INCORPORATION OF COSTS OF ADJUSTMENT IN DEA MODELS: SELECTION OF OPTIMAL PATHS

Filadelfo de Mateo Gómez

Chemical Engineer, Universidad Católica de Valparaíso, Chile Master of Science in Chemical Engineering, University of Houston, TX, USA

> A thesis submitted for the degree of Doctor of Philosophy of The University of New England Armidale, NSW, Australia

> > August, 2003

Declaration

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree or qualification.

I certify that any help received in the preparing of this thesis, and all sources used, have been acknowledged in this thesis.

Filadelfo de Mateo Gómez

TABLE OF CONTENTS

		Page
ABS	TRACT	x
ACK	NOWLEDGEMENTS	xi
CHA	PTER 1: INTRODUCTION	
1.1	Motivation	1
1.2	Objectives and Main Results of this Study	2
1.3	Thesis Outline	5
СНА	PTER 2: PRODUCTION FUNCTION, PRODUCTIVITY AND	
	EFFICIENCY MEASUREMENT	
2.1	Introduction	9

2.2	The Production Function	10
2.3	The Transformation Function	16
2.4	Optimising Behaviour	19
2.5	Technical, Allocative and Economic Efficiency	24
2.6	Productivity	33
2.7	Dynamic Models	35
2.8	Primal and Dual Dynamic Models	39
2.9	Conclusions	44

CHAPTER 3: FUNDAMENTALS OF DATA ENVELOPMENT ANALYSIS

3.1	Introduction	46
3.2	Productivity and the Primal DEA Problem	48

3.3	Technical Efficiency and the DEA Dual Problem	54
3.4	Returns to Scale	69
3.5	Optimising Behaviour and DEA Dual Formulation	77
3.6	Limitations of DEA	84
3.7	Conclusions	86

CHAPTER 4: A BASIC DEA MODEL FOR THE SELECTION OF OPTIMAL PATHS OF ADJUSTMENT

4.1	Introduction	87
4.2	Concepts and Definitions	90
4.3	Basic Model for the Selection of Optimal Paths of Adjustment	94
4.4	Application of the Basic Dual DEA Model for the Selection of	
	Optimal Paths of Adjustment	104
4.5	Some Conclusions from the Example of Section 4.4	108
4.6	Conclusions	110

CHAPTER 5: EXTENSIONS TO THE BASIC MODEL FOR THE SELECTION OF OPTIMAL PATHS OF ADJUSTMENT

5.1	Introduction	111
5.2	Optimal Paths of Adjustment: Asymmetric Costs of Adjustment	112
5.3	Optimal Paths of Adjustment: Time Horizon Longer	
	than Adjustment Time	113
5.4	Example. Asymmetric Costs of Adjustment	
	and Time Horizon Longer than Adjustment Time	115
5.5	Optimal Paths of Adjustment: Dynamic Outputs	123

5.6	Dynamic Outputs Example	125
5.7	Incorporation of Quasi-fixed Variables	130
5.8	Incorporation of Capital Investment Constraint	135
5.9	General DEA Model for Optimal Paths of Adjustment	137
5.10	Conclusions	139

CHAPTER 6: DETERMINATION OF OPTIMAL PATHS FOR STORES OF THE CHILEAN RETAILING FIRM, DIJON

6.1	Introduction	141
6.2	An Overview of Dijon	142
6.3	Relevant Data for this Application	145
6.4	The Optimal Path of Adjustment Program for Dijon's Stores	150
6.5	Optimal Paths of Adjustment for Five Stores	153
6.6	Economic Results	162
6.7	Period-to-Period Changes of Weights of Stores	167
6.8	Expected Outputs with Variable Prices and Costs of Adjustment	
	for Store 202	174
6.9	Optimal Outputs with Variable Prices and Costs of Adjustment	
	for Store 202	177
6.10	Conclusions	182

