
5 Oetimization of Microarray Exeerimental Design Using Genetic Algorithms 

5.1 Introduction 

Microarrays constitute a powerful tool for practical applications including, among others, 

diagnostics, target identification, screening, and genotyping. But they are also costly, both in time and 

resources, which make the careful design of microarray experiments critical to generate reliable and 

useful data. Statistical analysis of data generated from well designed experiments allows for meaningful 

biological correlation. Microarray experiments should be conducted as a group effort that requires efficient 

communication between those designing and running the experiments, those managing the databases 

and those doing the data analysis. This is paramount to generate statistically defensible data and is only 

possible if, from inception, this need is accounted for. 

In this chapter the focus is on cDNA microarrays. This method for gene expression investigation 

allows comparison of expression levels in typically two biological samples for several thousand genes on 

a single slide. Since it was initially developed (Schena et at. 1995), microarray techniques have matured, 

contributing an important part in the generation of gene expression data at an unprecedented pace. Also 

mferred to as spotted arrays, they usually consist of two reverse-transcribed RNA samples labeled to 

different color dyes, mixed and hybridized onto a slide. Microarray experimental techniques are fully 

described in (Schena 1999; Schena 2002; for a brief overview see section 2.4). 

As with any other experimental approach, to succeed the objectives of the study must be clearly 

stated. This need has been brushed aside in the past since the quantity of data generated falsely 

suggests that almost any possible question can be addressed by simply analyzing the data (Simon et at. 

2002). Regrettably that is not so, and with elevated costs and high demands on time, it has become clear 

that microarray studies have to be well defined as to their objectives and be well planned to ensure that 

the questions of interest can be effectively addressed. The planning stage among other considerations 

encompasses the experimental design of the study, which is the main topic of this chapter. 

Many papers and books have been published over the last few years that discuss and present 

analysis methods for the interpretation of microarray data (Hegde et al. 2000; Dudoit et al. 2002; Knudsen 

2002; Nadon & Shoemaker 2002; Pan 2002; Draghici 2003); of these, analysis of variance (ANOVA) 

methods, are growing in acceptance (Kerr et a/. 2000; Draghici et a/. 2001; Kerr & Churchill 2001; Kerr et 

a/. 2002). But only recently has research focused on the issues involved in the effective design of 

microarray experiments (Oraghici et a/. 2001; Kerr & Churchill 2001; Churchill 2002; Dobbin & Simon 

2002; Simon et a/. 2002; Yang & Speed 2002; Simon & Dobbin 2003; Dobbin et a/. 2003; Glonek & 

Solomon 2004; Vinciotti et a/. 2005). The use of an appropriate design will not only reduce costs and save 

labor time; it will also ensure that the effects of interest will not be confounded with the many factors that 

influence gene expression data. The main sources of variability in spotted arrays are dye effects, array 

effects, spot effects (technical replicates on the same slide) and biological variability (biological 

replicates). All of these have to be accounted for to ensure an efficient and unbiased analysis. 

Microarray experimental design is not straightforward. There are several ways an experiment can 

be designed; typical but not necessarily optimal designs include dye-swap designs, loop designs and 
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reference designs. Different constraints influence the design. Common practical considerations are to 

minimize the number of slides due to cost constraints, to reduce the number of steps between samples 

thus reducing variability, how to select the pair samples to hybridize and find an appropriate balance of 

the dyes. Unfortunately these different considerations are not necessarily linearly correlated. A reduction 

in the number of slides can unbalance the dyes or increase the average number of steps needed to 

compare a pair of samples. Depending on the level of interest on a specific aspect, different designs can 

be more efficient. 

To find the best overall design that adequately balances conflicting constraints is not a trivial task. 

Microarray experimental design is essentially a multicriteria optimization problem. For this class of 

problems Evolutionary Algorithms are well suited for they can search the multicriteria solution space and 

evolve a design that maximizes the parameters of interest based on their relative value to the researcher 

and a given set of constraints. 

Genetic Algorithms (GAs) - a class of evolutionary algorithms - are computational heuristics that 

use analogies of natural selection processes such as mutation, recombination and selection to evolve a 

population of candidate solutions based on an objective function (Goldberg 1987; Eshelman 2000; see 

section 2.5.4.3). In this chapter a Genetic Algorithm was developed to optimize the experimental design 

of spotted microarrays using a weighted multicriteria objective function. In section 5.2 the fundamentals of 

experimental design, the variability factors that influence spotted array data and current work in design 

optimization are reviewed. Section 5.3 introduces the Genetic Algorithm developed for design 

optimization and its implementation in the ArrayDesigner software. Results are presented in section 5.4, 

where simple GA-evolved designs are discussed to illustrate the method followed by a comparison of 

evolved designs with optimal designs. In section 5.5 some conclusions are drawn and future work 

possibilities are discussed. 

5.2 Experimental Design of Microarrays 

The objective of an experimental design is to ensure that the data gathered by an experiment has 

statistical value and can address the experimental questions as well as possible, given the experimental 

constraints. The principles behind the experimental design of microarrays are essentially the same as 

those developed by Fisher (1971) for agricultural research. The implication of this is that microarray 

experiments still fit into the classical statistical framework and should be treated as such (Yang & Speed 

2002). For example the effect of different plots of land used in a crop experiment is analogous to the 

effect of different slides in a microarray experiment. 

In the current context, microarray experimental design is about defining which samples will be 

hybridized together on a slide. A cDNA microarray is a comparison between two samples. How samples 

are paired in an experiment affects the comparisons that can be made from the data. In practical terms 

comparisons of interest should be closely connected in the design, preferably on the same array, thus 

removing the variability between slides. This is due to the fact that there is more variability between slides 

than within slides. Typically the correlation of measured intensities between duplicated spots on the same 

slide is around 95%; dropping to 60% - 80% on different slides (Churchill 2002). Further, the design 

determines if the effects of interest (sample x gene interactions) are confounded with other sources of 

variation. If the experiment is not carefully planned it may not be possible to separate the effects of 

interest from the other sources of variation, generating a biased dataset. 
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5.2.1 Sources of Variation 

Spotted array experiments ultimately aim to measure the difference of expression levels between 

samples. The difficulty lies in distinguishing between the actual expression variation and the variation 

introduced by the method itself. The main sources of technical variability include: the method used to 

prepare the mRNA, the transcription steps, types of labeling, PCR amplification, variations in the pin 

surfaces, the amount of target that attaches to the slide, the parameters of the hybridization process, slide 

variation, non-specific hybridization, the gain settings of the scanner (PMT), high or low end saturation 

(dynamic range), alignment of the images, grid detection, background noise, contamination, shape of the 

spots and spot quantification (Draghici 2003:29). 

For microarray analysis (within an ANOVA framework), and consequently for design 

considerations, four categories of variability should be considered: varieties (V), genes (G), dyes (D) and 

arrays (A) (Kerr & Churchill 2001). Varieties are the signal intensities of the factors of interest - different 

tissue samples or time points, for example. The genes are the sequences spotted on the slide - not 

necessarily genes; they can be ESTs or some other source of DNA, RNA or protein - this considers 

variation introduced by differences in the pin surfaces or target attached to the slide. Dye effects account 

for the variation introduced by the cDNAs labeled with the red and green dyes. Array effects consider the 

variation between slides; infrequently an experiment will consist of a single slide. An efficient design will 

account for these sources of variation and ensure that they are not confounded. 

