store 211 has no slacks for any input in all of the four adjustment periods.

Store 232

Basically, the analysis of the period-to-period information derived from the application

of the optimal path of adjustment program to Store 232 is the same as that derived from

the application to Stores 202 and 211. Nonetheless, some differences exist.

In periods 1 and 2, the peers of Store 232 are Stores 211, 232, 236 and 251 with

period-1 weights, 0.0176, 0.8580, 0.0413 and 0.0488, respectively, and period-2

weights, 0.03526, 0.7159, 0.0826 and 0.0975, respectively. Cashier-hours have

surpluses of 0.1472 and 0.2945 thousand hours at periods 1 and 2, respectively. For
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periods 3 and 4, the peers of Store 232 are Stores 236 and 247, with weights, 0.3888 and

0.3012, respectively.

The weight of peer Store 211 in period 1 is different from its weight in period 2. For

periods 3 and 4, this store is not a peer of Store 232. The weight of peer Store 232 in

period 1 is different from its weight in period 2. For periods 3 and 4, this store is not the

peer of itself.

The weights of peer Store 236 are different for periods 1 and 2 and different for periods

3 and 4. At the last two periods, the weight of this peer does not change. The same is

true for peer Store 247. This means that the input quantity vector at periods 1 and 2 are

not on the hyperplane of the target input quantity vector.

At the last two periods, the weights of the peer Stores 232 and 247 do not change. At

the same time, the optimal input quantity vector is the target input quantity vector. This

means that the optimal input quantity vector at periods 3 and 4 is on the hyperplane of

the target input quantity vector.

Store 243

Basically, the analysis of the period-to-period information derived from the application

of the optimal path of adjustment program to Store 243 is the same as those derived for

Stores 202, 211 and 232. Nonetheless, we note one difference.

At period 1, only one of the three peers of Store 243 defines the target input quantity

vector. This means that the input quantity vector at period 1 is not on the hyperplane of
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the target input quantity vector. In this period, Store 243 has a slack of 0.1155 thousand

cashier-hours.

From period 2 to 4, the two peers of Store 243 are Stores 247 and 258. At these periods,

the weights of the peers do not change and correspond to the peers that determine the

target input quantity vector. This means that the optimal input quantity vector at periods

2, 3 and 4 are on the hyperplane of the target input quantity vector.

Store 258

For this store, we draw attention to a difference in the results from those for the stores

discussed above. Store 258 is the single peer of itself at the four adjustment periods. As

the single peer of itself, its weight is one. For this reason, this store does not perform

adjustments. Store 258 is a peer of 25 other stores, 18 times with Store 247, three times

with Store 266, twice with Store 262 and twice with two other stores. Similarly to Store

258, each of the Stores 236, 247 and 266 is the single peer of itself at the four

adjustment periods with weights one, and does not perform adjustments.

6. 6 Economic Results

As indicated above, for all of the 35 stores the optimal path of adjustment program

determines the period-to-period adjustments that they have to undertake, to perform at

100 per cent economic efficiency. The economic results indicate that for each of the 35

stores, the path of adjustment program determines as the target the input quantity vector

that minimises the cost of inputs.
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As previously indicated, the budgets for the first and second adjustment periods are

constrained to be less than or equal to one per cent of the gross profit at the initial

conditions. The gross profit at the initial conditions is evaluated as the residual of the

output and cost of inputs at initial conditions.

Table 6.2 presents the economic results for the 35 stores if the adjustments of inputs are

done as the optimal path of adjustment program determines. The cost of inputs at initial

conditions is the present value of the cost of inputs at initial conditions for eight periods.

The cost of inputs of the optimal input quantity vector is the total present value of the

cost of inputs at initial conditions and at the start of the first to the eighth periods. From

the start of the fourth period, the input quantity vector is the target one. The cost of

adjustment is the present value of the cost of adjustment of the inputs. Net saving is the

difference between the present value of the cost of inputs at initial conditions and the

sum of the present value of the cost of inputs of the optimal path of adjustment and the

present value of the cost of adjustment.

From Table 6.2, the present value of total net saving of the 35 stores is D$22,984.04;

this saving is the 14.63 per cent of the cost of inputs at the initial conditions. The

savings span from zero per cent for the initially fully economically efficient stores, 236,

247, 258 and 266, up to 36.82 per cent of the cost of inputs at initial conditions for Store