CHAPTER 7: CONCLUSIONS

7.1	Summary	183
7.2	Opportunities for Further Research	188

APPENDIXES

Appendix 1	DATA FOR DIJON'S 35 STORES	191
Appendix 2	PRICES AND COST OF ADJUSTMENT	193
Appendix 3	DATA CORRELATION MATRIX	202
Appendix 4	OPTIMAL PATH OF ADJUSTMENT PROGRAM	204
Appendix 5	TECHNICAL, ALLOCATIVE AND ECONOMIC	
	EFFICIENCIES MEASURED at INITIAL	
	CONDITIONS: TARGETS FOR MINIMUM COST	
	OF INPUTS	216
Appendix 6	OPTIMAL PATHS OF ADJUSTMENT PROGRAM	
	FOR 35 DIJON STORES	219
Appendix 7	CONDITIONS TO MAKE ADJUSTMENTS	228

BIBLIOGRAPHY	232
--------------	-----

LIST OF FIGURES

Figure 2.1	Representation of Single-Output and Single-Input		
	Production Technology	13	
Figure 2.2	Representation of One-Output, Two-Input Production		
	Technology	16	
Figure 2.3	Technical Efficiency: Input- and Output-Orientated		
	Measurements	26	

Figure 2.4	Input-Orientated Systems: Technical and Allocative	
	Efficiencies where Inputs are per Unit of Output	27
Figure 3.1	Input-Orientated Technical Efficiency Measurement	
	Constant Returns to Scale	59
Figure 3.2	λ_k Depends of the System's Orientation	63
Figure 3.3	Input- and Output-Orientated Technical Efficiency	
	Measurement	65
Figure 3.4	Boundaries of Technology Exhibits Constant, Increasing	
	and Deceasing Returns to Scale	71
Figure 3.5	Effect of Input Prices in Input-Price Efficient Firms	82
Figure 4.1	Optimal Paths of Adjustment for Firms 1 and 5	100
Figure 4.2	Model (4.3.3) as a Sequence of Fundamental Dual	
	DEA Models	104
Figure 5.1	Optimal Path of Adjustment of Firm 4.	
	Non-discretionary Input 2	135
LIST OF TAB	LES	
Table 3.1	Input and Output Data for Five Firms	51
Table 3.2	Solution to Problem (3.2.3) for the Five Firms: Output-	
	Orientated System and Constant Returns-to-Scale	
	Technology	52

Table 3.3	Solution to Problem (3.3.4) for the Five Firms: Input-	
	Orientated Technical Efficiency and Constant	
	Returns-to-Scale Technology	57
Table 3.4	Solution to Problem (3.3.9) for the Five Firms: Output-	
	Orientated Technical Efficiency and Constant	
	Returns-to-Scale Technology	63
Table 3.5	Solution to Problem (3.4.1) for the Five Firms: Input-	
	Orientated Technical Efficiency and Variable	
	Returns-to-Scale Technology	76
Table 4.1	Inputs, Outputs, Prices and Costs of Adjustment	99
Table 4.2	Optimal Paths of Adjustment for the Five Firms	107
Table 5.1	Inputs, Outputs, Prices and Costs of Adjustment for Five	115
	Firms	
Table 5.2	Optimal Path of Adjustment, Asymmetric Cost of	
	Adjustment and Horizon Greater than the Time of	118
	Adjustment	
Table 5.3	Input Targets for Firm 1	122
Table 5.4	Expansion Factors for Estimating Outputs, Prices,	
	and Costs of Adjustment at Period t	126
Table 5.5	Optimal Paths of Adjustment. Dynamic Outputs,	
	Asymmetric Costs of Adjustment, Dynamic Prices	
	and Costs of Adjustment of Five Firms	129

