AN INFORMATION PROCESSING STUDY OF INDIVIDUAL DIFFERENCES IN PERCEPTION OF PITCH FLUCTUATIONS IN MUSIC

John Gregory Geake

B.Sc. (Hons.) (UNSW), Dip.Ed., M.Ed., (UNE), A.Mus.A.

A thesis submitted for the degree of Doctor of Philosophy of the University of New England.

September, 1995

CERTIFICATE

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree or qualification.

I certify that any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

.

ACKNOWLEDGMENTS

I am deeply indebted to my supervisor, Professor Don Fitzgerald, Department of Science, Technology and Mathematics Education, University of New England for his inspiring guidance and genuine encouragement.

Heartfelt thanks go to those children in Lismore, Sydney and Canberra who participated as subjects in the research. My sincere appreciation is extended to the principals and staff of Lismore Heights and Alstonville Public Schools, and the Conservatorium High School, and to the subjects' music teachers and parents for their interest and cooperation.

I am beholden to Professor Robert A. M. Gregson, Department of Psychology, Australian National University, for insightful reactions to parts of this work, and to Dr. Nigel Nettheim, Centre for Liberal and General Studies, University of New South Wales, Dr. Gabriel Landini, School of Dentistry, University of Birmingham, and Dr. Kate Stevens, School of Psychology, University of Queensland, for their valuable suggestions.

The financial assistance of the Faculty of Education, Work and Training, Southern Cross University through the provision of a bursary, and of Osborne Computers Australia through a research grant, is most gratefully acknowledged, as is the assistance in the collection and recording of data of Ms. Corrine Hughes.

Special thanks are due to my wife Heather for her patient understanding, and to my children Sally and Jonah for their unflagging encouragement throughout this project. To my mother Isobel, thank you for music.

ABSTRACT

Although extreme individual differences in the music abilities of children have been celebrated from long before Mozart, satisfactory cognitive models of such precociousness have been less forthcoming. This research program employed an information processing model based on the neuropsychological work of Alexander Luria to investigate individual differences in the perception of pitch sequences with various degrees of structural coherence, with particular attention to children who appear to be musically gifted.

The Luria model used in this study has three orthogonal dimensions of information processing: successive and simultaneous synthesis for encoding information, and executive synthesis which involves attentional and integrative processes. Psychometric operationalisations of the model have been used extensively in investigations of individual differences in mathematics and language performance of children at school. The model had not previously been applied to the domain of music. It was hypothesised that music perception involves the cooperative interaction of these three information processing dimensions.

This research focussed on the perception of fluctuations in pitch - the attribute of music which is most strongly predictive of music ability. Evidence from studies in the cognitive sciences suggests that musical elements such as pitch are hierarchically chunked to form meaningful musical Gestalts. Other studies in psychophysics suggest that these cognitive processes may exploit the fractal or self-similar form of fluctuations in musical attributes. Fractional Brownian motion (fBm) tone series have proved a valuable tool in studies of perceptual responses to pitch fluctuations. To this end, the autocorrelation function is particularly salient.

Three psychometric studies were conducted with 10 to 13 year old children as subjects. Multivariate analyses were undertaken where appropriate. The first study (N = 151) investigated relationships between abilities on simultaneous, successive and executive synthesis, and individual differences in pitch pattern discrimination, pitch contour inversion, and responses to algorithmically generated fBm tone series as a replication of an earlier study with adults. Success on the contour inversion test was partly accounted for by abilities on both

simultaneous and successive synthesis. The replication study showed that fractal music is preferred to either random or highly correlated fBm tone series. Significant sensitivity to structural differences in algorithmic music was related to abilities on successive synthesis by subjects with criterion scores on the pitch pattern discrimination tests.

Two instruments were developed to measure sensitivity to the autocorrrelation structure of algorithmically generated fBm tone series: one required an estimation of the strength of structural coherence, the second sought detection of a change in structural coherence. Study 2 (N = 135) investigated relationships between abilities on simultaneous, successive and executive synthesis, and individual differences in pitch pattern discrimination, sensitivity to autocorrelation structure, music education experience, and school academic performance. Abilities on the Luria model dimensions were measured by a new computer-based adaptive instrument. There were significant relationships between performance on the discrimination of pitch pattern tests, the perception of the two autocorrelation structure tasks, and the three Luria model dimensions. There were significant relationships between success at the two perception of autocorrelation structure tasks and performance levels of school mathematics and language studies, suggesting that common information processing dimensions underpin both musical and general cognition.