232.
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Store

Cost of Inputs, D$
Initial	 Optimal Path

Conditions	 of Adjustment
202 2,662.99 1,767.74
204 1,306.07 1,132.61
211 2,744.12 2,707.48
224 2,732.12 2,151.81
225 4,961.25 3,931.99
226 3,665.98 2,861.05
232 7,665.05 4,784.88
234 8,267.93 7,092.56
235 3,389.13 3,119.53
236 4,041.65 4,041.65
237 3,754.99 3,689.43
238 3,294.03 2,528.80
239 4,456.64 4,060.88
240 7,655.98 5,374.79
242 4,871.91 3,528.45
243 5,125.60 3,888.79
244 8,677.54 8,004.83
245 5,315.90 4,841.88
246 3,877.13 3,722.85
247 2,799.34 2,799.34
248 6,154.35 4,833.24
250 4,072.16 3,682.69
251 2,440.61 2,176.33
252 4,364.36 4,003.33
254 3,902.10 3,689.25
256 6,452.96 4,564.97
257 4,506.53 3,665.55
258 3,001.09 3,001.09
259 5,539.69 4,774.90
260 5,788.37 5,065.92
262 1,739.35 1,676.93
263 5,635.05 4,836.84
264 4,712.89 4,503.52
265 5,297.11 4,632.30
266 2,238.79 2,238.79

TOTAL 157,110.76 133,376.99

Cost of
	

Net Saving
Adjustment Net Saving	 per cent of Cost

D$	 D$	 of Initial Inputs
35.14 860.11 32.30
38.30 135.16 10.35
25.21 11.43 0.42
34.25 546.06 19.99
19.07 1,010.19 20.36
20.63 784.30 21.39
58.02 2,822.15 36.82
32.32 1,143.05 13.83
14.05 255.55 7.54

-
13.37 52.19 1.39
29.39 735.84 22.34
15.52 380.24 8.53
26.00 2,255.19 29.46
20.60 1,322.86 27.15
30.16 1,206.65 23.54
32.72 639.99 7.38
11.30 462.72 8.70
15.41 138.87 3.58

-
25.03 1,296.08 21.06
12.15 377.32 9.27
16.32 247.96 10.16
10.05 350.98 8.04
15.97 196.88 5.05
31.60 1,856.39 28.77
16.53 824.45 18.29

-
17.88 746.91 13.48
30.09 692.36 11.96
22.71 39.71 2.28
31.20 767.01 13.61
16.52 192.85 4.09
32.22 632.59 11.94

749.73 22,984.04 14.63

Table 6.2: Economic Results of the Optimal Paths of Adjustment

Costs and savings are present values. Cost of inputs is the present value of the cost of inputs for the time
horizon of eight periods.
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From Table 6.1, at initial conditions the economic efficiency of Store 202 is 58.01 per

cent. The budget constraints determine that Store 202 requires three adjustment periods

to transform the input quantity vector from the initial value to the target one. In other

words, this store requires three adjustment periods to become 100 per cent economically

efficient.

From the data of Table 6.1, for Store 202, the cost of adjustment of input quantity vector

at each of periods 1 and 2 is 33 per cent of total cost of adjustment. The cost of

adjustment of inputs at period 3 is the 34 per cent of the total cost of adjustment of this

store. If there were no budget constraints, then the adjustment of inputs would be fully

accomplished at the start of the first adjustment period. In this case, the present value of

the cost of inputs from period 0 to period 8 would be D$1,715.89, and the present value

of the cost of adjustment would be D$38.24. These costs give a net saving of D$908.86.

This net saving is 1.057 times the corresponding net savings with budget constraints in

effect. For this store, the budget constraints determine a small difference between the

present value of savings of the constrained and unconstrained budget cases.

Store 232 behaves differently from that of Store 202. From Table 6.1, at initial

conditions the economic efficiency of Store 232 is 40.39 per cent. The budget

constraints determine that Store 232 requires, as does Store 202, three adjustment

periods to transform the input quantity vector from initial conditions to the target one. In

other words, this store requires three adjustment periods for becoming 100 per cent

economically efficient.
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From data of Table 6.1, the cost of adjustment of the input quantity vector at each of

periods 1 and 2 is 12.2 per cent of the total cost of adjustment of this store. The cost of

adjustment of inputs at period 3 is the 75.6 per cent of total cost of adjustment of this

store. If there were no budget constraints, then the adjustment of inputs would be done

at the start of the first adjustment period. In this case, the present value of the cost of

inputs from period 0 to period 8 would be D$3,794.97, and the present value of the cost

of adjustment would be D$66.74. These costs give a net saving of D$3,803.34. This net

saving is the 49.62 per cent of the present value of the cost of inputs at initial

conditions, evaluated for eight periods. This net saving is 1.35 times the corresponding

percentage with the budget constraints in effect. For this store, the budget constraints

make a significant difference between the savings of the constrained and unconstrained

budget cases.

