
CHAPTER 3

FUNDAMENTALS OF

DATA ENVELOPMENT ANALYSIS

3.1 Introduction

Chapter 2 presents basic concepts of production and technical efficiency. It discusses

the production and transformation functions and considers profit maximisation, cost

minimisation and revenue maximisation as possible behavioural motivations for

producers. Finally, it introduces the concepts of technical, allocative, and economic

efficiency.

The main assumption underlying the formulation presented in Chapter 2 is that the

production (or transformation) functions are known. Production and transformation

functions may be estimated using parametric methods, of which ordinary least squares

regression is the most commonly used. The main problem with this approach is that

the selected functional form may be misspecified. Non-parametric methods can be

used to overcome this problem (Thanassoulis, 2001, p. 9).

In this chapter, Data Envelopment Analysis (DEA) is introduced as a benchmarking,

non-parametric method, which can be used to optimise objective functions of special

interest and obtain boundary solutions that define 100 per cent technical efficiency.
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Also, DEA is introduced as a method that is well suited for determining the optimal

quantities of inputs (or outputs) that optimise some objective function of interest such

as revenue, cost, and present value of cash flows. This method is equally valid for

firms with multiple inputs and multiple outputs, and does not require the specification

of a functional relationship between inputs and outputs.

In general terms, DEA is a non-parametric method for measuring relative efficiency

of members of a set of comparable firms. Because the production function of efficient

firms is not known a priori, it must be estimated using observed sample data from the

industry involved. For two inputs and one output, the best-performing firms define

piecewise linear boundaries. For multiple outputs and multiple inputs, the best-

performing firms define piecewise surfaces that are hyperplane boundaries (Coelli,

Rao and Battese, 1998, p. 140).

Section 3.2 states the primal DEA problem and discusses productivity that is defined

as the largest value of a weighted sum of outputs divided by a weighted sum of inputs.

The weights are obtained using linear programming. A simple example illustrates these

concepts. The section closes with a brief presentation and interpretation of the

information obtained from the solution of that example. Section 3.3 states the dual

DEA problem and relates it with technical efficiency. Section 3.4 presents, in general

terms, the returns to scale concept. Section 3.5 reviews, in DEA formulation, the

expected optimising behaviour of firms. Section 3.6 discusses some limitations of

DEA. Finally, Section 3.7 presents some concluding comments.
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3.2 Productivity and the Primal DEA Problem

This section presents basic concepts associated with DEA, followed by the DEA

primal formulation that is related to the productivity concept. Concepts and models are

illustrated with a simple example.

DEA is a non-parametric method for extracting information from a collection of

observed production data on a set of comparable firms. DEA is non-parametric,

because no functional relationship is assumed between outputs and inputs. DEA

optimises the performance of each individual firm, relative to all other firms in the set

of selected firms. Productivity, which is the ratio of a weighted sum of outputs to the

weighted sum of inputs, is the measure to be maximised in this section.

Charnes, Cooper and Rhodes (1978) extended Farrell's ideas, linking the estimation of

technical efficiency with production frontiers, in a non-parametric approach. Their

model, known as the CCR model, generalised a "single-output to a single-input" ratio

measure of productivity for a single firm to a "multiple-output to multiple-input" ratio

measure of productivity, relative to a set of firms.

Later, Charnes and Cooper (1985) state their concept of relative efficiency, signalling

that DEA is the method for relative productivity measurement. The productivity

measurements that are presented in Section 2.6 and in this chapter are different,

although related. The first one is a performance measure of a firm, isolated from other

firms; the second is a performance measure of a firm relative to the performance of a

set of comparable firms.
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The Primal DEA Model

To formulate the basic mathematical primal problem, consider a simple set of five

firms (k = 1, 2, 3, 4, 5). Each firm produces quantities of one output, yi, y2, y3, y4, y5,

using quantities of two inputs, represented by the vectors, x l , x2, x3, x4, x5 . In scalar

form, we define the productivity of firm e (equation 2.6.1) as: 1

u l y e
Total Factor Productivitye — 	 •

ViXie + V2X2e
(3.2.1)

The main interest is to determine the values of the weights, u 1 ,v 1 ,v2 , that maximise

the Total Factor Productivitye measure in equation (3.2.1). The optimisation is subject

to the constraint that no firm may have Total Factor Productivity larger than 1.0, when

its productivity is evaluated using the weights that optimise the productivity

measurement for firm e. The optimisation problem becomes:

	

maximise 	
ulye	

(3.2.2)
Vi X ie + V2X2e

subject to

	

u/Yk 	 � 1.0, for k = 1, 2, 3, 4, 5,
V 1X lk + V2 X 2k

u v v > 01 , 1, 2 - •

I Firm e is a specific firm under evaluation. Firm e is a member of the set of firms under study.
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The solution to (3.2.2) is not unique, in the sense that if (u: ,v;‘,v *2 ) is an optimal

solution, then a (ui* ,v; ,v *2 ) is another solution. To overcome this, the objective

function is split into the numerator and the denominator, and the numerator is

maximised, while the denominator is forced to have the value one. 2 The optimisation

problem then becomes:

maximise ulye	 (3.2.3)

subject to

vi x,e + V2 X2e = 1

U i yik — (VuXik ± V2k X2k ) < 0 for k= 1, 2, 3, 4, 5,

ui,vi,v2 � 0.

Problem (3.2.3) is a linear programming problem.3

In problem (3.2.3) the subscript, e, stands for the firm under evaluation, e = 1, 2, ..., 5.

For this reason, to evaluate the productivity of the five firms requires the successive

solution of problem (3.2.3) for each of the five firms.

To illustrate the concepts presented above, consider the data of Table 3.1 and for each

firm find the output productivity, as defined with problem (3.2.3).

2 This produces what many researchers call "output-orientated" performance measures. To obtain input-
orientated measures the denominator is minimised and the numerator is constrained to equal one. The
issue of orientation is discussed below.
3 We note that this LP implicitly assumes that the production technology has constant returns to scale.
The issue of returns to scale and scale efficiency are discussed below.

50



Firm 1:
	 Firm 4:

maximise 100u,	 maximise 115 u1

subject to:

100v1+100v2=1

subject to:

133v1+189v2=1

100u, - 100v1 -100v2 �_0 100u, - 100v1-100v2 � 0

110u, - 90v1-149v2 � 0 110u, - 901;1 -149 v2 � 0

120u, - 150v, -85.9 v 2 � 0 120u, - 150v, -85.9v2 � 0

115u, - 133v1-189v2 � 0 115u, - 133v1-189v2 � 0

103u, - 1521;1 -61 v2 �_0 103u, - 1521,1 -61 v2 � 0

ti i , -v1 , v2 � 0
	

1417 1,1 7 v2 � 0

Table 3.1: Input and Output Data for Five Firms

Quantity

Firm k Yk X lk X2k

1 100 100 100

2 110 90 149

3 120 150 85.9

4 115 133 189

5 103 152 61

Using (3.2.3), the LP problems for firms 1 and 4, are:

Similar LP problems are required for firms 2, 3 and 5. Table 3.2 shows the solution to

problem (3.2.3) for the five firms.
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Table 3.2: Solution to Problem (3.2.3) for the Five Firms:

Output-Orientated System and Constant Returns-to-Scale Technology

Firm Productivity 100 u, 1000 vl 1000 v2

1 1.0 1.0 6.61 3.39

2 1.0 0.909 6.01 3.08

3 1.0 0.833 4.43 3.90

4 0.757 0.658 4.35 2.23

5 1.0 0.9709 0 16.39

Following Thanassoulis (2001, p. 93), the information obtained from this DEA model

is:

Firms 1, 2, 3 and 5 are fully efficient, having maximum productivity of 1.0.

Firm 4 is not efficient, having a relative productivity of 0.757, which implies that it is

75.7 per cent efficient. To become fully efficient, Firm 4 must increase its output from

the actual quantity of 115 units to 115/0.757 = 151.8 units. The output of 151.8 units is

the largest quantity technically attainable, using 133 and 189 units of inputs 1 and 2,

respectively.

Input- and Output-Orientated Measures

It should be noted that the above performance measures are output-orientated

measures, i.e., they look at the amount by which observed output falls short of

potential output, for a fixed vector of inputs. One can also calculate input-orientated

measures, which look at the amount by which observed inputs exceed the minimum

possible levels, for a fixed vector of outputs.
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Input-orientated measures are obtained by taking problem (3.2.2) and, instead of

maximising the weighted sum of outputs (as for the output-orientated case), we

minimise the weighted sum of inputs. The resulting input-orientated LP is:

minimise ve xe

subject to

lie Y e = 1

Ue yk – Ve Xk � 0	 k = 1, 2, ..., K,

lie, Ve � O.

(3.2.4)

Note that the productivity measures derived from this LP will be identical to the ones

obtained from the output-orientated LP presented in problem (3.2.3). Thus, it appears

that the orientation issue is purely an academic one. This is true in the case of constant

returns-to-scale technology, which we consider in this section. However, when we

look at alternative DEA models, such as the variable returns-to-scale model, the issue

becomes important because the chosen orientation can affect the measures obtained.

Given this information, how can one select the correct orientation? In most studies, the

selection of orientation tends to depend on an assessment of which variables the

managers have most control over. For example, in firms where we observe that the

firms have set orders to fill, the input quantities appear to the primary decision

variables. Examples are water supply firms and electric power generation. However, in

some other industries, firms may have fixed quantities of resources and be asked to

produce as much output as possible. Examples are farms with fixed land areas, and

small and medium sized stores with fixed staff numbers.
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3.3 Technical Efficiency and the DEA Dual Problem

This section presents the DEA dual formulation of problems (3.2.3) and (3.2.4), and

relates them to technical efficiency concepts. 4 Concepts and models are illustrated with

simple examples. Using the duality property of linear programming, the dual

formulation of problems (3.2.3) and (3.2.4) are directly derived. Nonetheless because

productivity and technical efficiency are two strong concepts that are frequently used

in production economics, the DEA dual formulation of those two problems is derived

in detail.