The third study (N=29) involved children with demonstrated musical precocity. They were also tested with the Luria model and sensitivity to autocorrelation structure batteries. The abilities of the musically gifted children on each of simultaneous, successive and executive synthesis were superior, especially on executive synthesis, to those of the normal sample of children in Study 2. High ability on executive synthesis, the processing dimension with responsibility for the integration of the two coding dimensions and for the evaluation of information redundancy, can explain the remarkable facility for music learning shown by the musically gifted subjects. Their scores on both tasks of sensitivity to autocorrelation structure were also superior to those in Study 2, suggesting that the perception of coherence in pitch fluctuations is an attribute of music ability. It was also shown that for musically gifted children, perceptual preference for fractal structure in pitch fluctuations is related to individual differences in abilities on simultaneous synthesis.

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS	iii
ABSTRACT	iv
LIST OF TABLES	xii
LIST OF FIGURES	xvi

CHAPTER

1. INTR	RODUCTION	1
1	.1 Rationale for the research program	1
1	.2 Structure of the thesis	9

2.	THE LURIA MODEL OF INDIVIDUAL DIFFERENCES	
	2.1 Introduction	
	2.2 Description of Luria's model	14
	2.3 Music information processing within the Luria model	
	2.4 Neurological mechanisms	
	2.5 Operationalisation of the Luria model	27
	2.6 Psychometric operationalisation with two factors	
	2.7 Psychometric operationalisation with three factors	
	2.8 Psychometric operationalisation with four factors	
	2.9 Psychometric operationalisation in a computer adaptive format	
	2.10 Relationships to other models of individual differences	

3.	INFOR	MATION PROCESSING IN MUSIC PERCEPTION	49
	3.1	Introduction	49
	3.2	Successive synthesis in music perception	50
	3.3	Simultaneous synthesis in music perception	54
	3.4	Simultaneous synthesis and long term music memory	57
	3.5	Executive synthesis in music perception	60
	3.6	Hierarchical information processing in music perception	65

CHAPTER page	
3.7 Information redundancy in music perception70	1
3.8 Information processing in music experience72	,
3.9 Individual differences in music abilities76)
3.10 Definitions of terminology	i
4. PERCEPTION OF AUTOCORRELATION STRUCTURE	'
4.1 Overview of fractal geometry	'
4.2 Temporal fractal form91	
4.3 Perception of fractal form 105	i
4.4 Sensitivity to autocorrelation structure	;
5. THE FIRST STUDY 123	;
5.1 Formulation of the research questions	;
5.2 The Music Evaluation Kit test battery 125	5
5.3 Instrumentation to measure the perception of musical contour inversion	7
5.4 Instrumentation to replicate the Voss study 129)
5.5 The Luria model battery 135	5
5.6 Experimental situation	5
5.7 Experimental validity 137	7
5.8 Experimental hypotheses)
5.9 Data analysis)
Preliminary analysis140)
Hypothesis 1.1 142	2
Hypothesis 1.2 143	3
Hypothesis 1.3 146	5
Hypothesis 1.4 147	7
Hypothesis 1.5)
Hypothesis 1.6149)
Hypothesis 1.7)
5.10 General discussion	2

vii

viii
CHAPTER page
5.11 Recommendations for a second study
6. THE SECOND STUDY
6.1 Formulation of research questions159
6.2 Instruments for perception of autocorrelation structure
6.3 Experimental situation172
6.4 Experimental validity 174
6.5 Experimental hypotheses
6.6 Data analysis
Preliminary analysis175
Analysis of Contrasts 178
Hypothesis 2.1
Hypothesis 2.2
Hypothesis 2.3
Hypothesis 2.4
Hypothesis 2.5 191
Hypothesis 2.6 192
6.7 General discussion
6.8 Recommendations for a third Study
7. THE THIRD STUDY
7.1 Formulation of the research questions
7.2 Experimental situation
7.3 Qualitative data
7.4 Experimental hypotheses
7.5 Analysis of quantitative data
Preliminary analysis
Hypothesis 3.1
Hypothesis 3.2
Hypothesis 3.3