The main difference between the economic behaviours of Store 202 and Store 232 is

that the measurement of economic efficiency for the first store is 0.5801, at initial input

conditions, and for the second the same measurement is 0.4039. This means that Store

202 must decrease the cost of its inputs by 41.59 per cent of the cost of inputs at initial

conditions, while Store 232 must decrease the cost of its inputs by 59.61 per cent. The

higher the economic efficiency, the lower is the reduction of the cost of inputs for

becoming 100 per cent economically efficient. In general terms, the higher the

economic efficiency, the higher is the gross profit at initial conditions. Finally, the

higher the gross profit at initial conditions, the weaker are the budget constraints and the

adjustments are done earlier than if the budget constraints are effective.
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6. 7 Period-to-Period Changes of Weights of Stores

The DEA based formulation of the optimal path of adjustment program considers that

the weight of each store may change from period-to-period. With this consideration, the

optimisation problem has more degrees of freedom than imposing that the weight of

each store is constant for all adjustment periods. This restriction reduces the weights of

each store from four to one. In general terms, for a given system, it is reasonable to

expect that the optimum improves with increasing the degrees of freedom.8

Three cases are identified when comparing the optimal paths of adjustment and the

target input quantity vectors, determined assuming period-to-period variable weights of

stores, with the optimal paths of adjustment and target input quantity vectors determined

by imposing period-to-period constant weights of stores. Each case identifies different

degrees of equality of these optimal paths of adjustment and target input quantity

vectors.

Equal Case

The equal case occurs when the period-to-period input quantity vectors determined by

assuming period-to-period variable weights of stores are the same as those determined

by imposing period-to-period constant weights of stores. The initial input quantity

vector is the same for both situations. Twenty-four stores are found to be in this

category. For example, consider Store 202. From Table 6.1, at adjustment period 1, the

peers are Stores 236 and 258, with respective weights of 0.01530 and 0.60446; at

adjustment periods 2, 3 and 4 the peers are Stores 247 and 258, with respective weights

8 For any store, the optimal weights at each adjustment period may be equal, although initially they are
assumed to be different.

167



of 0.01835 and 0.60298. When imposing on Store 202 period-to-period constant

weights, the resulting peers and their weights correspond to the stores and weights that

define the technically feasible input quantity vector that minimises the cost of inputs for

the given output. These peers and weights are the same for periods 2, 3 and 4 under

period-to-period variable weights of stores, because at those periods the input quantity

vector of Store 202 is the target one.

Although the optimal path of adjustment for Store 202 is the same in both weight

options, the slacks are different. This means that the period-to-period optimal input

quantity vector is on the hyperplane of the target input quantity vector. The input

quantity vector exceeds the target in the slacks. Table 6.3 presents the slacks for both

weights options.

Table 6.3: Slacks for Constant and Variable Weights of Peers for Store 202

Sales Salesperson-hours Cashier-hours Marketing

D $ khours khours D $

Period Variable Constant Variable Constant Variable Constant Variable Constant

1 3.7890 0.0 1.3870 1.3872 0.95946 0.95386 3.1758 3.2972

2 0.0 0.0 1.0298 1.0298 0.0 0.0 0.0 0.0

3 0.0 0.0 0.0 0.00345 0.0 0.0 0.0 0.0

4 0.0 0.0 0.0 0.00345 0.0 0.0 0.0 0.0

In the discussion on Store 258 in Section 6.5, we note that Stores 236, 247, 258 and 266

are single peers of themselves at the four adjustment periods. As single peer of itself, its

weight is one. This expected singular behaviour includes these four stores in this equal

case.
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Partially Equal Case

The partially equal case is said to occur when the period-to-period input quantity

vectors that are determined by assuming period-to-period variable weights of stores are

not equal to those determined by imposing period-to-period constant weights of stores,

but the target input quantity vectors are equal. Stores 211, 232 and 256 are in this

category. The initial input quantity vector is the same for both situations. Table 6.4

presents the factors that define this second case.

Table 6.4: Different Paths of Adjustment and Same Target Input Quantity Vector

Store 211 232 256

Weight Status Variable Constant Variable Constant Variable Constant

Objective Function D$ 2,732.04 2,732.16 4,842.96 4,924.42 4,596.57 4,605.61

Ca
4'

4
t4..,o
.....v)o
U

Initial 419.92 419.92 1,172.96 1,172.96 987.47 987.47

Period 1 415.12 415.25 1,080.64 1,129.28 726.43 736.28

Period 2 412.94 412.94 988.32 1,032.10 630.65 630.64

Period 3 412.94 412.94 473.73 473.73 630.41 630.41

Target 412.94 412.94 473.73 473.73 630.41 630.41

From Table 6.4, for practical purposes, Store 211 may be included in the set of firms

that are in the equal case.

From Table 6.4, Store 232 is a good example of the partially equal case. The optimal

path of adjustment defined with period-to-period variable weights of stores is better

than the optimal path defined by imposing period-to-period constant weights of stores.

The paths of adjustment differ at periods 1 and 2. The input quantity vectors at periods 3
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and 4 are equal to the target input quantity vector. Store 256 behaves similarly, with the

difference that it requires only two periods to adjust the input quantity vector to the

target one, instead of the three periods for Store 232.

As expected, the immediate conclusion is that the optimal value of the objective

function of the period-to-period variable weights of stores is equal to or better than the

objective function of the period-to-period constant weights of each store.