5.2.2 Replication 

The starting point for a microarray design is replication. Churchill (2002) highlights two main types 

of replication: (1) technical and (2) biological. There are two types of technical replicates: (1) the same 

gene (G) is spotted multiple times on a slide and (2) multiple arrays (A) are hybridized with the same 

samples (\I). Technical replicates do not consider biological variability; they are useful to reduce the noise 

and improve the precision of the measured signal. Spot replicates can be used to estimate the variance of 

G (O"~). The variance of A (O"~ ) can be estimated from array replicates. It is important to have a handle 

on technical variability; but it bears no relation to the biological variability. Biological variance (O"~) can 

only be estimated from multiple measures of samples from a population. The importance of biological 

replicates cannot be over emphasized. No statistically sound inferences (assumptions that can be tested 

from the data) can be made if there are no biological replicates, since clearly a single sample is not 

representative of the population, or if residual variation cannot otherwise be measured and accounted for 

in a statistical model- for instance by fitting time of sampling over sufficient unreplicated samples. 

While considering biological replicates it is worthwhile to briefly mention sample pooling. This 

strategy has been frequently used in microarray assays, particularly when the RNA extraction from a 

single individual is insufficient for hybridization. Apart from technical feasibility, pooling has been used to 

control biological variability. This is a valid approach to identify genes that are on average over or under 

expressed in two different varieties, but it provides no measure of confidence in the results achieved. 

Again, biological variance cannot be measured from a single pooled sample. 

The precision of the study depends on the different sources of variability. The mean squared 

error (MSE) quantifies the precision of the estimation (decreases proportionally to the sample size); which 

in turn allows determining if estimated quantities are significantly different or not. MSE is estimated from 
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the residual variation or error variation observed within independent experimental units while precision is 

determined by the experimental residual degrees of freedom (Churchill 2002). As a rule of thumb at least 

5 residual degrees of freedom should be available for an array experiment. 

5.2.3 Graphical Representation of Designs 

Microarray designs are commonly represented as directed graphs (see section 6.2 for a 

discussion on directed graphs). The nodes of the graph represent the varieties (V) and the edges 

represent the arrays (A). The direction of the arrow is used to represent the dye used to label each of the 

varieties. Customarily to the head of the arrow the red dye (Cy5) is assigned while the green dye (Cy3) is 

assigned to the arrow tail. Figure 5.1 illustrates a simple loop design with 4 arrays. 

Figure 5.1 Microarray loop design with 4 arrays and 4 samples. Nodes represent the samples and the edges are the arrays. 
The arrow is used to represent the dye color: the head is the red dye (Cy5) and the tail is the green dye (Cy3). The samples 
are represented by the letters (A, B, C and 0) and the arrays are numbered from 1 to 4. The samples co-hybridized on each 
array are: 1 - AlB, 2 - BIC, 3 - C/O and 4 - O/A. 

Spotted arrays are comparative studies; as such it is the structure of the directed graph that 

defines which expression differences can be estimated, as well as the precision of these estimates, from 

the experiment. Consider two samples that are not hybridized on the same array; they can only be 

compared if there is a path in the graph that connects the nodes. The precision of this comparison 

depends on the number of edges that form the connecting path. The more steps needed to connect the 

'samples the less precise the comparison is. More important experimental questions should be able to be 

.addressed by short paths. As an example consider figure 5.1. The log ratio is commonly used to estimate 

the relative abundance of expression between samples. For samples A and B on the same slide the 

estimate is directly obtained from log( A / B); a less precise indirect comparison between A and C is 

obtained by log( A / C) = log( A / B) -log( C / B) . 

5.2.4 Types of Design 

Only rarely does a microarray experiment consist of only two varieties. This means that in most 

cases not all samples appear on all arrays. Considering that an array can be viewed as an experimental 

block of size two, a microarray design with more than two varieties is an incomplete block design. In this 

section general characteristics of designs are discussed, followed by an overview of the two most 

adopted designs: reference and loop designs. 

One of the main sources of systematic bias in cDNA microarrays is due to the labeling intensity of 

the dyes. A normalization step is usually performed to remove average dye biases (Schuchhardt et al. 

2000; Quackenbush 2002; Leung & Cavalieri 2003; Smyth & Speed 2003); this leaves gene-specific dye 

biases to be accommodated. The reason why some genes (around 1%) present this bias is as yet 

unknown (Kerr 2003). An efficient method for accounting for this bias is through dye-swap where all 
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hybridizations are performed twice with the dyes swapped (figure 5.2). Full dye-swap of all slides is not 

necessary, it is sufficient to have an even design (Kerr & Churchill 2001; Kerr 2003). For a design to be 

even, each sample should be labeled with both dyes and each dye should be used the same number of 

times in the experiment. The loop design in figure 5.1 is an example of an even design - the dyes are 

balanced and each sample is used once with each dye. A condition for balance is that each variety is 

used an even number of times (the degree of all nodes must be even in the graph). 

Figure 5.2 A Dye-swap loop design. For each pair of samples two hybridizations are performed with the dyes reversed in 

the second hybridization. In this example, for all three samples a direct comparison is possible. 

Gene expression level comparisons can be direct - comparison between samples on the same 

slide or indirect - comparison between samples on different slides. If the variance for a single log ratio is 

cf (direct comparison) it follows that the variance for a two step indirect comparison is 2if (considering 

the same variance for within and between slide comparisons). The immediate implication is that an 

indirect comparison has a two-fold variance increase and demands two slides (two independent routes for 

comparison) instead of one; in this simple scenario costs and material are effectively doubled. If the same 

number of slides (2) are used the difference becomes even more evident. Two direct comparisons can be 

done (dye-swap can be used to account for dye bias) yielding two independent measurements and a 

variance of (//2. At the same cost the variances between the two designs can vary by a factor of 4. Note 

that this factor is theoretical since in practice target spots are usually from the same biological sample 

and the independence assumption is not met. Nevertheless a direct comparison is usually more precise 

than an indirect comparison. 

For experiments with just a few varieties, an all-pairs design is feasible (all samples are 

hybridized with one another). As the number of varieties increases this design becomes unfeasible due 

to lack of sample availability and/or cost constraints. For this scenario reference and loop designs are 

commonly used. The reference design has traditionally been the most widely used design in microarray 

experiments (figure 5.3). In this design a common sample reference is hybridized to all slides using the 

same dye to label the reference across all hybridizations. To use this design it must be assumed that 

there are no gene-specific dye effects; since the effects of the samples are completely confounded with 

the dye effects. The reference design is unbalanced. Another consideration is that half the measurements 

are collected from the reference, which is usually of little interest. Thus, for n varieties of 

interestn -1 arrays must be used. Further, since the comparisons of interest are usually between 

samples, all relevant comparisons are indirect. The positive aspects of reference designs are their 

extensibility and consistent number of steps between comparisons. Given that the reference is readily 

available, an experiment can be setup to initially include a small number of varieties and latter on further 

varieties can be attached to the original experiment. It is also noteworthy that, even if no direct 

comparisons are possible, the path to compare any two varieties is of size 2. 
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Figure 5.3 Reference Design. Four samples of interest are hybridized to a common reference. All comparisons are indirect 
with a step size of 2. 