CHAPTER	page
Hypothesis 3.4	
7.6 General discussion	
8. REVIEW AND CONCLUSIONS	
8.1 Overview of the research results	
8.2 General discussion and conclusions	
8.3 Strengths and limitations of the research	
8.4. Recommendations for further research	
8.5 Concluding remarks	
BIBLIOGRAPHY	
APPENDIX	
A. MUSIC EVALUATION KIT (MEK)	
Part I Pitch Discrimination	
Part V Pattern Recognition	290
B. PITCH CONTOUR INVERSION TEST	294
Taped Instructions For Subjects	
Answer Sheet	
Probe phrases for items 1 - 15	298
C. 1/f ALGORITHM	
QBASIC listing of fractal music algorithm	
QBASIC listing of white music algorithm	
QBASIC listing of brown music algorithm	
Autocorrelation function of fractal music algorithm	
Fourier analysis of 1/f algorithm outputs	
Spectral density plot of 1/f algorithm	
Algorithmic music	

ix

APPENDIX	page
Percentage occurrences of intervals in algorithmic and real music	
D. SEMANTIC EVALUATION OF SPECTRAL DENSITY TEST	310
Subject answer booklet	
E. THREE-COMPONENT LURIA MODEL BATTERY	
Tests of Simultaneous Synthesis	
Tests of Successive Synthesis	
Tests of Executive Synthesis	324
F. SPSS-PC© OUTPUTS FOR STUDY 1 DATA ANALYSIS	330
Preliminary analysis	
Hypothesis 1.1	
Hypothesis 1.2	
Hypothesis 1.3	340
Hypothesis 1.4	341
Hypothesis 1.5	342
Hypothesis 1.6	342
Hypothesis 1.7	
G. SCALE ESTIMATION OF SMOOTHING TEST	346
QBASIC listing of Can You Describe It?	
H. CHANGE OF SMOOTHING TEST	352
QBASIC listing of How Are Your Reflexes?	353
QBASIC listing of When Does It Change?	
I. SPSS-Windows© ANALYSIS OF STUDY 2 DATA	361
Preliminary analysis	
Analysis of contrasts	

APPENDIX

Hypothesis 2.1	
Hypothesis 2.2	
Hypothesis 2.3 and Hypothesis 2.4	
Hypothesis 2.5	
Hypothesis 2.6	

J. SPSS-Windows© ANALYSIS OF STUDY 3 DATA	
Preliminary analysis	
Hypothesis 3.1	
Hypothesis 3.2	
Hypothesis 3.3	
Hypothesis 3.4	

xi

page

LIST OF TABLES

TABLE		page
5.01	Contingency table analysis of differences between real melodies and fractal,	
	brown and white musics	132
5.02	Component structure of Luria model marker tests for Study 1	141
5.03	Multivariate effects of 3-way partitions of Luria model components on Pitch	
	Contour Inversion Test item scores	144
5.04	Univariate effects for 3-way partitions of Luria model dimensions on Pitch	
	Contour Inversion Test items	145
5.05	Means of Pitch Contour Inversion Test scores for MEK criterion	146
5.06	Means of Pitch Contour Inversion Test item scores for MEK criterion	147
5.07	Combined-scale means for ratings of fractal, white and brown music	147
5.08	Scale means for ratings of fractal, white and brown music	148
5.09	Correlations between Luria model component scores and Semantic Evaluation	
	of Spectral Density Test scores	149
5.10	Correlations between successive synthesis and scale ratings of fractal and	
	brown music for subjects who reached MEK criterion	150
5.11	Correlations between simultaneous synthesis and scale ratings of white music	
	for subjects who failed to reach MEK criterion	151
5.12	Summary of Study 1 hypothesis testing	152
6.01	Relationship between smoothing coefficient and spectral power function	
	exponent	165
6.02	Relationship between smoothing coefficient and the autocorrelation function	
	of Turner algorithm outputs	166
6.03	Principal components structure of Luria model marker tests for Study 2	176
6.04	Coefficients of skewness and kurtosis of sensitivity to autocorrelation	
	structure variables	177
6.05	Significant univariate effects of School Year for Study 2 variables	177

TABLE	page
6.06 Correlations between age of subjects and component scores and test	
variables	178
6.07 Significant multivariate effects for linear contrasts of 3-way partitions of	
Luria model component scores on Study 2 variables	179
6.08 Correlations between Luria model component scores and Scale Estimation of	f
Smoothing Test scores	180
6.09 Significant univariate effects of Luria model component scores and Scale	
Estimation of Smoothing Test scores	181
6.10 Means of Scale Estimation of Smoothing Test scores for high-medium-low	
partitions of simultaneous and successive synthesis	181
6.11 Selected responses to Scale Estimation of Smoothing Test	
6.12 Component structure with Scale Estimation of Smoothing Test scores	
6.13 Correlations between Luria model component scores and Change of	
Smoothing Test scores	
6.14 Univariate effects of Luria model component scores and Change of Smoothing	ng
Test scores for correct response	
6.15 Univariate effects of Luria model component scores and Change of Smoothing	ng
Test scores for early response	
6.16 Means of correct response scores on the Change of Smoothing Test for high	-
medium-low partitions of successive and executive synthesis	186
6.17 Means of early response scores on the Change of Smoothing Test for high-	
medium-low partitions on executive synthesis	
6.18 Mean smoothing coefficient for Change of Smoothing Test control items	
perceived and missed	
6.19 Correlations between MEK scores and measures on the Scale Estimation of	
Smoothing Test and the Change of Smoothing Test	
6.20 Correlations between MEK scores and measures of simultaneous, successiv	e
and executive synthesis	189
6.21 Univariate effects of Luria model component scores and MEK Part I scores .	190
6.22 Univariate effects of Luria model component scores and MEK Part V scores	190