Different Case

The different case is said to occur when there is no equality between the input quantity

vectors that are determined by assuming period-to-period variable weights of stores

with those determined by imposing period-to-period constant weights of stores. Of

course, the target input quantity vectors are different in this case, although the initial

input quantity vectors are the same for both situations.

Table 6.5 presents the results for the eight stores whose paths of adjustment are different

if determined assuming period-to-period variable weights of stores or imposing period-

to-period variable weights of stores.

For weight status being variable, the cost of inputs at period 4 is the cost of the target

input quantity vector.
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Table 6.5: Different Paths of Adjustment and Target Input Quantity Vector

Weight

Status

Objective

Function

Cost of Inputs Cost of Adjustment

Store Period

1

Periods

2 & 3

Period

4

Period

1

Period

2

Period

3

Period

4

234 Variable 7,124.9 1,060.24 1,051.38 1,051.38 27,51 5.24 0.0 0.0

Constant 7,170.5 1,065.16 1,058.96 1,061.35 27,51 0.365 0.0 4.44

240 Variable 5,400.8 876.02 736.25 736.25 16.54 10.31 0.0 0.0

Constant 5,428.9 888.61 739.29 740.26 16.54 8.35 0.0 1.79

242 Variable 3,549.0 533.14 496.77 496.77 15.42 5.65 '	 0.0 0.0

Constant 3,576.4 556.62 497.84 498.21 15.42 4.82 0.0 0.753

243 Variable 3,918.9 589.14 553.62 553.62 17.07 14.07 0.0 0.0

Constant 4,056.5 717.94 557.13 558.41 17.07 10.58 0.0 1.90

248 Variable 4,858.3 708.00 702.11 702.11 20.84 4.57 0.0 0.0

Constant 4,891.3 708.00 708.00 710.27 20.84 0.0 0.0 4.15

260 Variable 5,096.01 763.73 753.56 753.56 24.52 6.07 0.0 0.0

Constant 5,136.32 790.65 756.34 757.42 24.52 4.15 0.0 1.94

263 Variable 4,868.04 726.20 716.48 716.48 23.11 8.81 0.0 0.0

Constant 4,916.18 726.20 725.02 728.41 23.11 2.80 0.0 6.00

265 Variable 4,664.52 700.55 688.48 688.48 23.05 10.0 0.0 0.0

Constant 4,725.10 709.65 697.63 701.50 23.05 2.55 0.0 6.73

From Table 6.5, corresponding to the weight status being constant for each of the eight

stores, the period-to-period costs of inputs of the optimal paths of adjustment are no

smaller than the corresponding costs of inputs for the optimal paths of adjustment when

the weight status is variable.
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The immediate conclusion is that, as expected, the optimal value of the objective

function for the period-to-period variable weights of stores is equal to or better than the

value of the objective function of the period-to-period constant weights of each store.

With four adjustment periods, to behave as an equal case, Store 265 requires 16 or more

periods as a time horizon for economic evaluation. If the number of intended adjustment

periods is five, Store 265 requires at least 21 periods as the time horizon to behave as an

equal case. If the number of intended adjustment periods is six, Store 265 requires at

least 21 periods as the time horizon to behave as an equal case. Nonetheless, behaving

as an equal case, Store 265 adjusts the input quantity vector to the target one in only two

periods. For 11 intended adjustment periods, Store 265 requires at least 22 periods as

the time horizon to behave as an equal case.

Imposing period-to-period constant weights to each store may determine that the input

quantity vector corresponding to the last adjustment period is not technically efficient.

Table 6.6 presents the input quantity vectors and the technical and economic

efficiencies for Store 265 with six intended adjustment periods and 20 periods as the

time horizon.

From Table 6.6, it is noted that the economic efficiency increases along the optimal path

of adjustment and that the technical efficiency may increase or decrease. If five

adjustment periods are involved, then the optimal path of adjustment is presented in

Table 6.6, from period 0 to period 5.
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Table 6.6: Input Quantity Vector, Technical and Economic Efficiencies for Store 265

Salesperson-

hours

Cashier-

hours

General

Expenses

Marketing Cost of

Inputs

Efficiency

Period khours khours D $ D $ D $ Technical Economic

Initial 4.287 2.144 23.304 15.361 810.6 1.0 0.8494

1 6.544 2.144 18.423 15.883 709.6 0.9916 0.9702

2 6.544 1.670 17.953 15.883 697.6 1.0 0.9869

3 6.544 1.670 17.953 15.883 697.6 1.0 0.9869

4 7.588 1.670 17.953 15.883 701.5 0.9851 0.9814

5 7.588 1.670 17.953 15.883 701.5 0.9851 0.9814

6 6.544 1.465 17.953 15.883 697.3 1.00 0.9873

For 11 intended adjustment periods, the optimal input quantity vectors for periods 1, 2,

and 3 are the input quantity vectors for these three periods presented in Table 6.6; for

periods 4, 5, 6, and 7 is the input quantity vector presented for period 4 in Table 6.6, and

for periods 8 to 11 are the input quantity vectors presented for periods 5 and 6 in Table

6.6.