An alternative to the reference design is the loop design. In this design all varieties are connected 

to one another in a loop (figure 5.4). For n varieties n arrays are used. Each variety is used twice, once 

with each dye - the design is balanced, gene effects are not confounded with dye effects. In comparison 

to the reference design, twice the amount of information on the varieties of interest is collected using the 

same number of arrays (if the reference is not a variety of interest). A further advantage of the loop 

design is that direct comparisons are available between varieties of interest. In the simple example of 4 

samples depicted in figure 5.4, out of the 6 possible comparisons, 4 are direct and only 2 indirect. The 

indirect comparisons are of step size 2. From the examples it seems clear that, for four varieties, the loop 

design is superior to the reference design. Unfortunately the problem is not so clear cut. Robustness is an 

important consideration in microarray experiments, particularly if the samples are limited and there is not 

enough material to duplicate an array if the hybridization fails. A reference design is amenable to 

technical problems with an array. If one of the hybridizations does not work only one variety is lost. With 

the loop design a single bad array can break the loop and jeopardize the entire experiment. A second 

disadvantage of loop designs is that as the number of varieties - and consequently arrays - increases, 

the number of steps in the path needed to compare the varieties also increases. If a comparison of all 

pairs of varieties is desired, loops with more than ten samples are inefficient (Churchill 2002). In practical 

terms, loop designs effectively double the labeling reactions since each sample is labeled with both dyes. 

Figure 5.4 Loop Design. Four samples are hybridized one to another. The design is balanced - each sample is used twice, 
once with each dye. There are 4 possible direct comparisons (AlB, BlC, CID, D/A). 

There is no single optimal design that is optimal for all experimental questions. A microarray 

experimental design should try to balance three basic principles: (1) balance among the factors -

particularly dyes, (2) use approximately the same sampling of varieties and (3) minimize the distances 

between pairs of varieties - especially the ones of interest which should preferably be hybridized on the 

same array allowing for direct comparisons (Kerr & Churchill 2001). 

5.2.5 Design Optimization 

As yet little has been done on optimization of microarray experimental designs. Kerr and Churchill 

(2001) studied different designs for up to 10 samples with various numbers of slides and compiled a list of 
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optimal designs (later extended to 13 varieties, designs available from http://www.jax.org/staff/Churchill/l 

absite/research/expression/design.html). Yang (2003) extended this work to 26 varieties with an equal 

number of slides. 

The objective of an optimal design is to assign the varieties to slides in a manner that will 

maximize the precision of the resulting parameter estimates. The definition of optimal depends on the 

optimality criterion that is used. The most common criteria for design optimality are D-optimality, E­

optimality, A-optimality and its derived L-optimality. Kerr and Churchill (2001) used A-optimality as the 

criterion for their work; even though Witt et al. (2005) argue that the proper term is L-optimality, a modified 

form of A-optimality, see 5.3.3 for details of optimality criteria). 

A-optimality seeks to minimize the trace of the inverse of the design matrix. This criterion results 

in minimizing the average variance of the parameter estimates based on a pre-specified model. With this 

criterion, designs that minimize the average variance of a contrast are favored (equation 5.1). 

(5.1 ) 

Where k1 and k2 are the varieties, 9 are the genes and VGkl,li - VGk2 ,1i are the contrasts of interest 

-- variety x gene interactions (Kerr & Churchill 2001). 

Ideally, for a combination of any number of varieties using any number of arrays, an optimal 

design would be available. But an exhaustive search of the entire design search space, even for a 

relatively small number of varieties and slides, is unfeasible. An alternative is to use optimization 

heuristics that can explore the solution space within a reasonable timeframe. To our knowledge the only 

work (Witt et. a/ 2005 - prepress) in this field used Simulated Annealing to find near-optimal designs 

based on maximization of optimality scores (D-optimality, A-optimality or L-optimality). 

5.3 A Genetic Algorithm for Optimization of Microarray Experimental Designs 

In this work Genetic Algorithms (GAs) are proposed for the optimization of cDNA microarray 

experimental designs. The method allows optimization of designs in relation to the number of slides, 

definition of hybridization pairs and dye allocation. Optimization of the number of spot replications on 

slides was not considered in this study. 

The most widely disseminated Evolutionary Computation branch, GAs derive from the seminal 

work of Holland (1975). GAs have been widely used in optimization problems where the solution space to 

be searched is too large to allow exhaustive search or the parameters are heavily constrained 

(Michalewicz & Fogel 2000). The fundamentals of GAs were presented in section 2.5 of chapter 2 and the 

reader is referred to that that section for an overview. 

5.3.1 Design Representation 

Optimization of spotted array designs can be viewed as an assignment problem with three 

optimization parameters: (1) number of arrays (slides), (2) allocation of hybridization pairs to the slides 

and (3) dye allocation for the variety pairs on the slides. 

Computationally, each candidate design - a chromosome in the GA population - is represented 

as a numeric array of index [n, m] where n=2 (block size) corresponds to each one of the channels in the 

microarray, thus defining the labeling dye of a sample. Index m is the maximum number of hybridizations 
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allowed. The experimental samples (varieties) are assigned a unique numeric identifier Sj in the array. In 

this simple manner complex designs can be easily represented with the hybridization pairs defined by 

position m and the dye colors by n, as depicted in figure 5.5. An additional dimension is added to the 

array, corresponding to the population size of the GA. 

Figure. 5.5 A GA chromosome with 5 varieties (numbered So - S4) used to represent a loop design. Dimension n is used for 
dye assignment and dimension m represents the number of arrays in the design. 

Green Channel (Cy3) - no 

Red Channel (Cy5) - n1 

Slide 

So 

rna 

To allow for variable design sizes (different number of slides) a vector is used to control the 

effective experimental size. The effective size (ES) is an integer denoted as ESE [s - I,m], where S is 

the number of samples in the study and m is the maximum allowed number of arrays. The minimum 

nil.lmber of slides is defined as s - 1 since this is the minimal criterion for connectivity. ES is an evolvable 

parameter (see below) used as a cutoff point in the design array. 

5,,3.2 Genetic Operators 

5.3.2. 1 Initial Population 

Each chromosome in the GA consists of a candidate microarray design. The initial population is 

generated by randomly assigning hybridization pairs from the sample pool to the chromosome array up to 

the maximum allowed number of slides. The first sample of the pair is assigned the green channel (no in 

fi~)ure 5.5) and the second sample is assigned to the red channel (n1 in figure 5.5). If a pair is formed by 

the same sample (self hybridization) a new pair is randomly selected until a pair of two different samples 

is formed. The effective size (ES) integer is randomly selected and assigned to the chromosome. ES 

dHfines the actual number of slides in the design. Once a chromosome has been constructed the 

objective function is called and a fitness value is assigned to it. 

5.3.2.2 Selection 

The GA uses steady-state generations and selection is elitist with tournament selection (Back et 

al. 2000a). The elitist approach ensures that the best solution is always retained in the population. 

ArrayDesigner (see 5.3.4) uses a fixed tournament of size 2; which in preliminary runs yielded a good 

balance between evolution rates while avoiding premature convergence (data not shown). The winner of 

the tournament remains in the population and the loser is replaced by its offspring. The recombination 

operator uses the tournament winner and the loser to generate an offspring which will replace the 

respective loser in the population. If recombination does not occur, offspring is a copy of the tournament 

winner. Once the offspring has been created (by recombination or by copying the tournament winner), it is 

modified by the mutation operators. 
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5.3.2.3 Recombination 

In ArrayDesigner (see 5.3.4) the recombination probability is user defined. Two recombination 

operators are used with equal probabilities: (1) one-point recombination and (2) block recombination. The 

first method randomly selects a breakpoint in the chromosome (along the slides - array dimension m). An 

offspring is generated by randomly selecting either the winner or the loser of the tournament; the selected 

parent is copied into the offspring from the beginning of the design array up to the breakpoint. The 

remainder of the offspring is built by copying the other parent from the breakpoint until the end of the 

array. In block recombination the tournament loser is copied into the offspring and, with equal probability, 

a random number of blocks (between 1 and 3) of random sizes are selected from the tournament winner 

and grafted into the offspring in the same position they held in the tournament winner. A block consists of 

a variable number of slides with the hybridization pairs and channel assignments. The effective size of the 

offspring is defined by evaluating its fitness using the ES of both parents; the ES that yields the higher 

fitness is assigned to the offspring. Figure 5.6 illustrates the two recombination operators. 