As stated in Section 2.5, "A firm is technically efficient if it produces certain

quantities of outputs by using the minimum feasible quantities of inputs or if it

produces the maximum possible quantities of outputs for given quantities of inputs."

In terms of inputs, a measure of technical efficiency is defined by a ratio of the

minimum feasible quantities of inputs to the actual ones for producing given

quantities of outputs. In terms of outputs, a measure of technical efficiency of a firm

is the ratio of the actual output quantities to the maximum feasible ones, where the

actual and maximum feasible output quantities are for the same quantities of inputs.

Input-Orientated Technical Efficiency Measurement

To formulate those concepts in mathematical form, consider a set of K firms of an

input-orientated system with constant returns-to-scale technology. Each firm produces

4 A mathematical presentation and analysis of the relationships between the primal and dual
formulations of an LP is in Chapter 8 of Hadley (1972).
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J outputs, at quantities, yk , k=1, 2, ..., K, respectively, using I inputs having values, xk,

k=1, 2, ..., K.

Assuming that there are no slacks involved, using equation (2.5.1) for input-orientation

measurement of the technical efficiency of firm e, the optimal input quantities, x:,

may be expressed as the product of the technical efficiency measurement, TEk , times

the actual inputs, xe , as follows:

.
xe = TEk xe .	 (3.3.1)

The optimal input quantities, x:, are unknown. DEA specifies x: as a sum of

weighted values of optimal quantities, x: , k = 1, 2, ..., K. Under these conditions, with

kk being the weight of firm k, the right-hand side of equation (3.3.2) is the minimum

feasible vector of input quantities, and the right-hand side of equation (3.3.3) is the

maximum feasible vector of output quantities:

*
xe = TEk xe � XX	 (3.3.2)

Ye � VA, ,	 (3.3.3)

where X is the I x K matrix of observed input quantities, and Y is the J x K matrix of

observed output quantities. The vectors, xe and ye are the known input-output data of

firm e, which is one of the K firms. Together, inequalities (3.3.2) and (3.3.3) are the

DEA expression for the boundary of technology.

Mathematically, in order for x: to be a minimum, TEk has to be a minimum. The LP

to minimise TE1e is presented in problem (3.3.4):

minimise TEk	(3.3.4)
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Firm 1:

minimise TEii

subject to:

100X i+110X2+120X3+115X4 +103X5 > 100

100X i+90X2 +150X3 +13324 +152X5 � 100TE1i

100X, i +149k2 +85.9k3 +189X4 +61A,5 .� 100TEn

X / 5 X2, X3,, X4, X.5 0

Firm 4:

minimise TEA

subject to:

100X i+110X2+120X3 +115X4 +103X5 >115

100X 1 +90X2 +150X3 +133X4 +152X5 133TEi4

100X,1 +149k2 +85.9X3 +189X4 +61X5 �_ 189TEN

Xl , X2, X3„ X4 , X,5 � 0

subject to:

XX TEk xe

FA. � Ye

0,

where TEk is the input-orientated technical efficiency measurement for firm e. The

main interest is to determine the values of the weights, 	 that minimise TEk.

Equations (3.3.2) and (3.3.3) set constraints to the decision vector A,.5

In problem (3.3.4) the subscript, e, stands for the firm under evaluation, e = 1, 2, ..., K.

For this reason, to evaluate the productivity of the K firms requires the successive

solution of problem (3.3.4) for each of the K firms. This model was first developed in

Charnes, Cooper and Rhodes (1978).

Consider the data of Table 3.1 and for each firm find the input-orientated technical

efficiency, TEk , as defined with problem (3.3.4). The LP problems for firms 1 and 4,

input orientated systems, and constant returns-to-scale technology are:

5 In equations (3.3.2) and (3.3.3), ye , Y and X contain the observed data.
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Similar LP problems are required for firms 2, 3 and 5. Table 3.3 shows the solution for

the five firms. In Section 2.5, and assuming that the production function for this

industry has a Cobb-Douglas form, the technical efficiency measurement for firm 4 is

0.751. 6 This measurement differs by less than 0.8 per cent with the technical efficiency

measured with DEA. Note that the productivity measurement for firm 4 and the

technical efficiency measurement for the same firm is exactly the same value, 0.757.

At the optimum, the value of the objective function of the primal LP and the value of

the objective function of the corresponding dual LP is the same.

Table 3.3: Solution to Problem (3.3.4) for the Five Firms: Input-Orientated

Technical Efficiency Measurement and Constant Returns-to-Scale Technology

Firm

Technical

Efficiency

Xi X2 A.,3 X4 X5

1 1.0 1.0 0 0 0 0

2 1.0 0 1.0 0 0 0

3 1.0 0 0 1.0 0 0

4 0.757 0.360 0.718 0 0 0

5 1.0 0 0 0 0 1.0

6 Note that data for the example of Section 2.5 correspond to data of firm 4 in Table 3.1
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Again, following Thanassoulis (2001, p. 93), the information obtained from this DEA

model is:

Firms 1, 2, 3 and 5 are fully efficient, having maximum technical efficiency. Firm 4 is

not efficient, having a relative efficiency of 0.757. This is equivalent to saying that

firm 4 is 75.7 per cent efficient. As expected, the technical efficiency and the total

factor productivity measurements are equal. To become fully efficient, under constant

returns to scale, firm 4 must (radially) decrease input 1 from 133 units to

133x0.757 = 100.7 units, and must (radially) decrease input 2 from 189 units to

189x0.757=143.0 units.

Alternatively, the optimal quantities of inputs 1 and 2 may be found using the

boundaries 100X 1 +90X2+150X3+133A,4+152X5 = 100 x 0.36 + 90 x 0.718 = 100.7 units

for input 1 and 100X 1 +149X2+85.9X3+189X4+61X5 = 100 X 0.36 + 149 X 0.718 = 143.0

units for input 2. Under constant returns to scale, the 115 units of output are technically

attainable, using no less than 100.7 and 143.0 units of inputs 1 and 2, respectively.

Slacks

There are some cases where the radial reduction of inputs does not give the minimum

technically feasible input vector for producing the specified output.

Figure 3.1 represents a piece-wise linear boundary of technology. Black dots represent

the observed data of quantity of input 1 and 2 per unit of output for firms 1, 2, 3 and 4.

The boundary of the technology is defined by the vertical line parallel to the x1 axis,
Y
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the line between firms 2 and 4, and the line parallel to the x.2 axis. Firms 1 and 3 are

not efficient firms. To become technically efficient, firm 3 must reduce radially its

input vector to point 3'. According to standard DEA, firm1 reduces radially its input

vector to point 1'. But from Figure 3.1, firm 1 may perform an additional reduction of

X1	.	 x2	
	  (with	 held constant) to point 2.

Input 1 by
Unit Output

Y   

Input 2 by
Unit Output

Figure 3.1: Input-Orientated Technical Efficiency Measurement
Constant Returns to Scale

The segment 1'2 is the additional reduction, and, in LP terminology, is referred to as

slack. Coelli, Rao and Battese (1998, footnote p. 142) indicate that Koopmans (1951),

(sic) "provides a more strict definition of technical efficiency which is equivalent to

stating that a firm is only technically efficient if it operates on the frontier and

furthermore that all associated slacks are zero".

0	
X2/

/Y
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In most cases, the technical efficiency given by DEA is larger than the technical

efficiency given by a deterministic Cobb-Douglas production frontier. Consider curve

CED of Figure 3.1, which is a deterministic Cobb-Douglas production frontier. Black

dot points 2 and 4 are observed data and are DEA linear approximations to the

production function. Firm 3 is radially projected onto point E over the Cobb-Douglas

production frontier. The projection 03' is larger than OE, the projection over the

deterministic Cobb-Douglas production frontier. Then the technical efficiency given

by DEA is larger than the technical efficiency given by a deterministic Cobb-Douglas

production frontier.

Output Orientated Technical Efficiency Measurement

Consider now a set of K firms of an output-orientated system with constant returns-to-

scale technology. Each firm produces J outputs, at quantities yk ,k = 1, 2, ..., K, using I

inputs having quantities, xk , k = 1, 2, ..., K,. For firm e, under output-orientation

measurement of technical efficiency, equation (2.6.1) may be written using vector

notation, as in equation (3.3.5), where the actual output quantity vector, ye , equals the

optimal output quantity vector, y: , times the output technical efficiency measurement,

TE ie:

Ye = TEee Ye •	 (3.3.5)

With ee = (TE ee )-I , equation (3.3.5) may be written as in equation (3.3.6):

Ye	 ee Ye
	 (3.3.6)
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.	 „
The optimal quantities, ye , are unknown. DEA specifies ye as a sum of weighted

values of optimal quantities, y:, k= 1, 2, ..., K. Under these conditions, with kk being

the weight of firm k, the right-hand side of equation (3.3.7) is the minimum feasible

vector of input quantities, and the right-hand side of equation (3.3.8) is the maximum

feasible vector of output quantities:

xe > XX	 (3.3.7)

ee ye � YX	 (3.3.8)

The vector ye is fixed and known. To maximise y:, the value of ee has to be a

maximum. The LP to maximise ee may be written as:

maximise ee	 (3.3.9)

subject to:

xe > XX

ee y, � A

TE„,=1/ e,

X � O.

The main interest is to determine the values of the weights X that, maximising ee,

minimise TE„,. Equations (3.3.7) and (3.3.8) set constraints for A., because the

components of vectors, x, , TE., and of matrix X contain observed data.