For Store 265, the input quantity vectors at the last adjustment period for five or more

intended adjustment periods are the input quantity vectors presented for periods 5 and 6

in Table 6.6. This input quantity vector has an economic efficiency of 0.9873, which is

the highest obtainable by imposing period-to-period constant weights to each store.
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6. 8 Expected Outputs with Variable Prices and Costs of Adjustment for Store 202

The versatility of the optimal paths of adjustment program allows for extensions. This

section presents the optimal path of adjustment for Store 202, considering expected

period-to-period variations of output, with variable input prices, and input costs of

adjustment. Although the data are expected values, for the purpose of this study, these

values are considered as observed, in the sense that they are taken as true values. This

extension of the optimal paths of adjustment program considers that stores use the same

technology in the four intended adjustment periods.

Experts and senior managers may assign expected period-to-period sales or outputs.

Also, based on contracts with suppliers and on economic agreements with labour

unions, costs of inputs and costs of adjustment may be determined at each period. For

Store 202, Table 6.7 presents expected outputs and estimated costs of inputs and costs

of adjustment for the four intended adjustment periods.
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Table 6.7: Variable Outputs, Prices and Costs of Adjustment for Store 202

Period Initial 1 2 3 4

Output 1,669.40 1,686.09 1,702.79 1,719.48 1,736.18

v)i..
zo..	 4

I	 0
=	 0o	 ,4
`42	 ..-
a)	 ------ta	 E's
ci,
etcn

Price 4.36 4.45 4.45 4.53 4.53

Cost of
Increase

7.12 7.26 7.26 7.40 7.40

Cost of
Decrease

12.63 12.88 12.88 13.14 13.14

v);.,
z	 u)o	 L-...z
cti

..i
- 	 4,s,

ct	 a)
U

Price 2.07 2.11 2.11 2.15 2.15

Cost of
Increase

2.07 2.11 2.11 2.15 2.15

Cost of
Decrease

3.38 3.45 3.45 3.52 3.52

&

E'

Cost 10.90 11.23 11.23 11.66 11.66

v)	 ll,I. ,'	 aletv)	 0
C.7

Cost of
Decrease

1.15 1.18 1.18 1.23 1.23

at)o
a.)	 E0,)

,..

Cost 13.46 13.80 13.80 13.80 13.80

Cost of
Decrease

1.48 1.52 1.52 1.52 1.52

Keeping eight periods as the time horizon, four as the number of intended adjustment

periods, and budget constraints for periods 1 and 2, Table 6.8 presents the optimal path

of adjustment for Store 202. For comparison purposes, Table 6.8 includes constant

outputs, constant prices, and constant costs of adjustment of inputs.
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Table 6.8: Optimal Path of Adjustment

Constant and Variable Outputs, Prices and Costs of Adjustment for Store 202

Period

Output

D$

Salesperson

hours

khours

Cashier

hours

khours

Sales &
General

Exp., D$

Marketing

D$

Cost of

Inputs

D$

Cost of

Adjustment

D$

Initial 1,669.4 5.539 1.79 18.35 13.346 407.5 0.0

1
4)	 a'0
ci.
1	 ...

, c2
o	 0
E	 73

0
',:.)

1 1,669.4 5.539 1.79 9.395 11.778 288.79 12.619

2 1,669.4 5.182 0.8361 9.395 8.480 240.88 12.619

3 1,669.4 4.152 0.8361 9.395 8.480 236.39 13.006

4 1,669.4 4.152 0.8361 9.395 8.480 236.39 0.0

-ri
g
ct
CA

(.9	 (L9
Z.	 .04
0	 0
0	 17;

..0	 0
od	 u

1 1,686.1 5.539 1.79 18.35 13.346 418.56 0.0

2 1,702.8 5.539 1.79 18.35 13.346 418.56 0.0

3 1,719.5 4.295 0.885 9.680 8.716 254.53 37.21

4 1,736.2 4.295 0.885 9.774 8.795 256.71 0.0

From Table 6.8, Store 202 does not perform adjustments in period 1 nor in period 2.

The most significant adjustment is done in period 3, with a cost of D$37.21. In period 4,

Sales and General Expenses increases D$0.094 and Marketing increases D$0.079; both

increments are without cost of adjustment. Because the output and unit prices are

different in both the cases presented in Table 6.8, the optimal paths of adjustment are

also different.
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For practical application of this extension, it is advisable to re-design the optimal path

of adjustment each period that new data are available. In this case, the initial period is

the period at which the re-design is started when the technical and economic data are

available.