Figure 5.6 Recombination operators. A) One-point recombination - offspring is generated by copying one of the parents 
from the start of the array up to the breakpoint and copying the other parent from the breakpoint to the end of the array. B) 
Block recombination with 2 blocks - the tournament loser is copied into the offspring and blocks of variable size from the 
winner are grafted into the offspring. 

A) One-point recombination 

breakpoint 

Winner 

Loser 

Offspring •••••• t:~=::~=~~:::=j 

B) Block recombination 
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5.3.2.4 Mutation 
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oCy3 
oCy5 

There are three mutation operators: (1) sample swap, (2) dye swap and (3) effective size 

mutation. The first operator tests both channels on all slides of the chromosome and randomly swaps the 

current sample with a different one if the operator returns true. This operator ensures that the entire 

solution space is accessible for exploration. The dye swap operator tests all slides and swaps the 

channels of the hybridization pair if the operator returns true. This operator is important to explore designs 

that are evenly balanced. Both operators are depicted in figure 5.7. The last mutation operator assigns a 

random number of slides - within the range: number of samples minus one to maximum allowed number 

of slides - as the effective size of the design. The ES is only adopted if it improves the fitness of the 

chromosome. This demands two fitness function calls, one with the original ES (from recombination) and 

one with the mutated ES. Designs are very sensitive to changes in the number of slides, for this reason 

the overhead of making three additional fitness calls for each chromosome is justified. 
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Figure 5.7 Mutation operators. A) Sample swap mutation - a sample in the array (in bold) in replaced by a new sample, with 
this single change the design becomes a loop design. B) Dye Swap mutation - the dye channels of a hybridization pair are 
swapped (in bold), the change turned the unbalanced design into a balanced one. 

A) Sample swap mutation 

5.3.2.5 Repair Operator 

B) Dye swap mutation 

'-------' 

1 
oCy3 
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A last operator - a repair operator is used to avoid self-hybridization. If a sample, through 

mutation, pairs with itself, one of the channels is replaced by a different sample. Even though self­

hybridization could be penalized in the fitness function, preliminary investigations evidenced that inclusion 

of the repair operator increases the efficiency of the GA (data not shown). 

5.3.3 Fitness Function 

The fitness function is the key component in the genetiC algorithm. A microarray design has to 

take into consideration the various factors that affect the experiment. These factors are mapped to key 

optimization parameters and the optimization problem is treated as a multi-objective problem since no 

solution can simultaneously completely satisfy all criteria. 

In multicriteria problems there usually is no unique optimal solution but rather a Pareto front of 

solutions. Since objectives can conflict, improvements in one objective can degrade another one. 

Different combinations of values for the different objectives can yield the same total fitness; this implies 

that there is no unique optimal solution to the problem but rather a set of solutions with the same fitness 

(Pareto-optimal set). As an example, consider how to balance the number of slides (cost constraints) with 

the experimental questions (information constraints). With few slides the costs are low but there is not 

enough information to address the experimental questions; on the other extreme there is surplus data but 

at a very high cost. 

With multicriteria problems the method used to determine the relative importance of each 

objective is critical for the optimization algorithm. A common approach to multi-objective optimization is to 

use a weighting scheme for the different objectives (Zitzler et a/. 2000; Van Veldhuizen et a/. 2000). There 

are several approaches to the weighting scheme, these methods range from a fully self adaptive 

approach - the scheme evolves alongside the optimization algorithm, in a similar way as mutation 

parameters evolve in Evolution Strategies - to a user-defined approach where the user modifies weights 

based on personal preferences (see Kinghorn (2000) for an example). The latter approach is less 

automatic but allows a higher degree of control by the user. The weighting scheme used in this work is 

user-defined; for each optimization parameter, a weight that reflects the relative importance of the 

parameter in relation to the others is defined by the user - the range used for the weights is [0,1]. This 

approach confers greater control of the search process to the user; which is a particularly important 

aspect, given that mathematically optimal designs might be inadequate due to practical constraints. 

The basic aspect of the objective function is to evaluate the connectivity of the design. If slides 

are not connected no comparisons are possible and effectively there is no design. Before evaluating the 
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different objectives, design connectivity is tested; if the design is unconnected a very negative fitness is 

assigned to the chromosome ensuring that it will rapidly be eliminated from the population. If the 

chromosome represents a connected design, the other criteria are evaluated (no fitness value is assigned 

for connection). The criteria included in the objective function are: (1) Lower number of arrays, (2) lower 

steps for between slide comparisons, (3) higher power for specific contrasts of interest, (4) better balance 

dyes and (5) lower average variance of comparisons (A-optimality). The effective size (ES) parameter 

determines the number of slides in the first criterion. Evidently, if this criterion is used in isolation (weight 

1, and 0 for the other criteria) the algorithm will rapidly reduce the number of slides to the number of 

samples minus one, which is the lowest value of the ES range that guarantees connection. 

The second criterion uses Floyd's algorithm, to compute the shortest path between all possible 

pairs of nodes in the design. Floyd1s algorithm uses dynamic programming (see 4.2.1) to find the all-pairs 

shortest path; the method makes use of an adjacency matrix to solve the problem simultaneously in O(n3
) 

time (where n is the number of nodes in the graph). The criterion returns the sum of the shortest paths 

between all varieties. The underlying assumption is that by minimizing the overall number of steps 

between comparisons, precision is increased. 

In an experiment not all contrasts are of the same interest. The third criterion accounts for these 

experimental interests. In ArrayDesigner the user can load a contrasts file with information on the relative 

importance of the different comparisons (see 5.3.4 for a description of the contrasts file). For each variety 

a numeric value can be assigned. The criterion either maximizes or minimizes the sum of squares of the 

differences between hybridization pairs (equation 5.2). 

(5.2) 
m 

Where m represents the slides and S the contrast values of the samples spotted on channels no 

and n1. Contrasts files can be used to optimize multifactorial designs. 

The fourth objective attempts to balance the dyes on the red and green channels. The function is 

simply the number of balanced samples (samples that appear an equal number of times in each channel) 

divided by the total number of samples subtracted from one (equation 5.3, 8alS - number of balanced 

samples and TotalS - total number of samples). 

f = 1- BalS 
TotalS 

(5.3) 

The last criterion minimizes the variance searching for A-optimal designs (Kerr & Churchill 2001; 

Yang & Speed 2002); the shortest-path approach (criterion 2) is computationally more efficient than 

estimating the variance from the diagonal elements of the design matrix (X) which uses expensive matrix 

inversions (A-optimality minimizes the trace of (J2 (X' X) -I ), but it is less robust since several designs 

can have the same average number of paths while still having different average variances. A further 

consideration, particularly for A-optimality, is that the A-optimal design depends on the chosen 

parameterization. Thus a design that is A-optimal for a given parameter set may not be optimal for a 

different one. For this criterion the average variance of all possible parameterizations is computed (Yang 

& Speed 2002). The method can easily be extended to include other forms of design optimality for which 

parameterization is not a problem: D-optimal designs - minimize the determinant of (J2 (X 'X)-I - or L-
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optimal designs - minimize the trace of a 2C(X 'X)-I C' , where C is the Contrasts Matrix (Witt et al. 

~!005). 