In problem (3.3.9), the subscript, e, stands for the firm under evaluation, e= 1, 2, ...,

K. For this reason, to evaluate the technical efficiency of the K firms requires the

solution of problem (3.3.9) for each of the K firms.
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Firm 1:

maximise el

subject to:

100X/+110X2+120X3+115k4+103X5 > 100 el

Firm 4:

maximise e4

subject to:

100X/+110k2+120X3 +115X4 +103X5 > 115 el

100X1 +90k2 +150X3 +133X,4 +152X5 � 100 100X1 +90k2 +150X3 +133X4 +152X5 � 133

100X1 +149X2 +85.9X3 +189X4 +61X5 � 100 100X1 +149k2 +85.9X3 +189X4 +61X5	 � 189

X 1 , X2 , X3„ kg , Xs � 0 X'l , X2, A,3„ X4, k5 > 0

To illustrate these concepts, consider the data of Table 3.1 and for each firm determine

the technical efficiency, TE „„ as defined with problem (3.3.9) and with e0 = (TE oe)-1

The LP problems for firms 1 and 4, for the output-orientated system and constant

returns-to-scale technology are defined by:

Similar LP problems are required for firms 2, 3 and 5. Table 3.4 shows the solution for

the five firms.

For constant returns-to-scale technology, the output-orientated technical efficiency

measurement is the same as that determined under input orientation. Nonetheless, as in

the case of input orientation, firms 1 and 2 are the technically efficient firms, whose

weighted output quantities determine the optimal output quantity of firm 4. For firm 4,

the optimal output is 100 +110?, 	 +115k4 +103X,5 = optimal output, yo*

Replacing X i = 0.4758 and X2 = 0.9492, 37: = 152 units. Alternatively, this optimal

quantity may be found as y: = ee yk; replacing y: = 1.322 x 115 = 152 units.
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Table 3.4: Solution to Problem (3.3.9) for the Five Firms: Output-Orientated

Technical Efficiency Measurement and Constant Returns-to-Scale Technology

Firm

ek Technical

Efficiency

X/ X2 X3 X4 X5

1 1.0 1.0 1 0 0 0 0

2 1.0 1.0 0 1 0 0 0

3 1.0 1.0 0 0 1 0 0

4 1.322 0.757 0.4758 0.9492 0 0 0

5 1.0 1.0 0 0 0 0 1

It may be observed that the values of 2k differ from input to output orientation. To

show that lambdas for input- and output-orientation measurement of technical

efficiency are different, consider Figure 3.2, which presents a system of one input and

one output. The line OCA represents the boundary of technology with constant returns

to scale.

Output y

V.
.

Y B

YB

Y c

	•B

xc	 XB	 XB	 xA	 Input x

Figure 3.2: 2k Depends on the System's Orientation

Firms A and C are technically efficient. Firm B is not efficient and produces yB units

of output using xB units of input.
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For the input-orientated system, to be technically efficient, firm B must reduce input

quantity xB to the minimum technically feasible x; for the same output, yB . At this

optimal input-output condition, the input, x; , is a weighted combination of optimal

inputs of firms A and C. If 26. and	 are the respective weights, then

xB = xA 2iA +xc ilic . Similarly, the output, yB , is a weighted combination of optimal

outputs of firms A and C, then yB =yA /1,1A y	 • The values of AiA and Aic define

the solution of these two equations.

[

XB 1 = [XA	 Xc][2.

YB	 YA	 YC	 AiC
(3.3.10)

For the output-orientated system, to be technically efficient, firm B must expand

output quantity, yB , to the maximum technically feasible, yB , for the same input, xB

At this optimal input-output condition, the output y; is a weighted combination of

optimal inputs of firms A and C. If 2oA and Abc are the respective weights, then

Y B = Y Ak A ± YCil'oC • Similarly, the input, x B , is a weighted combination of optimal

outputs of firms A and C, then xB = xA A +xciloc . The values of 2oA and /1,0c define

the solution of these two equations.

YB[
Xl[ A	 xc

YA	 YC

[20 Al

L20Ci

(3.3.11)

64



yl

y,

Because equations (3.3.10) and (3.3.11) have the same square matrix and different left-

hand side vector, the values of 11.1A and 11.0A are different; the same for the value of Aic

and A,„c , as previously stated.

Another important issue is that, under constant returns-to-scale technology, the input-

and output-orientated efficiency measurements are equal (Cooper, Seiford and Tone,

2000, Section 3.8). Consider Figure 3.3, where line OQ represents the constant returns-

to-scale technology for a system of one output y and one input x. Point P represents a

non-efficient firm that produces y1 units of product, using x 1 units of input.

Output y

0
	

xl	
Input x

Figure 3.3: Input- and Output-Orientated Technical Efficiency Measurement

To be technically efficient, firm P must reduce input x1 to the minimum technically

feasible, xi* , for the same output, yl . This is the input-orientated case, and the input

	

Ox	

-

orientated technical efficiency measurement is TE, = 	 1 .
Ox1
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Instead of reducing input, firm P may expand output y 1 to the maximum technically feasible,

*
yi , for the same input, x / . This is the output-orientated case, and the output-orientated

	

Oy1	
Oy1
	 Oyi*

technical efficiency measurement is TE0 –	. . But 	 = 	  so that, by re-arranging the

	

Oy 1	Ox,	 Ox1

Oy i Ox*
terms, we obtain	 * – 	 1 and so TE0 = TEi .

Oyi Ox1

Although the primal and the dual models give the same information, the dual

optimisation problem involves fewer constraints than the primal and, hence, it is

computationally more efficient. Additionally, for the purpose of this thesis, the dual

model is better suited than the primal, because the former has the boundary of the

technology in explicit form. The power of this model is that the boundary of

technology may be used with any objective function of interest. Another important

issue of the dual model is that the weight of firms (the lambdas) is dimensionless. This

means that input and output quantities may be expressed in the most convenient set of

units, i.e., AU$ or US$.

So far, we have only dealt with constant returns to scale. The following section

analyses variable returns to scale.
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Target Assignment and Peers Recognition

In this chapter, specific DEA formulations are derived for determining the optimal

quantity of inputs (or outputs) that optimise the technical efficiency measurement. In

the following chapters, two terms are referred frequently: targets and peers.

A target is the optimal quantity of inputs or outputs that a firm has to achieve to

optimise a function of interest. In previous sections, the objective functions have a

common set of constraints in inputs and outputs. These constraints define the

boundaries of the technology. The transformation function or the boundary of the

technology is implicit in these constraints. The common constraints to the different

optimisation problems are:

xe	 X	 (3.3.12)

Ye

where xe* and ye* are the optimal input and output quantity vectors, respectively.

Inspecting the solution to numerical problems presented in previous sections, it is

apparent that for each firm under evaluation, there is a set of As equal to zero, and

other set of As different from zero. Once one has solved the technical efficiency

measurement problem for each of the K firms, those firms that have their A. s different

from zero, at least once, are 100 per cent technologically efficient; they are the best-

performing firms, and may be considered as potential role models to non-efficient

firms.
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Peers of firm e are those technically efficient firms that exhibit 2 s larger than zero,

when solving the optimisation problem for firm e. A best-performing firm, e, has itself

as the unique peer, and 2e =1.

The firms that have their 2 equal to zero, for the K times that the optimisation

problem is solved, are non-efficient firms.

For input-orientated systems, while keeping constant the output, ye , the optimal set of

inputs is:

xe =X X
	

(3.3.13)

This means that x: is a linear combination of its peers. The weight of each peer is its

respective 2 .

For output-orientated systems, while keeping constant the input, xe , the optimal set of

outputs is:

Ye =
	 (3.3.14)

This means that 37: is a linear combination of its peers. The weight of each peer is its

respective 2 .

For the purpose of this thesis, the selection of DEA is based on its advantages over

parametric methods for describing the transformation function or the boundary of the

technology. Nonetheless, DEA has some limitations that must be considered in

empirical applications. Section 3.6 presents some limitations of DEA.
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3.4 Returns to Scale

This section analyses returns to scale and presents the concept of variable returns to

scale, complementing the previous explicit assumption that the boundary of the

technology exhibits constant returns to scale. This section includes how to identify the

kind of returns to scale of a boundary of technology, and includes the addendum to the

models presented so far to assess performance under variable returns to scale. As is

mentioned in Chapter 2, the returns to scale is a property of the boundary of

technology, not of the firm (Thanassoulis, 2001, p. 124).

Consider a one-input, one-output system. Firm e of this system performs at 100 per

cent technical efficiency, using x: units of input to produce y: units of output. The

boundary of technology of this system behaves with constant returns to scale if another

firm on the boundary uses a x e* units of input to produce a y: units of output, a> 0.

As an example, consider the college system of a university. This system considers the

number of student members of the college as the sole output and the operating

expenditure as the sole input.

Assume that the boundary of technology of this system behaves with constant returns

to scale. Assume that College E.P. and College S.T. are members of this system and

that they perform 100 per cent technically efficiently. Then, if College S.T. has half the

members that College E.P. has, it should expend half the operating expenditure of

College E.P. Nonetheless, there are two other cases:
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Increasing the number of students, within certain limits, may make it possible to

control the increase of operating expenditure at a lower rate than increases the number

of students. This is the increasing returns-to-scale case.

But increasing the number of students, beyond the limits mentioned above, may

require one to increase the operating expenditure at a higher rate than increases the

number of students. This is the decreasing returns-to-scale case.

In general terms, a technology exhibits increasing returns to scale if a proportional

increase of input quantities gives a more than proportional increase of output

quantities. A technology exhibits constant returns to scale if a proportional increase of

input quantities gives the same proportional increase of output quantities. A

technology exhibits decreasing returns to scale if a proportional increase of input

quantities gives a less than proportional increase of output quantities.