6. 9 Optimal Outputs with Variable Prices and Costs of Adjustment for Store 202

Section 6.8 presents the optimal path of adjustment for expected period-to-period output

variations. This section presents the optimal path of adjustment for Store 202,

considering optimal period-to-period variations of output with variable input prices and

input costs of adjustment. This extension of the optimal paths of adjustment program

considers that, in the five intended adjustment periods, the stores do not increase nor

decrease the current floor surface areas and that there are no changes in technology.

Senior managers may seek to generate the largest technically feasible output for the

given non-discretionary variables. Although the system has constant returns to scale, the

non-discretionary variables limit the technically feasible increase of outputs, not

allowing outputs to be unbounded.9

In this case, we consider that any output increase has a specific cost of adjustment. This

cost of adjustment refers to the cost of extra goods and the cost of installation of

additional services needed to facilitate increases of output. This cost of adjustment does

not include the costs of adjustment of corresponding inputs. It is assumed that, for Store

9 In Section 2.4, we indicate that only the systems with decreasing returns to scale may maximise profit
because the rate of increasing the cost of inputs is higher than the rate of increasing the value of inputs.
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202, the cost of increasing (adjusting) the output is D$2.0. The period-to-period variable

costs of inputs and costs of adjustment of inputs, presented in Table 6.7, are considered

in this section.

In this case, the objective is to maximise the present value of net profit from the initial

period to the evaluation time horizon. For any period, the net profit is the residual of the

corresponding inputs and three costs: the cost of inputs, the cost of adjustment of inputs

and the cost of adjustment of output. For the first, second and third adjustment periods,

the budget constrains the sum of the cost of adjustment of inputs and the cost of

adjustment of output to five per cent of the net initial profit. For the fourth adjustment

period, the budget constrains the cost of adjustment of output to be half the difference

between the target output and the output at period 4.

Table 6.9 presents the period-to-period outputs and the optimal path of adjustment for

Store 202, with twelve periods as the time horizon, five intended adjustment periods,

and budget constraints for periods 1, 2, 3 and 4.

From Table 6.9, Store 202 may increase output from actual D$1,669.4 to the target

output D$3,145.0. This target is the largest output that may be generated by any Dijon

store with 10.90 DSU as the floor surface of the store.
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Table 6.9: Optimal Path of Adjustment

Optimal Output, Variable Price and Cost of Adjustment

Store 202 Period

Initial 1 2 3 4 5

Output D$ 1,669.4 1,691.6 1,723.2 1,754.7 2,218.1 3,145.0

Salesperson hours khrs 5.539 5.539 5.539 5.539 5.539 6.799

Cashier hours khrs 1.790 1.360 1.360 1.360 1.360 1.360

Sales & General Expenses D$ 18.35 9.521 9.701 9.880 12.515 16.345

Marketing D$ 13.346 8.585 8.733 8.882 11.061 22.293

Cost of Inputs D$ 407.51 246.30 250.25 254.20 312.22 510.68

Cost of Adjust Inputs D$ 0.0 18.652 0.00 0.00 0.00 8.970

Cost of Adjust Outputs D$ 0.0 44.442 63.095 63.095 926.83 1,853.7

Gross Profit D$ 1,261.9 1,445.3 1,482.0 1,500.5 1,905.9 2,634.3

Net Profit D$ 1,261.9 1,382.2 1,409.9 1,437.4 979.05 771.6

In period 1, the output is increased from D$1,669.4 to D$1,691.6 with a cost of

increasing output of D$44.443, and the cost of inputs decreases from D$407.51 to

D$246.30 with a cost of adjustment of D$18.652. The gross profit is D$1,445.3 and the

net profit is D$1,382.2.

In period 2, the output is increased from D$1,691.6 to D$1,723.2 with a cost of

increasing output of D$63.095, and the cost of inputs increases from D$246.30 to

D$250.25 without cost of adjustment. There is no cost of adjustment of inputs because

the two inputs that are adjusted are Sales & General Expenses and Marketing;

increasing both inputs involve no costs. The gross profit is D$1,482.0 and the net profit

is D$1,409.9.
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In period 3, the output is increased from D$1,723.2 to D$1,754.7 with a cost of

increasing output of D$63.095, and the cost of inputs increases from D$250.25 to

D$254.20 without cost of adjustment. The gross profit is D$1,500.5 and the net profit is

D$1,437.4

In period 4, the output is increased from D$1,754.7 to D$2,218.1 with a cost of

increasing output of D$926.83, and the cost of inputs increases from D$254.20 to

D$312.22 without cost of adjustment. The output increase is limited by its cost of

increasing. As previously indicated, the budget for this period assigns to this item up to

half of the difference of the target output and the output at period 4. The gross profit is

D$1,905.9 and the net profit is D$979.05. The net profit decreases with respect to

previous periods because the significant output increase has a large cost of increase.