The fitness value of the chromosomes does not map directly to the objective function. Fitness is 

rank based - the fitness of a chromosome depends on its ranking in the population: 

(5.4) 

Where Ri is the position of the chromosome based on the absolute values of criterion i ranked in 

ascending order and Wi is the relative weight of the criterion. Fitness is treated as a maximization 

problem; the best organism currently in the population gets a score between 1 and 5 (depending on the 

number of criteria selected) if the weight(s) are set at 1. 

5.3.4 ArrayDesigner - Software for Microarray Design Optimization 

The Genetic Algorithm was implemented in ArrayDesigner. The software was written in C# and 

runs under the .Net platform. The program allows setting the genetic algorithm parameters - population 

size, number of generations, mutation and recombination rates; as well as setting weights for the different 

criteria and defining the microarray parameters (figure 5.9). The software allows loading contrast files 

which can be used to define the importance of different comparisons. Optimization results are presented 

in graphic and text format (figure 5.8). 
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Figure 5.8 Screenshot of ArrayDesigner - a simple example with four samples and a fixed number of four slides. The 
optimization criteria were: balance dyes and reduce number of steps; equal weights (1.0) were used for both criteria. The 
upper pane presents result of the run, the optimized design in text format and dye balance information. The lower pane 
shows the optimized design as a graph. 

D ArrayDesigner ~~'" 

Generation: 10324 

Organism: 0 
Fitness: 2 

verage Population Fitness: 2 

Arrays: 4 Steps: 4 Contrasts: None Dyes: 0 
Cy3 3 2 0 1 
Cy5 1 3 2 0 

Dye Balance: 
Number of samples evenly balanced: 4 (0,12#3) 
Number of samples unevenly balanced: 0 
Number of unbalanced samples only in Cy3: 0 
Number of unbalanced samples only in Cy5: 0 

o 
1 ., 
o 

Average Variance: 0.8333 

I Generation: 10324 

1 
·1 
o 
o 

.:J 

The optimization results shown in the upper pane in figure 5.8 are: 

1. Generation - total number of fitness calls in the run. 

2. Organism - the best chromosome of the run, if more than one chromosome has the same 

fitness the first one is shown. 

3. Fitness - the fitness of the best chromosome. The maximum possible fitness is the number of 

criteria selected (between 1 and 5) multiplied by their respective weights. For example, if two 

criteria are selected with weights of respectively 1.0 and 0.5, the maximum fitness is 1.5. In 

figure 5.8 two criteria were selected (minimize number of steps and balance dyes) each with 

a weight of 1.0 - the maximum fitness is 2.0. Note that fitness is rank based, if during a run 

the maximum fitness is obtained it does not necessarily mean that the run has converged; it 

means that the best current solutions are aligned across criteria. 

4. Average Population Fitness - is a useful measure of the degree of convergence of a run. 

When it equals the maximum possible fitness, all chromosomes are on the Pareto front - an 

indication of convergence. 
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5. Arrays, steps, contrasts and dyes - respectively the number of arrays in the design, the 

average number of steps between samples, sum of the squares of the contrasts and ratio of 

unbalanced samples. 

6. The hybridization pairs and their respective dyes. 

7. Details of dye balances. 

8. Design matrix for the experiment. 

9. The average variance of the design. 

Figure 5.9 Screenshot of the parameter settings window in ArrayDesigner. 

5.3.4.1 Contrasts Files 
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Contrasts files are plain text files that can be loaded into ArrayDesigner to provide information 

about comparisons of interest. They consist of row(s) of numerical values that are assigned to the 

samples. The data are used to optimize a design that either maximizes or minimizes the differences 

between hybridization pairs. Contrasts files can be used in two manners: (1) explicitly set up to convey 

information about the relative importance of hybridization pairs or, more interestingly, (2) they can contain 

information about the samples without any particular consideration as to the array experiment. 

To illustrate the first case, consider a small time course experiment with five samples - one 

sample before a treatment was applied and 4 measurements at different time points - in which the main 

contrast of interest is between the untreated sample and each of the time point measurements. A 

contrasts file (maximization) that reflects this relationship would be: 

o o o o 
With 1 for the untreated sample and 0 for the time course samples. If only four slides are 

available the optimal design is a reference design using the untreated sample as reference; which is the 

optimized design generated by the GA (see example in 5.4). 
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In the second case, the file can hold information on the varieties themselves. For example, an 

experiment aims to evaluate the gene expression differences between heavy and light livestock. The 

contrasts of interest are between heavy and light animals and the file (maximization) could consist of live 

weight measurements in kilograms of the animals such as: 

250 270 382 235 395 410 

The GA tries to match up pairs that maximize the weight differences and thus the contrasts (see 

example in 5.4). The contrasts file is not limited to a single source of data; additional rows can be added 

with other relevant information, for instance, daily weight gain, body fat and eye muscle area. The 

contrasts file is an interesting feature that allows incorporation of prior experimental data/knowledge into 

the design. 

5.4 Optimization of Microarray Experimental Designs 

To illustrate the method, six simple experimental scenarios were selected. Through these test 

cases it is easy to evidence how different criteria and weights can affect the final design. The method is 

then compared to more complex optimal designs found by Kerr and Churchill (2001). 

The GA was used to construct designs for the following experimental parameters and design 

considerations: (1) time course with one main contrast of interest, five varieties (V=5) and four slides 

(A=4); (2) comparisons are of equal interest, V=5, A =5; (3) minimize number of arrays, V=4, A=10; (4) 

minimize number of steps, V=4, A=6; (5) dye balance, V=3, A=6; (6) comparisons are of different interest, 

V=6, A=6. 

The GA parameters used were the same for all runs and are shown in table 5.1. The optimization 

criteria and design parameters for each test case are summarized in table 5.2. Figure 5.10 shows the 

graphs of the evolved designs. The variance criterion is not used in these examples (weight set at 0.0), it 

is used in the comparison study further down. 

Table 5.1 GA parameters used for design optimization. Tournament size is hardcoded in ArrayDesigner. 

Parameter 

Population size 

Number of generations 

Crossover rate 

Mutation rate 

Tournament size 

Value 

100 
100000 

0.9 
0.05 

2 

Due to the stochastic nature of GAs each run can evolve a different design. If a single objective is 

targeted, designs are usually equivalent for the same fitness value. With multiple criteria there may be 

several designs with the same fitness but structurally different. Five runs were performed for each test 

case. Differences in evolved designs and main points of each example are discussed below. 
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Table 5.2 Criteria and design parameters for 6 experimental designs. In test case 3 the value for slides refers to the 
maximum possible number of slides. The values for the criteria are the weights used - a value of 0.0 means that the 
criterion was not used. 

Design Parameters Selected Criteria 

Design Varieties Slides Minimize Arrays Minimize Steps Contrasts File Balance Dyes 

1 5 4 0.0 0.0 1.0 0.5 
2 5 5 0.0 1.0 0.0 0.5 
3 4 10 1.0 0.0 0.0 0.0 
4 4 6 0.0 1.0 0.0 0.5 
5 3 6 0.0 0.0 0.0 1.0 
6 6 6 0.0 0.0 1.0 0.0 

1. Time course design - the comparisons of interest are between a hypothetical untreated 

sample and 4 samples from different time intervals. A contrasts file (1,0,0,0,0,0) with the 

relative importance of hybridization pairs was used. The evolved design is the reference 

design (figure 5.10-1) where the reference is the untreated sample, which is the optimal 

design. Label assignment varies over runs and the samples are unbalanced. Four samples 

are used only once, since balance requires samples to be used an even number of times 

they cannot be balanced. The untreated sample can be balanced (used 4 times - even) by 

including the balance dyes criterion in the run. Dye balance weight should be kept low not to 

compete with the main criterion. 