Table 5.6	Discretionary and Non-discretionary Inputs,	
	Outputs, Prices and Costs of Adjustment	133
Table 5.7	Optimal Path of Adjustment Problem (5.7.2)	133
Table 5.8	Cost of Inputs, Initial and Target Input Quantity Vector	134
Table 6.1	Optimal Paths of Adjustment for Five Stores	155
Table 6.2	Economic Results of Optimal Paths of Adjustment	164
Table 6.3	Slacks for Constant and Variable Weights of Peers	
	for Store 202	168
Table 6.4	Different Paths of Adjustment and Same Target	
	Input Quantity Vector	169
Table 6.5	Full Different Paths of Adjustment and Target	
	Input Quantity Vector	171
Table 6.6	Input Quantity Vector, Technical and Economic	
	Efficiency for Store 265	173
Table 6.7	Variable Outputs, Prices and Costs of Adjustment	
	for Store 202	175
Table 6.8	Optimal Path of Adjustment: Constant and Variable	
	Outputs, Prices and Costs of Adjustment for Store 202	176
Table 6.9	Optimal Path of Adjustment: Optimal Output, Variable	
	Price and Cost of Adjustment	179
Table 6.10	Optimal Path of Adjustment:. Period-to-Period Weights	
	of Peers and Slacks	181

ABSTRACT

This study focuses on the optimisation of the economic objective of firms and on the determination of the optimal paths of adjustments of their inputs. The path of adjustment is the period-to-period sequence of adjustments that change the quantities of the inputs from the initial to the optimal target values. The target quantities of the inputs are optimal in the sense that they optimise the economic objective of the firm. The adjustment of inputs is feasible only if the present value of the costs of adjustments of inputs.

Data Envelopment Analysis (DEA) is used to define the boundary of the technology or the transformation function for the productive process.

The period-to-period sequence of adjustments suggests a dynamic form of DEA. This dynamic form is derived from allowing DEA for a period-to-period change of peers and of their respective weights. The change of peers may be the deletion of a peer, the incorporation of a new peer or both changes simultaneously. A peer may increase, retain or decrease its weight.

The final dynamic DEA model considers time-varying outputs and time-varying technology. The final dynamic model reduces to the standard DEA model when time is not included in implicit or explicit form. A limitation of the model is that the expected or forecasted data are used as observed data.

The model is used in an empirical application to 35 stores of Dijon, a Chilean retailing firm.

ACKNOWLEDGEMENTS

There were two reasons why I became a Doctor of Philosophy student at the University of New England in 1999. The first reason is that the University of New England offers external candidature. Being a senior staff member (Secretary General) at the Universidad Adolfo Ibáñez in Chile, I was not able to undertake full-time candidature for a PhD degree. The second reason is that I learned of the international reputation of the staff in the Centre of Efficiency and Productivity Analysis (CEPA) within the Department of Econometrics at the University of New England.

I would like to acknowledge with gratitude and thanks my supervisors, Dr. George Battese, Dr. Tim Coelli and Dr. Christopher O' Donnell. Tim and Chris continuously steered my research from engineering criteria to key concepts of microeconomics, firm theory and Data Envelopment Analysis. Their technical expertise was a great help and inspiration. My month-long trips to Armidale for consultations with my supervisors during the last four years, have been very profitable and inspirational to me and greatly assisted me in my research.

Unfortunately for the University of New England, CEPA transferred to the University of Queensland in early 2003 after Prasada Rao, Tim Coelli and Chris O' Donnell accepted senior positions at the University of Queensland in 2002. I have appreciated the help that Tim and Chris have given me, even after their resignations from the University of New England.

George Battese agreed to be a co-supervisor during my candidature, despite the fact that his area of expertise in efficiency and productivity analysis is particularly with stochastic frontier production functions. Since his retirement from UNE in August 2002, George has patiently helped me to put this thesis together in a coherent way. He has helped transform my colloquial Texan/Spanish expressions to more formal Australian English.

I would like to thank Professor Prasada Rao and other former staff of CEPA and of the School of Economics for their friendly and receptive attitudes to me during my trips to the University of New England during July in each of the last four years.

I also wish to thank my employer, Universidad Adolfo Ibáñez, for the financial support that made possible this work.

I give thanks to my wife, Carmen Gloria, and to our daughters, Maricarmen and Monserrat, for their permanent support, their warm full understanding, and their unlimited love.