In period 5, the output is increased from D$2,218.1 to the target D$3,145.0 with a cost

of increasing the output of D$1,853.7. The cost of inputs increases from D$312.22 to

D$510.68 with a cost of adjustment D$8.97. This period has no budget constraint. The

gross profit is D$2,634.3 and the net profit is D$771.6. The net profit decreases with

respect to previous periods because the significant output increase has a large cost of

increase. From this period on, because there are no adjustments, the net profit

corresponds to the gross profit D$2,634.3.

Table 6.10 presents the weights of peer stores and the slacks of inputs for the optimal

path of adjustment for Store 202, with twelve periods as the time horizon, five intended

adjustment periods, and budget constraints for periods 1, 2, 3 and 4.
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Table 6.10: Optimal Path of Adjustment

Period-to-Period Weights of Peers and Slacks

Store 202

Period

1 2 3 4 5

C4-40
..4	 pi)
bi)	 0,

"i5	 rz.

Store 247 0.0401 0.0710 0.1019 0.5555

Store 258 0.5902 0.5721 0.5540 0.2882

Store 236 1.0149

Uctt
c7i

Salesperson hrs khrs 1.340 1.271 1.204 0.2084 0.0

Cashier hrs khrs 0.5076 0.4845 0.4614 0.1221 0.0

Stores 247 and 258 are the peers of Store 202 at adjustment periods 1, 2, 3 and 4. At

target conditions, Store 236 is the peer, with weight 1.0149. This weight is the ratio of

the floor surface of Store 202, at initial conditions, to the floor surface of peer Store

236; this is 10.9/10.74 = 1.0149

Salesperson hours and cashier hours are the only two inputs that present slacks at

adjustment periods 1, 2, 3 and 4. Slacks decrease while the inputs and outputs adjust. At

target conditions, no input presents slacks.
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6.10 Conclusions

The basic DEA model considers that peers may change from one period to the next,

because firms that perform adjustments may crossover the firms that are on the

boundary of the technology while improving their cost efficiency. Changes include

weights of peers, deletion of one or more peers and the incorporation of one or more

peers. This is a relevant aspect of this DEA model, because the optimal paths of

adjustment determined with period-to-period variable weights of stores are

economically better than the optimal paths of adjustment determined with period-to-

period constant weights of stores.

The extension of the concept of period-to-period variable weights of stores, developed

in this thesis, to period-variable outputs for input-orientated systems and to period-

variable technology is trivial. The extension of the concept of period-to-period

variable weights of stores to productive systems that involve the concurrence of two or

more technologies is also trivial. Fare and Grosskopf (1996, pp. 110-116) use a similar

approach "to introduce a vintage nonparametric DEA model that explicitly recognizes

that technical change may have its origin in new technology introduced over vintages

through investment".
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CHAPTER 7

CONCLUSIONS

7.1 Summary

This chapter presents the main conclusions derived from the application of the optimal

path of adjustment program developed in Chapter 4 and extended in Chapter 5. The

application uses relevant data of 35 comparable retail-level stores, which are branches

of the Chilean retailing firm, Dijon.

This section presents a summary of the conclusions derived from the application of the

optimal path of adjustment program. Section 7.2 presents opportunities for further

research.

For input-orientated systems, the standard DEA model assigns target input quantity

vectors that minimise the cost of inputs. The targets are technically and economically

fully efficient. Nonetheless, this target assignment has the following three main

limitations:
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i. The outputs and their prices, the price of inputs and their

costs of adjustment, and the production technology are

assumed to be constant over time.

ii. The target assignment does not consider the costs of

adjustment of inputs nor budget constraints.

iii. The target assignment does not give information on how

the adjustments are to be accomplished.

These limitations are removed in the research of this thesis. The main contribution of

this research is a generalised dynamic DEA model. Our dynamic DEA model extends

the standard DEA methodology, allowing for period-to-period variable output

quantities, period-to-period variable input and output prices, period-to-period variable

costs of adjustments of inputs, period-to-period budget constraints to the costs of

adjustments, period-to-period variable production technology, and the determination of

the period-to period optimal input quantity vectors that minimise the sum of the present

value of the costs of inputs and the present value of the costs of adjustments of the

inputs. The generalised dynamic DEA model reduces to the standard forms, while

setting constant the parameters that are time-independent. The extension of the

generalised dynamic DEA model to output-orientated systems is trivial. For the

empirical application, the extended dynamic DEA methodology is included in the

optimal path of adjustment program.

Each firm has its specific optimal input quantity vector that minimises the sum of the

present value of the costs of inputs and the present value of the costs of adjustments.

This optimal vector is called the target input quantity vector, and depends on the prices
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of the inputs and the costs of adjustments of inputs. Input prices may or may not be the

same for the firms involved. For example, labour costs may differ from firm to firm.

Equal prices from firm to firm are not a necessary condition because the minimisation

of the cost of inputs is done separately for each firm. The same is true for the cost of

adjustments of inputs.