A technology may exhibit the three types of returns to scale on different parts of the

frontier surface. For this reason, scale efficiency (SE) is measured to provide an insight

in the firm's performance with respect to the optimal input-output vectors. Scale

efficiency is defined as the ratio of the technical efficiency measurement that the firm

should have if the system operates under constant returns-to-scale technology, over the

technical efficiency measurement of the firm under the real returns to scale of the

system (in the area of the frontier where the firm is operating).

To illustrate these concepts, consider Figure 3.4, which presents a system of one input and one

output. The black dot represents firm e that produces y o units of output using xo units of

input. Straight line OF represents a technology that exhibits constant returns to scale.
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Input x
•

The variable returns-to-scale technology, represented by lines ABCDE, exhibits the

three analysed types of returns to scale. Line AB represents that part of the technology

that exhibits increasing returns to scale, line BC represents that part of the technology

that exhibits constant return to scale, and line CDE represents that part of the

technology that exhibits decreasing returns to scale.

Output y

Y o

D
yo

yo

yo

0 A AxI
0 xo xo

Figure 3.4: Boundaries of Technology Exhibits Constant, Increasing
and Decreasing Returns to Scale.

For the output-orientated case, to be technically efficient, firm e should expand output

to the maximum feasible. From Figure 3.4, the maximum feasible expansion is limited

to yo by the boundary of decreasing returns to scale. The output-orientated technical

efficiency of Firm e is YD° , as previously stated. Under constant returns to scale, firm
Yo

Yoe should expand output to yo with technical efficiency 	 . The output-orientated
Yo
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,, D
scale efficiency of firm e is the ratio '"c	 . Correspondingly, there is an input-orientated

Yo

scale efficiency measurement.

Consider now that firm e increases its input from the actual value x0 to xo . From

Figure 3.4, on the boundary of the decreasing returns-to-scale technology, the optimal

value of output increases by Ayop . If the slope of the segment CD decreased, then the

increment of output, Ay0D , would decrease. From Figure 3.4, on the boundary of the

constant return-to-scale technology, the optimal value of output increases by Ayoc.

This output increment is larger than the output increment under decreasing returns to

scale.

Consider now that firm e increases its output from its actual value yo to yo . From

Figure 3.4, on the boundary of the increasing returns to scale part of the technology,

the optimal value of input increases by Axo . If the slope of the segment AB increased,

then the increment of input, Axo , would decrease. This input increment is smaller than

the input increment under constant returns to scale.

For multiple-input multiple-output systems, the definition of increasing, constant and

decreasing returns to scale may be generalised as follows (Thanassoulis, 2001, p. 125):

Let firm e be 100 per cent technically efficient. This firm produces y; units of output,

using xo* units of input. Let us assume that increasing inputs to a x o* , the outputs
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increase to f3 y,*, , and that the firm remains 100 per cent technically efficient. The net

increase of outputs is (3 y o* - yo = ((3-1) yo* and the net increase of inputs is (a-1) xo* .

Defining p * = yo7x0* and p = ((3 –1)y; /(a –1)x;then P  = (r3 –1) . As a ---> 1, the
'p	 (a -1)

ratio p/p * measures the local radial rate of change of outputs to local radial change of

(f3 –1) 
	inputs; it measures the local returns of scale. As stated above, if Lim 	 > 1 then

a->1 (a –1)

the technology exhibits local increasing returns to scale at ( x o* , yo* ); if Lim
a-->1

(f3 –1) _ 1

(a –1)

then the technology exhibits local constant returns to scale at ( xo, yo); if

(13 –1) 
Lim 	 < 1 then the technology exhibits local decreasing returns to scale at

(a –1)

( xo, Yo)-

To formalise the constraint that defines variable returns to scale, consider problem

(3.3.4) for efficient firm 3:

Minimise TE i3 ,

subject to:

1002/ + 110k2 + 1202 3 + 115k4 + 1032 5 >120

100k 1 + 90X2 + 150X,3 + 133k4 + 152X,5 � 150 TE a

100k1 + 149k2 + 85.9k3 + 189k4 + 6115 � 85.9 TE i3

XI ,k2 , k3„ X4, A.,5 � 0.

For this particular problem, let us specify k i + k2 + k3 + k4 + k5 = s13 > 0, then the

inputs and outputs of the three constraints that define the boundary of technology may

be scaled by division of respective quantities by s13 . Doing this, we have

a->1
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X1 + X2 ± X3 + LI + k5 = 1.

Under constant returns to scale, optimal sets of inputs and outputs remain optimal

when scaled. For this reason, Xi + X2 + X3 + X4 + A.5 = 1 is not included as an extra

constraint to the optimisation problems. Conversely, under variable returns to scale,

the extra constraint, 1' X=1, must be included, because under variable returns to scale,

optimal sets of inputs and outputs do not remain optimal when scaled.

Nevertheless, and as stated previously, when measuring the technical efficiency for an

efficient firm, the value of X, for this firm is one and zero for the rest of the firms. In

this particular case, and under constant returns to scale, the summation of lambdas also

equals one.

In terms of benchmarking, the sum of lambdas has the following meanings:

1' X � 1, non-increasing returns to scale; the firm under study is not benchmarked

against firms substantially larger than it, but may be compared with firms smaller

than it.

1' X=1, variable returns to scale; the firm under study is benchmarked against

firms of similar size. The firm under study is optimised as a convex combination

of comparable observed firms.

1' X not constrained, the firm under study is benchmarked against any other. If

the firms are smaller than it, the sum will be larger than 1.0; if firms are larger

than it, the sum will be smaller than 1.0; and if there is a mix of larger and smaller

firms, the sum may be any number.
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Following Banker, Charnes and Cooper (1984), under variable returns-to-scale

technology, problem (3.3.4) becomes

Minimise TEie	(3.4.1)

subject to:

X A,	 TEk, xe

� Ye

1' X=1

X O.

With the constraint, 1" A,=1, the hyperplanes that define the boundary of technical

efficiency deflect, allowing interpolation of smaller hyperplanes. These smaller

hyperplanes are closer to non-efficient firms than the hyperplanes are under constant

returns to scale. For this reason, the technical efficiency of a non-efficient firm,

measured under variable returns to scale, is higher than measured under constant

returns to scale.

As an example, consider data of Table 3.1 and determine the technical efficiency for

the five firms, as defined with problem (3.4.1) for variable returns-to-scale technology.

The LP problems for firms 1 and 4, for the input-orientated system and variable

returns-to-scale technology, are defined in the box below. Similar LP problems are

required for firms 2, 3 and 5. Table 3.5 shows the solution for the five firms.
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Firm 1:

minimise TES i

subject to:

10X, 1 +90X2 +15X,3 +133X4 +152X5 �. 100 El

100X i +149X2 +85.9X3 +189X4 +61X5 5 100 Ei

100Xi+110X2+120X3+115X4+103X5 > 100

X I + X2+ X3,+ X4 + X5=1

X1 , X2, X3„ X4, X5 � 0

Firm 4:

minimise TE i 4

subject to:

100X 1 +90X2 +150X3 +133X4 +152X5 �. 133 TE4

100X i +149X2 +85.9X3 +189X4 +61X5 � 189 TE4

100Xi+110X2+120X3+115X4+103X5 > 115

1X 1 + X2+ X3,+ X4 ± X5=1

XI , X2, X3„ X4, X5 � 0

Table 3.5: Solution to Problem (3.4.1) for the Five Firms: Input-Orientated

Technical Efficiency and Variable Returns-to-Scale Technology

Firm

Technical

Efficiency

A X2 23, X4 2■,5

1 1.0 1 0 0 0 0

2 1.0 0 1 0 0 0

3 1.0 0 0 1 0 0

4 0.902 0 0.50 0.50 0 0

5 1.0 0 0 0 0 1

Again, following Thanassoulis (2001, p. 93), the information obtained from this DEA

model is:

Firms 1, 2, 3 and 5 are fully efficient, having the maximum attainable efficiency.
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Firm 4 is not efficient, having a relative efficiency of 0.902. This is equivalent to

saying that firm 4 is 90.2 per cent efficient. As expected under variable returns to

scale, firm 4 is more efficient than under constant returns to scale. Under constant

returns to scale technology, firm 4 is 75.7 per cent efficient. The scale efficiency of

firm 4 is 75.7/90.22 = 0.839

To be fully efficient, under variable returns to scale, firm 4 must decrease input 1 from

133 units to 100X, 1 +90A,2+150A,3+133X4+152X5 = 120 units and must decrease input 2

from 189 units to 100X 1 +149X2+85.9A,3+1892■4+61 X5 = 117.45 units. Operating at these

optimal conditions, if firm 4 increases each input by 3.0 per cent (a =1.03), to remain

technically efficient it must increase output by only 0.52 per cent (13=1.0052). Because

p/p*= 0.173, the technology exhibits decreasing returns to scale in the neighbourhood

of xi*k = 120 units and x2*k =117.45 units.

3.5 Optimising Behaviour and the DEA Dual Formulation

In previous sections, the focus is on the dual DEA formulation of relative productivity

and technical efficiency measurements. In this section, the fundamental structure of

dual DEA formulations, presented in Section 3.3, is applied to formalise the optimising

behaviour of three possible firms. By fundamental structure we mean the expression

for the boundary of technology that constrains the upper limits of the output quantities

and the lower limits of the inputs quantities to be used for producing those outputs.
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The three possible optimising behaviours, profit maximisation, cost minimisation and

revenue maximisation, yield the same solutions, as presented in Section 2.4.

In general terms, under certainty, firms seek to maximise their profits (Chambers,

1988, p. 120). 7 For the purposes of this thesis, we assume the accounting sense of the

term, net profit, as the residual after deduction of all money costs, i.e., sales revenue

minus wages, salaries, rents, raw materials, etc. (Bannock, Baxter and Davis, 1998, p.