2. Comparisons of equal interest - since all contrasts are of equal importance, the main criterion 

is to minimize the number of steps between comparisons, which minimizes the total variance. 

The evolved design is a balanced (edges per sample = 2) loop design (figure 5.10-2). Loop 

designs are optimal for V=5 and A=5 (Kerr & Churchill 2001). 

3. Minimize number of arrays - without any other constraints the GA rapidly evolves a design 

with the lowest possible level of connectivity between samples (A = V -1 ). The evolved 

design is an unbalanced reference design with 3 slides (figure 5.10-3). Different runs produce 

alternative designs; either the reference sample changes or the design is linear (for example 

0-71, 1-7 2, 2-7 3). A reference design can only be obtained if the balance dyes criterion is 

not used. In the reference design all samples are unbalanced; in the linear two varieties are 

balanced, thus the design always evolves to a linear design. 

4. Minimize number of steps - similar to example 2 but with V=4 and A=6. The evolved design 

is fully connected with direct comparisons between all samples (figure 5.10-4). For these 

values of Vand A this is the design with the lowest variance (Yang & Speed 2002). 

5. Balance dyes - with V=3 and A=6, the evolved design is a fully connected dye swap (figure 

5.10-5). 

6. Comparisons of different interest - The contrasts of interest are between 6 hypothetical 

animals with high (samples 0,1,2) and low (samples 3,4,5) weights. The contrasts file is live 

weight in kilograms (200,21 0,220,300,31 0,320). The evolved design (figure 5.10-6) uses the 

extreme high and low values to hybridize with the other samples. The design is essentially 

two reference designs (the references are the extreme values) connected to each other 

through the references (dye swap). 
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Figure 5.10 Evolved designs for six example cases. 1) Time course design. 2) Comparisons of equal interest. 3) Minimize 
number of arrays. 4) Minimize number of steps. 5) Balance dye. 6) Comparisons of different interest. 
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The GA was benchmarked against optimal designs found by Kerr and Churchill (2001) through 

exhaustive search. Five designs were selected for comparison (V = 6,7,8,9,10 and A = 2 * V). The GA 

parameters were the same as used in the previous examples (table 5.1); five repeats were performed for 

each. The selected criteria were: minimize e"or variance (weight 1.0) and balance dyes (weight 0.5). 

Table 5.3 shows the average error variances for the best evolved deSigns and the benchmark designs. 

Variances were calculated as the average of the variance of all possible parameterizations, according to 

Yang and Speed (2002). Briefly, for each possible parameterization, a design matrix was constructed and 

the variance was obtained from the trace of (X'X)-l were X is the design matrix for a given 

parameterization. 

Table 5.3 Average variances for all possible parameterizations of GA evolved designs and A-optimal designs from Kerr & 
Churchill (2001). V represents the number of varieties and A the number of arrays in the design. 

Design Parameters GAa2 A-optimal a2 
V=6, A=12 0.4333 0.4333 
V=7, A=14 0.4587 0.4587 
V=8, A=16 0.4232 0.4643 
V=9,A=18 0.4207 0.4891 

V=10, A=20 0.4323 0.5 

In all instances the GA evolved designs with the same or a lower error variance than those of 

Kerr and Churchill (2001). It is interesting to note that the benchmark designs were obtained through 
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exhaustive search and it should not be possible to improve on these results. This highlights the fact that 

different optimality criteria have different optimal designs. The designs of Kerr and Churchill are L-optimal 

(as per Witt et al. 2005) but not necessarily A-optimal. More importantly than the optimality criterion 

employed, though, is that the GA can find optimal or near optimal designs without exhaustive search of 

the solution space. In practical terms the method can easily be extended to any optimality criterion. 

5.5 Conclusion and Future Work 

Design optimization is a relevant topic for microarray studies given their high costs and time 

demands. It is critical before entering the experimental stage that the design can address all the biological 

questions. Further, since experiments are getting bigger, it is computationally intractable to exhaustively 

search all possible designs to select the best; this warrants the development of algorithms that can do a 

non-exhaustive intelligent search of the promising areas of the solution space. 

In this chapter a Genetic Algorithm was presented for optimization of microarray experimental 

designs. The algorithm was implemented in the software ArrayDesigner. The method allows finding 

optimal or near optimal designs for large experiments (more than 20 samples/arrays) in a reasonable 

timeframe. Optimization is based on user defined multiple criteria, which allows exploring how different 

parameters and weights affect the experimental design. Thus, ArrayDesigner can also be used as an 

exploratory tool to investigate how, for example, a different number of slides affects the precision of the 

experiment - sometimes at a relatively small cost increase large efficiency gains can be attained. 

Genetic Algorithms maintain a clear distinction between the optimization algorithm and the criteria 

which makes them well suited to test different objective functions. In this study, five criteria were 

implemented but these can easily be extended to include other objectives or different ones. For instance, 

the A-optimality method used in ArrayDesigner can be replaced by D-optimality or L-optimality without 

any changes to the GA. 

To our knowledge this is the first time a GA is used to design microarray experiments. There is 

still a lot of work to be done in the area. Future work includes evaluating different objective functions, 

particularly optimality methods (D-optimality, E-optimalityand L-optimality); an in-depth study of how the 

weighting scheme affects the outcome of the design; and, the relationship between criteria. An important 

aspect of design that was not considered in this study is the number of replicate spots per slide and how 

to optimize them - this warrants investigation. 

Multiple criteria tend to yield several different designs that are equivalent in terms of fitness. 

ArrayDesigner will be modified to include, instead of a unique result, the Pareto set of equivalent designs. 

This should make it easier for the user to choose and compare designs. The current version of the 

program constructs the graph based on the nodes; this will be modified to build the graph(s) so as to 

minimize the number of edge overlaps in the graph, allowing easier visualization of the design. 
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6.1 Introduction 

The vast quantities of data generated through genome projects have piqued the interest in the 

development of methods for modelling biological processes (Hofestadt & Thelen 1998; Covert et al. 2001 ; 

Wiechert 2002; van Someren et al. 2002; Stelling et al. 2002) which, ultimately, are targeted at modelling 

whole-cell dynamics (Tomita et al. 1999; Tomita 2001). Microarray time-series experiments are one of the 

preferred sources of data (Schulze & Downward 2001) as they can simultaneously provide a 

measurement of thousands of gene expression levels. Several studies have used gene expression data 

to infer the underlying genetic network of the system (DeRisi et al. 1997; Voit & Radivoyevitch 2000; 

Ronen et al. 2002; see chapter 7 for inference of biochemical systems from time-series data using 

Evolutionary Computation). 

Alongside the methods, several simulation tools have been developed to aid modellers and 

experimentalists with the numerical simulation of mathematical models. Pettinen et al. (2005) give an 

overview and compare the benefits and drawbacks of the most widely used tools. In common, all these 

tools use models of differential equations to generate the simulations. 

None of these tools allow for a straightforward visualization of the dynamics of gene expression 

over time resulting from these simulations as microarray data. Since this source of data is widely used in 

systems studies it is convenient to have a tool that allows simulation studies with an emphasis on gene 

expression. In this chapter method and code for a simulation tool - SimArray - was developed to allow 

modellers to graphically build models, perform simulations and easily visualize and treat results as a 

spotted microarray experiment. 

SimArray is a pathway/modelling tool geared towards microarray experiments. An additional 

feature included in the program generates simulated time-series microarray datasets from the model with 

different user-defined noise levels. This is a secondary feature but still interesting as the simulated data 

can be useful as a first approach to compare different microarray data analysis methods (Slonim 2002; 

Pan 2002) or different analysis tools (Liu et al. 2004) using "well-behaved" data. It is important to mention 

that no attempt was made to simulate the dynamics of hybridization (Southern et al. 1999) or generate 

images, the simulations only add foreground and background noise to the deterministic equations. 