TABLE	page
6.23 Univariate effects of Luria model component scores and MEKTOT scores	190
6.24 Means of MEK test scores for high-medium-low partitions of successive x	
executive synthesis	191
6.25 Means of MEK total scores for high-medium-low partitions of successive x	
executive synthesis	191
6.26 Correlations between school performance and Scale Estimation of Smoothing	
Test scores	193
6.27 Correlations between school performance and Change of Smoothing Test	
correct response scores	193
6.28 Multivariate effects for school performance and sensitivity to autocorrelation	
tasks	194
6.29 Univariate effects for school performance and sensitivity to autocorrelation	
tasks	194
6.30 Means of Scale Estimation of Smoothing Test and Change of Smoothing Test	
scores for school performance in mathematics	195
6.31 Means of Scale Estimation of Smoothing Test and Change of Smoothing Test	
scores for school performance in English language	197
6.32 Univariate effects of Luria model component scores and school performance	197
6.33 Summary of Study 2 hypothesis testing	198
7.01 Component structure of combined Luria model marker tests for Study 3 and	
Study 2	218
7.02 Coefficients of skewness and kurtosis of sensitivity to autocorrelation	
structure variables	219
7.03 Instrumental music examination performance by age	220
7.04 Rates of progress through AMEB Grades for Study 3 subjects	221
7.05 Significant univariate effects of Study 3 membership and sensitivity to	
autocorrelation structure variables	221
7.06 Comparison of Study 3 with Study 2 means of sensitivity to autocorrelation	
structure variables	221

xiv

TABLE	page
7.07 Responses of Study 3 subjects to Scale Estimation of Smoothing Test	222
7.08 Comparison of Study 3 with Study 2 responses to AZERO item	223
7.09 Correlations between music experience and sensitivity to autocorrelation	
structure	224
7.10 Univariate effects of Study 3 membership and Luria model component scores	225
7.11 Comparison of mean Luria model component scores between Study 3 and	
Study 2	225
7.12 Correlations between sensitivity to autocorrelation structure and Luria model	
component scores for Study 3	226
7.13 Correlations between sensitivity to autocorrelation structure and Luria model	
component scores for the matched Study 2 sub-sample and the Study 3	
sample	228
7.14 Scores of Study 3 siblings as percentiles of the combined Study 2 and Study	
3 scores of the sensitivity to autocorrelation structure tasks and the Luria	
model components	228
7.15 Stepdown effects and comparison of means between Study 3 and Study 2 for	
Scale Estimation of Smoothing Test learning	229
7.16 Comparison of means between Study 3 and Study 2 for Change of Smoothing	
Test learning	231
7.17 Means of Scale Estimation of Smoothing Test scores grouped for high,	
middle and low values of smoothing coefficient, with correlations between	
means and smoothing coefficients and suggested perceptual models	234
7.18 Mean component scores on simultaneous synthesis for fractal and bipartite	
perceptual models	235
7.19 Summary of Study 3 hypothesis testing	236
8.01 Summary of Study 1 results	245

LIST OF FIGURES

FIGURI	E page
3.01	Relationships of terminology concerned with music ability
4.01	Graphical representations of white noise, 1/f noise and brown noise
4.02	Three fBm series with different degrees of correlation
4.03	Power spectra for pitch fluctuations of four FM radio stations
4.04	Power spectra for pitch fluctuations of various samples of music
4.05	Music scores for examples of white, 1/f and brown music
4.06	Power spectral curves for selections of music 101
4.07	Discrimination acuity (D prime) vs power spectral slope of visual and auditory
	fractal contours
6.01	Spectral power exponent vs. smoothing coefficient plot 164
6.02	Tone series for three different smoothing coefficients
7.01	Comparison between Study 3 and Study 2 subjects on learning on the Scale
	Estimation of Smoothing Test
7.02	Comparison of Study 3 with Study 2 subjects on learning on the Change of
	Smoothing Test