335). Given that the production technology is described by a constant returns-to-scale

DEA frontier, we can restate the profit maximisation objective, defined in problem

(2.4.1), as:

Ire (Py w) = max (YP-xw)	 (3.5.1)

x,y

subject to:

xe � XX

.
Ye � Yx

A._� 0 ,

where p is the (1 x J) vector of prices for J outputs; y is the (Jx 1) output quantity

vector; w is the (1 x I) vector of input prices; x is the (I x 1) input quantity vector; UI is

the number of inputs; X is the (Kx 1) vector of weights for K firms; X is the (Ix K)

matrix of input quantity vectors; Y is the (J x K) matrix of output quantity vectors; and

.	 .
xe and ye are the optimal input and output vectors, respectively, for firm e.

In problem (3.5.1), the constraints, x: � XX, y: � VA., and A, � 0, define the

technical boundary for this system.

For the purpose of this thesis, we do not consider utility maximisation.
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As mentioned in Section 2.4, Fare, Grosskopf and Lovell, (1994, p. 213) point out that

there may be no finite solution to problem (3.5.1). In fact, under constant returns to

scale, if no additional constraints are imposed to problem (3.5.1), there is no bounded

solution. The reason for this is that as long as py-wx is positive, y increases without

bound to maximise the profit, ne (p,w). Unbounded y drives unbounded x .

Nonetheless, under decreasing return-to-scale technology, the output is limited to some

value, as is illustrated by boundary CDE of Figure 3.4. With bounded output, profit

maximisation is feasible. A decreasing returns-to-scale technology constraint must be

added to problem (3.5.1) for it to have a solution.

From this point on, we refer to problem (3.5.1) as the fundamental dual DEA problem

or, simply, the fundamental problem, because from this problem we can derive the

DEA problems that optimise profit, revenue and cost. These three optimisation

problems are of interest for this thesis.

Profit Maximisation; Variable Returns-to-scale Technology

Consider the data of Table 3.6 and determine the optimal output vector, 37: and

optimal input vector,	 that maximise profit, ne , under variable returns-to-scale

technology. Then, maximum 7E, (p,w) = maximum (yp- xw) and the problem is similar

to problem (3.5.1), with the additional constraint that defines variable-returns-to-scale

technology:

1 "X=1	 (3.5.2)
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The variable returns-to-scale constraint, 1' X=1, constrains the value of the weights

such that the output quantity vector has an upper limit. This upper limit for outputs

limits the increase of the input quantity vector, and the profit maximisation problem

has a bounded solution.

However, under a constant returns-to-scale technology, we can avoid the unbounded

expansion of outputs and inputs, by considering the following special cases

(Chambers, 1988, p. 121).

The first case is a short-run optimisation that involves maximising profit for a given

fixed output vector, y . With this constraint, profit maximisation corresponds to a cost

minimisation problem.

The second case is a long-run optimisation that involves maximising profit for a given

fixed input vector, x . With this constraint, profit maximisation corresponds to a

revenue maximisation problem.

Cost of Inputs Minimisation; Constant Returns-to-scale Technology

For fixed output vector, y, the main purpose is to determine the optimal input

quantities, x * , that maximises profit, R e (i.e., minimising cost of inputs). The cost-

minimizing problem is (Thanassoulis, 2001, p. 81):

minimise (xw)	 (3.5.3)

subject to:

.
xe � X ?t,

Ye � II,
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where x: is the vector of optimal inputs. In problem (3.5.3), the constraints,

.
xe �X A. , ye � IA., and 2■., � 0, define the boundary of technical efficiency for this system.

The optimal solution vector is denoted by x: to indicate that it is on the boundary of technical

efficiency. If prices are different from firm to firm, the cost efficient peer may be different

from firm to firm.

Consider Figure 3.5 that shows the effect of the input price in the cost efficient peer

determination. The observed data define the isoquant ABCD, where A, B, C, and D are

technically efficient firms. Black dot firm E is a price inefficient firm. Assume that

input prices may be different for each firm. Let be w 1 and w2 be the prices of input 1

and input 2 for firm E. The isocost line II' represents the total cost of inputs for firm E,

TC = w1 x1 + w2 x2 •

By parallel translation of that isocost line to the frontier of the technology, the

minimum total cost of inputs is at the point where the isocost is tangent to the

boundary of technology. In Figure 3.5, the isocost line T1 is tangent at the boundary of

the technology at the input quantities per unit output of firm B. At that point, the slope

of the isocost line T1 (and II', because the lines are parallel) is (- w2 / w1).
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Input 1 per
unit output

0
Input 2 per
unit output

Figure 3.5: Effect of Input Prices in Input-Price Efficient Firm

If input prices for firm E change to w; and w; then the minimum total cost of input

may be at firm C. The isocost line tangent at C, T2, has slope (-14 2 1w; ). If the input

prices of firm E are such that the slope of the isocost line is the same as the slope of

boundary of technology that is defined by firms B and C, then there are infinite

solutions along the line BC. In that case, managers may choose the optimal input

quantities considering additional factors, i.e., lower capital investment, employment

policy, environmental impact of inputs mixture, supply reliability, etc.

Cost of Inputs Minimisation; Variable Returns-to-scale Technology

For fixed output vector, y, the main purpose is to determine the optimal input

quantities, x * , that maximise profit, Ir e (i.e., minimising cost of inputs). The problem

	

is similar to	 (3.5.1), with the additional constraint, 1:X=1, that defines variable-

returns-to-scale technology:

	

1 X=1 .	 (3.5.4)
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The optimal solution vector is denoted by x: to indicate that it is on the isoquant, on

the boundary of technical efficiency.

Revenue Maximisation; Constant Returns-to-scale Technology

Consider now a fixed input vector x, and that the main purpose is to determine the

quantities of outputs, y: , that maximises the profit ir e , (i.e., maximising revenue).

Then, maximum Re (p,w) = maximum (yp) and the problem is (Thanassoulis, 2001, p.

82):

maximise (yp)

subject to:

xe > XX

*
Y e � n

(3.5.5)

X � O.

In problem (3.5.5), the constraints, x e >X A. , y: < 	 and X � 0 , define the boundary

of technical efficiency for this system. The optimal solution vector is denoted by y: to

indicate that it is on the isoquant, on the boundary of technical efficiency

Revenue Maximisation; Variable Returns-to-scale Technology

.
As before, determine the optimal output vector, ye , that maximises the profit, it e , for

a variable returns-to-scale technology. The problem is similar to (3.5.5), with the

additional constraint, 1"X=1, that defines variable-returns-to-scale technology:

1 "X=1	 (3.5.6)

In this section, we have established the foundations of the DEA models, which we

build upon to provide a new model that considers optimal paths of adjustment. The
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basic intertemporal model is developed in Chapter 4. The basic model includes, in

implicit form, the boundary of the technology, such that the objective function is the

present value of cash flows over a number of time periods.

3.6 Limitations of DEA

In the Section 3.1, we noted that the use of a parametric method for data analysis

assumes that an econometric model defines the data generating process involved.

However, the selected functional form may be misspecified. DEA, as a non-parametric

method, overcomes this limitation.

Nonetheless, DEA has some limitations. Coelli, Rao and Battese (1998, pp. 180-181)

present a list of "limitations and possible problems that one may encounter in

conducting a DEA". Of that list, the following five points are pertinent for this thesis.

Measurement errors may influence the shape and position of the frontier of the

technology.

Outliers are an example of possible measurement errors.

The exclusion of relevant inputs or outputs may determine useless frontiers of

the technology.

Not including environmental variables may give misleading indications of

relative managerial competence.

Standard DEA does not account for multi-period optimisation.

The first two problems relate to the observed nature of the data that define the

boundary of the technology and to the DEA non-parametric use of that observed data.
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Parametric methods for defining the form of the transformation function use statistical

mathematical models that also specify properties of the possible errors in data. Thus,

stochastic frontier analysis (SFA) allows some observations to be above the frontier

function, reducing the impact of possible outliers.

The third and fourth problems relate more to the expertise of the designer of a DEA

measurement project than to DEA. The random error term in SFA can accommodate,

to some extent, problems derived from omitted inputs or outputs.

For the last problem, standard DEA may be extended to account for multi-period

optimisation. Chapter 4 and Chapter 5 propose the design of optimal paths of

adjustment as an inter-temporal optimisation problem.

In addition to these limitations, Dyson et al. (2001, pp. 245-259) present a list of

"Pitfalls and Protocols in DEA". They analyse five sources of pitfalls:

Homogeneity assumptions that consider three cases: non-homogeneous units,

non-homogeneous environment, and economies of scale.

The input-output set that considers three cases: the number of inputs, outputs

and firms, correlated factors, and mixing indices and quantitative measures.

Measurement of variables that considers four cases: percentages and other

normalised data, qualitative data, undesirable inputs and outputs, and exogenous and

constrained factors.

Weights that consider four cases: linearity assumption, zero-value weights,

relative values, and linked input/output weights; and

85



Weight restrictions that consider five cases: justification of weight restrictions,

non-transferability of weight restrictions, interpretation of results, absolute versus

relative efficiency, and redundant weight restrictions.

3.7 Conclusions

In this chapter, we present the basic primal DEA model for measuring productivity.

Also, we present the dual DEA model for measuring technical efficiency. Types of

optimisation behaviour that are considered are profit maximisation, revenue

maximisation and cost minimisation. The applicability of these concepts is illustrated

with examples. DEA models are well suited for solving the problems we address in

this thesis. DEA allows one to optimise objective functions of interest, subject to

constraints that have implicit in them the transformation function, or the boundary of

the technology. When solving problems of profit maximisation and of cost

minimisation, the adjustment of inputs is not a radial reduction, but the increase of

some inputs and the decrease of others may take place simultaneously.