For a Cobb-Douglas production function, the target input quantity vector that minimises

the costs of inputs is different from the target input quantity vector that minimises the

sum of the present value of the costs of inputs and the present value of the costs of

adjustments of inputs.

For DEA, the target input quantity vector that minimises the costs of inputs may be the

same target input quantity vector that minimises the sum of the present value of the

costs of inputs and the present value of the costs of adjustments of inputs. In Section

5.4, under the subsection, Comparison of Targets for Cobb-Douglas and DEA, we

analyse the conditions for both vectors to be the same.

In Section 5.4, we stated that, in general terms, the targets determined with a Cobb-

Douglas production function change continuously with continuous changes of the

parameters, and that the DEA production function determines discrete changes of the

target inputs for continuous changes of the parameters. This is an important property of

DEA because some managers may feel more confident when pursuing input targets that

equally optimise the costs of inputs and the sum of the present value of the costs of

inputs and the present value of the costs of adjustments of inputs.
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The path of adjustment is the period-to-period adjustment that a firm must perform, for

transforming the initial input quantity vector into the target one. The optimal path of

adjustment minimises the present value of inputs and the present value of the costs of

adjustments. The present value of inputs is evaluated along a predefined time horizon.

The present value of costs of adjustments is evaluated along a predefined adjustment

time. For the application to 35 stores of Dijon, the time horizon is eight periods and the

adjustment time is four periods, where a period is a six-month interval. To determine the

optimal path of adjustment requires knowing the costs of adjustments of the firm under

optimisation.

With the data from Dijon, the optimal paths of adjustment for the different stores are

one-step paths, unless budget constraints are included. The incorporation of budget

constraints gives practical use to the optimal path of adjustment program.

The DEA optimal path of adjustment model considers that peers may change from one

adjustment period to the next. The reason for considering that peers may change from

one adjustment period to the next is that firms performing adjustments crossover the

firms that are on the boundary of the technology while improving their economic

efficiency. The changes include the weight values of peers, the deletion of one or more

peers and the incorporation of one or more peers. This is a relevant aspect of this

extended DEA model, because the optimal paths of adjustment determined with period-

to-period variable weights of stores are economically better than the optimal paths of

adjustment determined assuming period-to-period constant weights of stores. Assuming

that, while performing adjustments, the weights of peers are constant implies assuming

that the peers are unique and are the peers that define the target input quantity vector.
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The dynamic DEA model allows period-to-period variable output. Considering that

peers may change from one adjustment period to the next allows the output quantity

vector to change from one adjustment period to the next. This is the dynamic output

case of input-orientated systems.

The dynamic DEA model allows period-to-period variable output and input prices and

input costs of adjustment. Considering that peers may change from one adjustment

period to the next allows the input and output prices and the costs of adjustments to

change from one adjustment period to the next.

The dynamic DEA model allows period-to-period variable technology. Considering that

peers may change from one adjustment period to the next allows the technology to

change from one adjustment period to the next. This is the dynamic technology case.

This extension configures a basic model to a dynamic DEA model.

Assigning a period-specific weight to each firm allows considering period-specific sets

of observed input-output data. This extension includes the concurrence of two or more

technologies. In this last case, a specific weight by period and technology is assigned to

each store.'

In Section 6.8, we mentioned that Fare and Grosskopf (1996, pp. 110-116) use a similar approach "to
introduce a vintage nonparametric DEA model that explicitly recognizes that technical change may
have its origin in new technology introduced over vintages through investment".
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7.2	 Opportunities for Further Research

In this research, it is assumed that the boundary of the technology is valid along the

adjustment periods, as defined by the best-performing firms at some specific time.

Depending on how long is each adjustment period, more adjustment periods than the

initially assigned may take place until the static technological boundary is reached.

If changes in technology may be foreseen, it may be preferred to consider some

expected period-to-period variation of technology, instead of constant technology. To

deal with expected period-to-period data instead of observed period-to-period data

requires the extension of DEA fundamentals and may demand the generation of new

concepts.

In this research, it is assumed that, once an input quantity vector is established, the store

immediately performs as expected. This assumption means that there is no learning

time; the firm does not spend a behavioural-adjustment time. The estimation of the

transient behaviour of firms to changes of inputs may be an interesting field of research.

In this research, the future prices and costs of adjustments of inputs are handled as

observed instead of estimated values. The incorporation of forecast concepts to prices

and the evaluation of the risk of the investments involved in the adjustments may lead to

more realistic applications for medium- and long-time horizons for business planning.

In this research, the optimal path of adjustment is determined for known or for given

outputs. The presence of non-discretionary variables allows the consideration of the
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case of simultaneous change of outputs and inputs, as presented in Section 6.8. Change

of technology and considerations relative to the cost of increasing the market share may

be considered as opportunities for further research.

In general terms, these opportunities for further research may need a deeper insight of

firm theory and firm economics.
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