Several studies have addressed the simulation of hybridization dynamics (Bailey & Moore 1999; 

Balagurunathan et al. 2002; Wierling et al. 2002); these methods are generally more relevant to compare 

different image analysis techniques (Yang et al. 2002). 

The main design issues and functionality considerations implemented in SimArray are: 

1. An intuitive user friendly graphical user interface (GUI). 

2. A design tool that permits graphical construction of a model. 

3. Automatic conversion of graphs into systems of differential equations. 

4. Flexible design of simulations and external stimuli. 

5. Calculation of steady-states and basic stability and sensitivity analysis capability. 

6. Parameter estimation of models (model fitting). 
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7. Flexible graphic and numeric outputs. 

8. Generation of simulated microarray data. 

In summary, SimArray allows the user to graphically build and modify biochemical systems as 

directed graphs which are then converted into S-systems of differential equations (Voit 2000). These 

equations can be used in simulation studies under different user-defined stimuli. The results of these 

simulations are presented as spotted microarray experiments allowing for easy visualization of only the 

'spotted' products of the system as well as comparing how different treatments on the red and green 

channel affect the dynamics of these components. Results of simulations can be used to generate 

simulated microarray datasets. Further, steady-states and basic stability/sensitivity reports on the model 

are provided. A function for parameter estimation is available which uses Differential Evolution (Storn & 

Price 1997; see chapter 3) to fit a model to either time-series measurements or steady-state values. 

The remainder of the chapter is organized as follows. In section 6.2 directed graphs are briefly 

discussed. Section 6.3 is a general overview of S-systems. Differential Evolution was previously 

discussed in chapter 3 and the reader is referred to that chapter for details of the algorithm. Section 6.4 is 

an overview of SimArray. In section 6.5 two examples are used to illustrate modelling and parameter 

estimation in SimArray. We draw our conclusions and suggest future work extensions for SimArray in 

section 6.6. 

6.2 Directed Graphs 

Graphs are an intuitive and straightforward way of representing networks. A graph is defined as a 

tuple (N,E) where E is a set of edges (connections) between the set N of nodes (elements). A graph can 

be directed, meaning that the set of edges encompasses information about the direction of flow between 

the nodes. An undirected graph does not define the flow direction. Graphs can be extended to include 

information such as activation/inhibition and regulatory interactions (De Jong 2002). The Kyoto 

Encyclopedia of Genes and Genomics (KEGG) is a leading example of graphs applied to chemical and 

genetic networks (Kanehisa & Goto 2000; Kanehisa et al. 2002). Graphs are essentially static 

representations of a dynamic system. They are particularly important to identify connections between 

regulatory systems, redundancy, missing interactions and overall complexity, among others (De Jong 

2002). Directed graphs are static but are an important steppingstone to construct dynamic models 

(systems of differential equations, Boolean networks, among others); with this final goal there are three 

steps to construct a directed graph: define the components, define the processes and graphically arrange 

the components and processes. 

The components are a list of all the elements that affect the dynamics of the system. These are 

dependent variables, independent variables and parameters. The dependent variables are the 

components of the system whose values change over time and are affected by the system, as for 

example, metabolites. The independent variables are the components whose values do not change over 

time and are not affected by the system, such as, in some situations, enzymes. Usually dependent 

variables change their values in response to other dependent and independent variables; independent 

variables are not affected by other variables. The term independent variable is used here from a 

biochemical point of view and differs from the mathematical definition in which, in a biochemical reaction, 

time would be an independent variable. To avoid confusion time is simply referred to as time, even 

though it is an independent variable. The parameters are constant numerical values that quantify a 
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specific property of the system, for example pH or temperature. The distinction between these three 

classes is not always trivial and in different systems components can have different roles. The list of 

components is the critical step from which to build the dynamic model; the main components must be 

included but the model still should be mathematically tractable. There are no formal rules for assembling 

this list, but as a guideline the components should maximize the number of internal nodes (dependent 

variables) and minimize the number of external nodes (external variables) (Voit 2000). 

The processes are a list of all the components that affect other components. That is, for each 

dependent variable, a list of the dependent and independent variables interacting with it. More formally it 

can be defined as a set of all the edges that connect the nodes and the edges that connect to other 

edges. Further, the direction of flow of material between the nodes has to be defined as well as the flow 

modulators (nodes that connect to edges). This is also a complicated step as it demands in depth 

knowledge of the system. 

There is a vast literature available on the optimization and layout of graphs (Batista et al. 1994; 

Batista et al. 1999), even using evolutionary algorithms (Utech et al. 1998). But for most applications of 

modelling biochemical systems it simply consists of distributing the elements (nodes) of the system and 

the use of an appropriate graphical symbol to establish the links (edges) between the components and 

the direction of flow and modulators. There are several graphical symbols used to represent the different 

reaction types (figure 6.1), the terminology used is based on biochemical reactions which are more 

relevant in this context but the same principles apply to different networks. 

Figure 6.1 Graphical symbols used to represent reactions in a directed graph. A) irreversible reaction; B) reversible 
reaction; C) Independent divergence branch point; D) independent convergence branch point; E) dependent divergence 
branch point; F) dependent convergence branch point; G) co-enzyme activation; H) modulation; I) Inhibition; J) activation. 
Adapted from Voit (2000:26). 
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From a well defined directed graph (figure 6.2), a dynamic model can be constructed. There is a 

plethora of methods available (see section 2.3.1) with differential equations being the most extensively 
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used. In the next section S-systems, a form of differential equations which are used in SimArray, are 

reviewed. 

Figure 6.2 An example of a directed graph - glycolysis pathway, modified from Voit (2000:29). 
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6.3 S-Systems 

S-systems are canonical models of the Biochemical Systems Theory framework (Savageau 

1969a; Savageau 1969b) which have been widely used in modeling biochemical systems (Voit 2000). 

The S in S-systems refers to their suitability to represent synergistic and saturated phenomena which are 

important characteristics of biochemical and biological systems. S-systems are a type of power-law 

f()rmalism that uses nonlinear differential equations in which the right-hand sides of the equations consist 

of power-law functions. This formalism allows the construction of systems of differential equations 

suitable for the representation of virtually any differentiable nonlinear function (Savageau 1996; Voit 1991; 

Voit 2000). An S-system with n dependent and m independent variables consists of a production and 

degradation term and always takes the general form 

n+m n+m 

Xi = aiIT XJij - Pi IT X~ij for i = 1, 2, ... , n. (6.1) 
)=1 )=1 

Where ai and f3i respectively indicate the production and degradation rate constants for Xi 

(dependent variable) and both are ~ O. The indexes gg and hg are the production and degradation kinetic 

orders of the elements Xj (dependent and independent variables that affect the expression of Xi). The 

kinetic orders have activating effects of Xj on Xi if the values are positive and inhibitory effects if the values 

are negative (a value of zero results in Xjhaving no effect on Xi). 

6.3.1 Characteristics of S-Systems 

As with any type of model, S-systems have advantages and disadvantages. The main aspects of 

S-systems are: 

1. Straightforward translation. The translation of a directed graph into S-systems can be easily 

automatized since the equations always have the same structure. 
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2. Scalability. Even systems with many components interacting are still reasonably tractable since it 

is a simple matter of adding a new component and its kinetic order to the production or 

degradation term. 

3. Well defined parameters. In principle parameter values can be estimated from experimental 

measurements; there are no parameters that are mathematically necessary but have no 

biological meaning. 