These concepts are used in the next chapters to formulate a basic model for optimal

paths of adjustment and then to extend this basic model. The basic model includes

period-specific weights of firms, costs of adjustment of inputs and minimisation of the

present value of costs of inputs and costs of adjustment of inputs. The extended model

includes asymmetric costs of adjustment, dynamic (time-variable) outputs, costs of

adjustment, input prices and output prices, and the incorporation of quasi-fixed

(nondiscretionary) variables.
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CHAPTER 4

A BASIC DEA MODEL FOR THE SELECTION

OF OPTIMAL PATHS OF ADJUSTMENT

4.1 Introduction

Chapter 3 presents two DEA models - the primal and the dual DEA formulations. Both

models measure and compare the performance of comparable firms in a set.

Section 3.2 presents the primal LP DEA model that maximises a linear mathematical

expression of total factor productivity, conceptually defined as the ratio of the sum of a

linear aggregation of weighted output quantities to the sum of a linear aggregation of

weighted inputs quantities.

Section 3.3 presents the dual LP DEA model that optimises the technical efficiency of

production. For input-orientated systems, the technical efficiency of production is

defined as the ratio of the minimum quantities of inputs that are feasible to use, to the

current quantities that are used; both input quantities are used to produce the same

output quantity. Under this orientation, the objective is the minimisation of the

quantities of input required to produce a fixed quantity of output.
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For output-orientated systems, the technical efficiency of production is defined as the

ratio of the current quantity of output to the maximum quantity of output that is feasible

to produce; both output quantities are to be produced with the same quantities of input.

Under this orientation, the objective is the maximisation of the output quantities for a

fixed quantity of input. Although the DEA measurement of productivity and of

technical efficiency is numerically identical they are conceptually different.

For input-orientated systems, for each non-efficient firm, there corresponds an input

quantity vector that transforms the firm into an efficient one. These optimal quantities

of inputs are the input targets. The target input quantity vector is the current input

quantity vector times the technical efficiency.1

Under total factor productivity measurement or technical efficiency measurement,

targets are achieved by radial reduction of input quantities to the boundary of best

practice. The boundary of best practice is defined by observed input-output data, and

defines the highest feasible technical efficiency for the set of firms under consideration.

For output-orientated systems, output targets are the optimal output quantities that

define a firm as an efficient one. The targets are radial expansions of output quantities

up to the boundary of the technology.

1 In Section 3.3, with Figure 3.1, the special case of slacks of inputs on the boundary of technology is
considered. In this case, slack reduction of inputs is after radial reduction.
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When solving the problem of profit maximisation, the problem of cost minimisation, or

the problem of revenue maximisation, the adjustment of inputs is not only a radial

reduction but includes non-linear changes of inputs.

As mentioned in Chapters 1 and 2, the purpose of this research is to determine the

optimal time-sequence of adjustments to inputs, in order to achieve the input targets for

a fixed vector of output quantities. The time-sequence of adjustments is optimal in the

sense that optimises an objective function of interest. An example of an objective

function to be used is the present value of the net profit, considering the period-to-

period revenue, the cost of inputs and the cost of adjustment of inputs.

This chapter presents a basic dual DEA model for the selection of optimal paths of

adjustment. The basic dual DEA model is derived from the fundamental dual DEA

problem that is presented in Chapter 3.

Section 4.2 introduces concepts used in this and following chapters: cost of adjustment,

dynamic DEA, path of adjustment, period, profit, present worth value factor, time of

adjustment, and time horizon. Section 4.3 presents a basic optimal control model for

the selection of optimal paths of adjustment. This model is referred to as the basic dual

DEA model. The basic dual DEA model introduces the concept of a dynamic DEA as a

sequence of period-to-period static dual DEA problems. Period-to-period adjustment of

an input quantity vector has a corresponding period-to-period specific vector of weights

of peers. Peers may change weight from period-to-period and peer firms may be

different from one period to the next. Section 4.4 presents an example of the
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application of the basic DEA model. Section 4.5 presents some conclusions from the

example of the basic DEA model. Section 4.6 closes with some conclusions.

Without loss of generality, the following chapters of this thesis refer mainly to input-

orientated systems. We use examples to illustrate the extension of these concepts to

output-orientated systems.

4.2 Concepts and Definitions

This section introduces some concepts useful for the definition and the solution of the

models for the problem examined in this thesis:

Adjustment

Adjustment is the variation that the input quantity vector, x id , of firm k performs at the

start of period t, t = 1, 2, ..., T. The adjustment may be an increase, x, or a decrease,

in input quantities. When it is not required to specify if the adjustment is an

increase or decrease, the generic notation, 4, for adjustment is used. The adjustments

are the optimisation variables.

Cost of Adjustment

As stated in Chapter 1, in order to change the quantity of some input, such as labour,

firms have to consider that to modify any input under contract can be done only by

incurring internal costs to the provider and to the firm. This cost, hereafter referred to

as cost of adjustment, is specific for each input and to each firm. The cost of adjustment
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of an input is different from its price. In the most general case, the cost of increasing an

input is different from the cost of decreasing it. This case is referred to as asymmetric

cost of adjustment. For example, the law tightly regulates the labour market in Chile.

Compensation must be paid to any fired employee if the reason for firing is not

imputable to the employee. The compensation the employer has to pay is one month of

salary for every year the fired employee worked for the employer. 2 The cost of hiring a

person may be high if it includes training.

This concept of cost of adjustment relates the idea of quasi-fixed inputs, as discussed by

Treadway [1970] in the context of period-to-period variable inputs.

Dynamic DEA

For the purpose of this thesis, dynamic DEA refers to the incorporation of period-to-

period variation of inputs (optimal path of adjustment), of outputs, and of technology to

the basic dual DEA model. The variation of outputs and of technology may be

forecasted by specialists or may be expected variations of managers. The adjustments

of inputs are the result of the optimisation problem. A time sequence of standard DEA

models is used to emulate dynamic DEA. Standard DEA models consider that prices,

inputs and outputs do not involve time in any essential manner (Sengupta, 1995, p. 3).

Path of Adjustment

The path of adjustment, xkt , is the optimal sequence of input quantity vectors that a

profit non-efficient firm has to develop, from the current input quantity vector up to the

2 Recently, the time for compensation purposes was limited to 11 years, and the monthly payment to
approximately AUD 2,000.
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target one. The path of adjustment is optimal in the sense that it maximises the present

value of the profit of the firm, discounted at a constant compound rate and over the

time horizon.

Period

Period is the unit of time measurement. It is assumed that within periods all variables

have constant values; nonetheless these values may change from one period to another.

This assumption is generally accepted in econometric analysis. Once the span of time

involved is defined, the period is irrelevant for the deduction and statement of the

mathematical expressions of model. For this thesis, one period is taken to be six

months, unless otherwise specified.

Present Worth Value Factor

Following Canada and White (1980, pp. 1, 23), because of the opportunities for

investing money and increasing its value, a sum of money today is worth more than the

same amount some time in the future. The timing of cash flows influences what is

termed "the time value of money". To determine the rate of change of value of money

the criteria is to assign the opportunity cost, i.e., the return forgone or expense incurred

because the money is invested in this project rather than in other possible alternative

projects. In the terminology of classical economics, the opportunity cost is a measure of

the maximum benefits that, for any given situation, can be obtained from an extra unit

of capital. Management assigns the rate of change of value of money as a percentage of

investment by period.
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For the purpose of this thesis, the cost of adjustment is considered an investment that

modifies the period-to-period cash flow of the firm, and for this reason the adjustment

of inputs is evaluated as an investment project.

The criterion of evaluation is to maximise the present value of total profit of the firm,

along the time horizon. The factor that transforms a cash flow at some point of time to

a present value is the present worth value or discount factor.

Profit

As previously stated, the expected objective of the firm is to maximise profit. In

Chapter 2 we indicated that, for the purpose of this thesis, net profit is the residual after

the deduction of all money costs, i.e., sales revenues minus wages, salaries, rents, costs

of raw materials, etc. (Bannock, Baxter and Davis, 1998, p. 335). The cost of adjusting

inputs to their target values is included as a money cost. In this thesis, we do not

include utility. The purpose is to place as few restrictions as possible on the expected

behaviour of firms, so as to derive an LP formulation that is as general as possible.

After target quantities have been achieved, the cost of adjustment is zero. Profit and net

profit are used interchangeably.

Time of Adjustment

The time of adjustment, ta, is the number of periods that a firm effectively requires to

perform at the target input quantity vector. Within this time of adjustment, the initial

input quantity vector, xko , is transformed into the target input quantity vector, x; . The

time of adjustment is constrained to a prefixed upper value, t: . During the time of
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adjustment, the firm incurs the period-to-period costs of adjustment and takes the

benefits of the period-to-period decrease of total cost of inputs.

Time Horizon

The time horizon, T, is the prefixed number of periods that management considers for

the economic evaluation of each specific investment project. For the purpose of this

thesis, the adjustments that each firm must perform to the input quantity vector are a

specific investment project that is evaluated. The economic evaluation computes the

present value of net profit of each project, over the time horizon.

The time horizon may be equal to or larger than the time of adjustment. If the time

horizon is longer than the time of adjustment, the firm capitalises along T-ta extra

periods the savings from the cost of the reduction of the inputs. In Appendix 7, we

prove that a firm will perform adjustments if the present value of period-to-period

reductions of total cost of inputs is larger than the present value of period-to-period

costs of adjustment. The reduction of cost of inputs is evaluated with respect to the cost

of the initial input quantity vector.

4.3 Basic Model for the Selection of Optimal Paths of Adjustment

This section presents the formulation of a basic model for the selection of optimal paths

of adjustment. As indicated above, without loss of generality, the formulation is

developed for input-orientated systems and a constant returns-to-scale technology. The
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extension to a variable returns-to-scale technology and the modification to output-

orientated systems are trivial.

For input-orientated systems, given a fixed exogenous output vector, yk, the problem

for firm k is to choose the time sequence of input quantity adjustment vectors, xka„

(t = 1, 2, ..., ta), which maximises the present value of profit. This time sequence of

adjustments of inputs modifies the input quantity vector, x k„ period-to-period from the

initial input quantity vector, x ko , to the target input quantity vector, x: . The

adjustments are performed within the specified longest time of adjustment, t: . The time

sequence of vectors, x kt , t= 1, 2, ..., ta, is the optimal path of adjustment.

For modelling purposes, it is assumed that all variables have constant values within

each period, although they may change value from one period to the next.

For evaluation purposes, we assume that adjustment costs are incurred at the start of

each period; savings from the adjustments are realised at the end of each period with

the gross income from sale of products; and that inputs costs are incurred at the end of

each period. Also, consistent with the assumption that values are constant within each

period, we neglect transient values of variables. This means that variables behave as

expected since the start of the period, i.e., any set up and start up times are negligible.

For firm k, at the end of any period t, the cost of inputs is xkt w, where xkt is the input

quantity vector at period t, and w is the vector of constant input prices. The vector of

adjustment of the input quantity vector at period t, x;: , has a total cost of adjustment of
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4 w" , where w a is the vector of costs of adjustment. At the end of each period, the

gross income of firm k is yk p, where yk is the fixed and known output vector, and p is

the vector of constant output prices.

In this thesis, we assume that a firm is of a size such that it, individually, cannot

influence the market of its products. As a buyer, the firm regards the price of inputs as

given, for the same reason. These firms are known as price-taking firms (Doll and

Orazem, 1984, p. 15; Chambers, 1988, pp. 50, 121).

With these revenues and costs, the profit, g kt , of firm k in period t is:

Irk' YkP – xkt w– xkat wa	 (4.3.1)

The total present value of profit of firm k is:

T

Irk = E Est (Y k p - x la w) – s t_ 1 x7,1 wa 1 ,

t=1

where s , is the present value factor from period t.

The mathematical formulation of the problem of the firm is

T

Maximise Prk =E[st (yk p - xk, w)– s t_, )ckta w a ])
xia,/it	 t=i

subject to

(4.3.2)

(4.3.3)

YX t � Yk

XX t � Xkt

X = X + Xakt	 k,t-1	 kt

(technology constraint)

(transition equation)

xa wa <kt	 b— k (budget constraint)
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s t = (1+0'
	

(present value factor)

2„xko x:,yk � 0 ,	 (non-negative variables)

where, as in Chapter 3, Xis the I x K matrix of input quantity vectors, and Y is the J x K

matrix of output quantities; .3,, is the weight vector for the firm at period t; r is the

percentage rate of discount for present value determination; I is the number of inputs; J

is the number of outputs; and K is the number of firms involved in the observations.

Similar LP problems must be written for each one of the K firms.

Model (4.3.3) has xi: and 2k as optimisation variables, and solves, in one step, the

assignment of targets and the definition of the optimal path of adjustment. Hereafter,

we refer to model (4.3.3) as the basic dual DEA model for optimal paths of adjustment,

or just as the basic DEA model. Although the solution of problem (4.3.3) modifies,

period to period, the input quantity vector of the firm under study, xki , the observed

data that define the boundary of technology remain unmodified, including the case that

the firm under examination is technically efficient.

Model (4.3.3) reduces to the profit maximisation problem (3.5.1) for T=0. With that

condition, the present value of profit is the value for one period, and the input quantity

vector corresponds to the target input quantity vector, and, since there are no

adjustments, the cost of adjustment is zero. For this reason, we may state that the

maximisation problem (3.5.1) is a particular form of model (4.3.3).
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Model (4.3.3) presents two issues that deserve special attention. First, the vector of

weights, 24w ,is considered to change from period to period. Second, the input quantity

adjustment vectors, xi:, and the vector of weight of peers, Aid , are the optimisation

variables. These are discussed in order below.

First Issue

The basic DEA model considers that peer(s) may change from one period of adjustment

to the next. The reason for this is that technically efficient firms will crossover the

firms that are on the boundary of technical efficiency, while adjusting the input

quantity vector to achieve cost efficiency.

Similarly, as a technically non-efficient firm adjusts its input quantity vector to the

target one, the cost of inputs, the weight of peers and the peers may change from period

to period.

To illustrate this issue consider the data in Table 3.1. Suppose we wish to determine the

optimal path of adjustment that maximises the present value of the profit over five

periods (the time horizon) and that the adjustments to the input quantity vector are

expected to be made within the same five periods.

Table 4.1 presents the original data from Table 3.1 and the costs of adjustment of

inputs. Additionally, consider a rate of discount of 9.0 per cent by period and assume

that the budget constrains the cost of adjustments up to $20.0 for the first adjustment

period, and up to $30.0 for the second adjustment period.
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Figure 4.1 represents the data of Table 4.1. Bold numbers 2, 1, 3 and 5 represents the

inputs by unit output of firms 2, 1, 3 and 5, respectively. Assuming constant returns-to-

scale technology, segments horizontal to 2, 2-1, 1-3, 3-5, and vertical from 5 define the

boundary of technology. Firm 4 is a non-efficient firm.

Table 4.1: Inputs, Outputs, Prices, and Costs of Adjustment for Five Firms

Quantity at t = 0

Firm k Ykt x„ X 2kt

1 100 100 100

2 110 90 149

3 120 150 85.9

4 115 133 189

5 103 152 161

Price by unit 8.0 2.0 3.0

Adjustment Cost

by unit

1.1 2.0

The isocost line PP" is the same for all firms because, for this example, the price of

inputs is the same for all firms. The isocost line is tangent to the boundary of

technology at firm 3, determining that the input quantity vector by unit of output for

firm 3 is the target input quantity vector by unit of output for the other four firms.

Figure 4.1 presents the optimal path of adjustment of firm 2. The initial inputs by unit

of output for firm 2 are at vertex 2. At these conditions, the peer of firm 2 is itself with

weight 1.0. The economic efficiency at initial conditions is 0.8153.
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At the start of the first adjustment period, firm 2 adjusts the inputs by unit of output

from initial values 2 to 2' . At these conditions, the peers of firm 2 are itself with weight

0.80 and firm 1 with weight 0.22. The economic efficiency is 0.8359.

Input 1/output  

x1  

Y

0
	

X2
	 Input 2/Output

Y

Figure 4.1: Optimal Paths of Adjustment for Firms 1 and 5

At the start of the second adjustment period, firm 2 adjusts the inputs by unit of output

from 2' to 2 2 . At these conditions, the peers of firm 2 are itself with weight 0.50 and

firm 1 with weight 0.55. The economic efficiency is 0.8687.

At the start of the third adjustment period, firm 2 adjusts the inputs by unit of output

from 2 2 to 3. At these conditions, the peer of firm 2 is firm 3 with weight 0.9167. The

economic efficiency is 1.0.

From the third period of adjustment on, there are no adjustments because the input

quantity vector by unit of output for firm 3 is the target one. The input quantity vectors
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and the peers of firm 2 are taken from the solution of problem (4.3.3) with data from

Table 4.1 and economic data presented above.

Similarly, Figure 4.1 presents the optimal path of adjustment of firm 4. The initial

inputs by unit of output of firm 4 are at 4. At these conditions, the peers of firm 4 are

firms 2 and 3, with weights 0.2382 and 0.7421, respectively. The economic efficiency

is 0.6416.

At the start of the first adjustment period, firm 4 adjusts the inputs by unit of output

from initial values 4 to 41 . At these conditions, the peers of firm 4 are firms 2 and 5,

with weights 0.5161 and 0.5678. The economic efficiency is 0.6656.

At the start of the second adjustment period, firm 4 adjusts the inputs by unit of output

from 4 1 to 4 2 . At these conditions, the peer of firm 4 is firm 2, with weight 1.048. The

economic efficiency is 0.7051.

At the start of the third adjustment period, firm 4 adjusts the inputs by unit of output

from 4 2 to 3. At these conditions, the peer of firm 4 is firm 3, with weight 0.95833. The

economic efficiency is 1.0.

From this period on, there are no adjustments because the input quantity vector by unit

of output of firm 3 is the target one. The input quantity vectors and the peers of firm 4

are taken from the solution of problem (4.3.3) with data from Table 4.1 and economic

data presented above.

101



Giving due account to the fact that adjustments involve non-radial modifications of the

input quantity vector, we adopt the notation 2kt for the weight of firm k at adjustment

period t.

The conclusion is that a firm, performing adjustments, may change the peers and the

weights of each peer because the adjustments to the input quantity vector may involve

other than radial changes. This is a relevant aspect of this basic DEA model, because it

suggests that Model (4.3.3) may be visualised as a time sequence of static fundamental

DEA models that are linked by a common objective function and a sequence of

transition equations.3

Second Issue

The basic DEA model (4.3.3) considers that the input quantity adjustment vectors, 4,
and the vector of weight of peers, lia , are the optimisation variables. With this option

the input quantity vector at period t is the result of decisions on adjustment of inputs,

not a decision in itself. The transition equation, x, = Xk,t-1 + 4 9 
defines the input

quantity vector at adjustment period t in terms of the input quantity vector at the

previous adjustment periods and the input quantity adjustment vector at adjustment

period t. In the basic DEA model (4.3.3), the transition equations are constraints. This

consideration, together with the interpretation that ilki relates to the adjustments

performed, permits us to visualise model (4.3.3) as a time sequence of fundamental

3 The basic DEA model has a profit maximisation objective function and the boundary of technology as a
constraint.
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DEA models, linked by a common objective function and a sequence of transition

equations.

For input-orientated systems, Figure 4.2 presents the basic dual DEA model as the

mentioned sequence of fundamental dual DEA problems. The fundamental dual DEA

problem is presented in model (3.5.1) and is structured as an objective function that

maximises the net profit of a firm and the boundary of technology as a constraint.

The dot lines in Figure 4.2 circumscribe a fundamental dual DEA problem. The input

quantity vector at to , xkta , is transformed to the fixed output quantity vector, yk .

The block, 7v, ilkt 9 
represents the DEA boundary of (static) technology, which

transforms the input quantity vector to the fixed output quantity; the weight of firm k

is kt '4

Input and output quantity vector, and the input quantity adjustment vector with prices

and costs of adjustment, determine the net profit at adjustment period, to . The vector of

decision variables (adjustment of input quantity vector), x„ ta , is generated at the time of

maximising the total present value of the net profit of the firm, and modifies the input

quantity vector from one period to the next.

4 In Chapter 5, the constraints, fixed output quantity vector, y, and static technology, To , are relaxed.
Extensions for period-to-period changes of output quantities and technology are included.
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Xkl X kt.X k0

Xko

	■ Xkl = XkO + Xkl —± —■

ToAki  Xkl

Maxi (3 7 k P — X kO w) + (Y k P — X kl iOS - 41 W 7 +

i a
+ " (Y kP — Xkta W)S t - X kt„ Wata S ta _i Ia

Yk

0, k k /Iva

X kta = X k,ta -i + X kata

Xk,ta

Figure 4.2: Model (4.3.3) as a Sequence of Fundamental Dual DEA Models

The sequence of fundamental dual DEA models is linked by the transition equations

and the objective function that maximises the sum of present value of profit of each

period and the cost of adjustment of inputs of each period. The input quantity vectors

are constrained by both the boundary of the technology and by the optimal adjustment

corresponding to the period.

4.4 Application of the Basic Dual DEA Model for the Selection of Optimal Paths of

Adjustment

This section presents an example of the application of the basic model for the selection

of optimal paths of adjustment, as is introduced in Section 4.3.
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As previously mentioned, without loss of generality, constant returns-to-scale

technology is assumed. The extension to variable returns to scale is trivial.

Consider the data in Table 3.1 and suppose we wish to determine the optimal path of

adjustment that maximises the present value of profit over a time horizon of five

periods. The adjustments to the vectors of the input quantities are expected to be made

within a time of adjustment of five periods. Table 4.1 presents the adjustment costs and

the original data from Table 3.1.

Consider a rate of discount of 9.0 per cent by period and assume that the budget

constrains the expenditure of costs of adjustments up to $20.0 for the first adjustment

period, and up to $30.0 for the second adjustment period.

For firm 1, problem (4.4.3) becomes:

5

Maximise fir, =E [ s t (100 x 8.0 – xn, x 2.0 – x21t x 3.0 )
t=1

— st-1 (x;It X 1' 1 + x2-lt X 2 " 0 + x+ x •	 211 1 + x+ x 2 0)] 1llt	 t	 '

subject to

the budget constraint for period 1,

.X 1+11 X 1 •1 ± x2+11 X 2•0 ±X /11 x1•1+ x211 x 2•0 � 20•0;

the budget constraint for period 2,

42 x1.1+ x2+12 x 2.0 +x112 x1.1+ x212 x 2.0 � 30.0;

the transition equations,

(4.4.4)
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x 1 11 = Xllt-1 X l+lt X 11 t t = 1, 2, ..., 5,

X211 X211-1 X 2+11 X211 , t = 1, 2, ..., 5;

the boundary of technology, adjustment periods, t = 1, 2, ..., 5,

1004 +90X21 +150X3t +1334 +152X5t � x11

100X 1t+149X21 +85.9X3t +189A41 +61 X5t_�. x211

100X 1t+110X21 +120X3t +1154 +103X5t > 100;

the present value factors,

so = 1.0; s 1 =(1+0.1)-1 ; s 2 = s 1 X S 1	 S3 = S1 X S2 S4 = S1 X S3

and

all variables are positive.

Similar LP problems must be written for firms 2, 3, 4 and 5. For computational

purposes, we write, in explicit form, the increase,	 or decrease, xikt , of input i, of

firm k at adjustment period t.

Table 4.2 shows the optimal paths of adjustment for the 5 firms. In this table, we use

the extended notation, 2ekt, to display unambiguously the weights of peers. In the

extended notation, e stands for the evaluated firm whose profit is maximised, where

e = 1, 2, 3, 4, 5; k stands for the peer of firm e, k= 1, 2, 3, 4, 5; and t stands for the

period of adjustment, t= 1, 2, 3, 4, 5. Note that firm 5 does not perform adjustments.
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Table 4.2: Optimal Paths of Adjustment for the Five Firms

Firm 1 2 3o) 4 5

rn
a)

iI

Y 100 110 120 115 103

x1 100 90 150 133 152

X2 100 149 85.9 189 61

TE 1.0 1.0 1.0 0.7567 1.0

EE 0.9295 0.8154 1.0 0.6416 0.9829

v)
a)
=

To'

to
cl
E-■

Xi 125.00 137.50 150 143.75 128.75

X2 71.585 78.742 85.9 82.32 73.731

TE 1.0 1.0 1.0 1.0 1.0

EE 1.0 1.0 1.0 1.0 1.0

H
Z

c/

4-(
0

H
a.,

1.4

0

0•-"..
a.,
"4

P
=EP

Xi 105.83 94.00 150 133.00 152

X2 93.261 141.2 85.9 179.00 61

TE 1.0 1.0 1.0 1.0 1.0

EE 0.9453 0.8359 1.0 0.6656 0.9829

/lek 1 Ai ii =0•763

2131 =0.197

22112231 ==00 ..280200 A331=1.0 2421 =0•508

2451 =0.575

2551 -1.0

N
-tio

-a'a)a.,
'4

.c)
-.6
'

X1 114.82 100.00 150 133.00 152

X2 83.152 129.50 85.9 164.00 61

TE 1.0 1.0 1.0 1.0 1.0

EE 0.9700 0.8687 1.0 0.7051 0.9829

/lek2 2112 =0.407

2132 =0.494

2212 =0.550

2232 =0.500

2332 -1.0 2422 = 1 •048 2552 =1 .0

1
• v-4

s-40
fa.,

44	 .0
h) 	 c"

;t3

X1 125.0 137.50 150 143.75 152

X2 71.583 78.742 85.9 82.32 61

TE 1.0 1.0 1.0 1.0 1.0
EE 1.0 1.0 1.0 1.0 0.9829

Ilekt Aim =0•833 2231=0.917 2331 = 1 •0 Au = 1 •0 255t = 1 • 0

profit(1) Firm 3 is peer for all firms_ because it presents the largest actual profit by unit of output.
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4.5 Some Conclusions From the Example of Section 4.4

This section presents some conclusions, derived from the solution of the above

example. The solution to problem (4.3.3), for this example, suggests the following

conclusions.

The solution to problem (4.3.3) gives a sequence of adjustments to inputs. The

sequence of adjustments to inputs maximises the present value of profit, which is

revenue minus the total cost of inputs and the cost of adjustments.

Firms performing the prescribed adjustments have specific peer(s) along each

adjustment period. As stated above, the reason for the change is that while minimising

the cost of inputs, technically efficient firms crossover the firms that are on the

boundary of technical efficiency.

At target conditions, because prices are the same for all firms, the firms have as peers

the firms that are allocatively efficient. Peer firms do not perform adjustments. In the

example, the peer is firm 3. Extension to specific prices for each firm is trivial.

As stated before, there are no adjustments if the present cost of adjustments is larger

than the present value of savings. This is the case for firm 5 that does not perform

adjustments. In Appendix 7, we state and prove Corollary 1: A firm will perform

adjustments (to input quantity vector) if the present value of savings derived from

adjustments is larger than the present value of the costs of those adjustments.
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While performing the adjustments to the input quantity vector the firm improves its

technical, allocative and economic efficiencies. By definition of these efficiencies, once

at the optimal input quantity vector, the three efficiencies are equal to one.

Table 4.2 presents the technical and economic efficiencies for the five firms, allocative

efficiencies being omitted. The firms that perform adjustments, at the same time that

maximises profits period to period, consistently improve their technical and economic

efficiencies. Firms 1, 2, 3 and 5 are 100 per cent technically efficient for the five

periods studied. This means that for firms 1 and 2 the adjustment of inputs is done over

the boundary of the technology; there is no deviation into the technically feasible

hyperspace. Economic efficiency measurements improve because after each adjustment

the input quantity vector is closer to the target input quantity vector. The closer the

input quantity vector is to the target input quantity vector, the lower is the distance

between the input quantity vector and the minimum cost isocost plane of that firm. This

plane is tangent to the boundary of the technology at the peer of the firm involved.

Firm 4 initially is technically not efficient. After the first adjustment period, the

technical efficiency measurement improves from 75.67 to 77.39 per cent; at the same

time, the economic efficiency improves from 64.16 to 66.56 per cent. After the second

adjustment, this firm has 100 per cent technical and economic efficiencies.
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4.6 Conclusions

The basic DEA model solves, in one step, the design of optimal paths of adjustment.

The basic DEA model considers that peer(s) change from one period to the next, the

reason for this is that technically efficient firms crossover the firms that are on the

boundary of the technology while increasing to cost efficiency on the boundary of the

technology. Changes include weight values of peers, deletion of a peer and the

incorporation of a peer. This is a relevant aspect of this basic DEA model, because the

design of optimal paths of adjustment may be considered as a sequence of basic DEA

models linked by the transition constraints and one common objective function. On the

consideration that the basic DEA model is a sequence of basic DEA models, it is

possible to modify each basic model of the sequence as required. Modifications of

interest are period-to-period changes of the output vector and period-to-period changes

of the technology. Chapter 5 extends the basic dual DEA model with these

modifications.
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