4. Mathematical tractability. Mathematical and numerical analysis of even complex S-systems is 

possible and often simple. 

5. Difficult to parameterize. Even though all parameters relate to a biological value, numerically they 

are unrelated; thus it can be hard to find an adequate set of parameters even if biological 

measurements are available. 

To illustrate the translation of a graph into S-systems, consider the simple linear pathway in figure 

6.3. There are three dependent variables (C1, C2 and C3) and one independent variable (C4); thus there 

will be three equations in the system (one for each independent variable) It is convenient to change the 

names of variables (fig. 6.3A) to an indexed notation listing initially the dependent variables followed by 

the independent variables (fig 6.38). Table 6.1 evidences the importance of the indexed notation (Voit 

2000). 

Figure 6.3 A simple linear pathway. A) graph with names of variables. B) graph with indexed notation; dependent variables 
are listed first and then the independent variables. 

A) Independent variable ~ dependent variable A ----+ dependent variable B ..... + dependent variable C- -. 

Each equation consists of a production and a degradation term with respectively 0 and 13 rate 

constants, all the variables that affect production and degradation of the component and their respective 

kinetic orders. The graphic symbols (fig. 6.1 determine the direction of flow of material and define which 

components affect the production or degradation of the dependent variables). With this information it is 

simple to construct table 6.1. 

Table 6.1 Table of production and degradation constants, variables and kinetic orders for pathway of figure 6.3B. 

S-system production degradation 
equation constant variables kinetic orders constant variables kinetic orders 

C1 a1 C4 914 ~1 C1 h11 

C2 a2 C1 921 ~2 C2 h22 

C3 a3 C2 932 ~3 C3 h33 

For each equation there is a single production (0) and degradation constant (13). The number of 

variables depends on the number of components affecting the production or degradation of the 

considered element. The indexes of the kinetic orders can easily be obtained from the index of 0 or 13 and 

their respective variables. So, the procedure to translate a graph into S-systems is, for each independent 

variable (Cj), to include a rate constant OJ and all the variables that contribute to the production of Cj raised 

to a power (kinetic order) minus the l3-term that is constructed in the same manner. The S-system of 

equations for the linear pathway is: 
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(6.2) 

Note that each of these has just one production and one degradation term, as each of C1 - C4 

have one arrow in and one arrow out. Even if the numeric values are unknown the equations themselves 

can still be formulated. This is clearly advantageous for automation of equation formulation from a 

directed graph. For an in-depth overview of construction of equations from graphs see Voit (2000:76-94). 

Another property of S-systems which falls under scalability (item 2 above) is the telescopic 

property (Voit 2000:57). If a single variable of a higher level system represents an entire lower level 

system this variable can be substituted by the lower level system and still preserve the structure. To 

illustrate this property, with a linear model, if a variable is replaced by a lower level system with non-linear 

terms the structure usually breaks down. This is an important property for system studies as phenomena 

can be studied at different levels of resolution and higher level models can be easily connected to lower 

level models. 

Steady-states are relevant for biological studies since most systems operate close to them. One 

of the main advantages of S-systems is the ease with which steady-states and other aspects of the 

system at or close to a steady-state can be analyzed. Algebraically, the set of steady-states can be found 

by equaling the left-hand side to zero (Voit 2000:193-217) 

n+m n+m 

O=a·IJX~ij -f3·IJX~lij 
I .I I .I 

(6.3) 
j=1 j=1 

Since the inputs and outputs are balanced 

n+m n+m 

a·IJX gij = fJ·TIX hij 
I .I I .I 

(6.4) 
j=1 j=1 

Assuming that none of the rate constants and variables in 6.4 is zero the logarithm of both sides 

can be taken to obtain 

n+1lI f1+111 

In a + ~ f! .. In X . = In fJ· + ~ h.. In X . 
I ~"1/ J I ~ 1/ .I 

(6.5) 
j=1 j=1 

Defining Yi=ln Xi and moving all terms with Yito the left-hand side and the other terms to the right­

hand side yields 

n+m n+11l 

"g .. y. - "h .. )" = InfJ· -Ina. ~ 1/1 ~If I I I 
(6.6) 

j=1 j=1 

Renaming aij=gij-hij and bplnf3r lnaj for all i and all jan s-system with n dependent variables and m 

independent variables has a steady state defined by a system of linear equations of the form 

allYl +a12 Y2 + ••• +alnYn +aln+IYn+1 + ••• +aln+I1lYn+11l =bl 

a 21 YI +a22 Y2 + ••. +a2n Y n +a2n+IY n+1 + ••• +a2n+mYn+11l =b2 

a 31 YI +a32 Y2 + ••• +a3n Y n +a3n+IY n+1 + ••• +a3n+mYn+m =b3 (6.7) 

Or, in matrix notation 
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~ ~ 

A.y=b (6.8) 

~ 

Where the matrix A are the coefficients aij=gq-hij and y is a row vector of the n+m components 

~ 

and b is a row vector with the solution coefficients bi=ln(~i/ai). Rearranging equation 6.7 the dependent 

variables can be separated from the independent variables such that 

~ ~ ~ 

AD.YD = b- A/.y/ (6.9) 

Where D refers to the dependent variables and I refers to the independent variables. From 6.9 

with matrix inversion the solution can be expressed as 

~ ~ ~ 

YD = A;l b-A;IA/ y/ (6.10) 

Regular S-systems have a definite unique solution with non-zero rate constants and a non-zero 

determinant (det A:t.O). If the determinant of A vanishes the S-system is irregular and there may be no 

solution or infinitely many. Irregular systems are of limited interest for modeling biological systems (Voit 

2000). For regular systems the local stability and oscillatory behavior can be characterized from the 

evaluation of the eigenvalues of the linear systems. If all real parts are negative the steady-states of the 

system are locally stable. The numerical value of the real part refers to the relative time scale of the 

process. Small values relate to slow processes while high values refer to fast processes. A non-zero 

imaginary part of the eigenvalue is an indicator that the system will probably exhibit oscillations. From 

these simple concepts more in-depth analyses can be carried out; for example measurement of the 

robustness of biochemical systems (Chen et al. 2005). 

S-systems are known to be difficult to parameterize with various different approaches having 

been devised (Voit 2000:143-192). Sands and Voit (1996) use the difference between the two flux flows 

(0 and ~-terms) to estimate parameters. Here we shall limit the discussion to parameterization from 

steady-states and dynamic data. The rigid structure of the equations makes them well-suited for 

parameterization through Evolutionary Computation. Tominaga and Okamoto (1999) used genetic 

algorithms for parameter estimation. Hybrid Differential Evolution in conjunction with local search is used 

by Tsai and Wang (2005) to parameterize systems to fit time-course data. Kimura et al. (2005) proposed 

using a method based on the problem decomposition strategy and a cooperative co-evolutionary 

algorithm to infer S-systems models of large-scale genetic networks. 

S-systems have been used in several interesting studies. Vera et al. (2003) use a linear 

programming approach to simultaneously optimize various metabolic responses of biochemical pathways. 

Within inference of regulatory networks from gene expression data, the work of Thomas et al. (2004) and 

Kimura et al. (2005) are good examples. GeneNetwork is a tool for reverse engineering network 

architecture from time-series data as a Boolean network, a linear model, an S-system or a Bayesian 

network (Wu et al. 2004). 

6.4 SimArray 

SimArray was written using Microsoft's C#.Net and was designed to allow modelling of genetic 

and biochemical networks as S-systems of differential equations. Models are graphically constructed as 

directed graphs which are then converted into the S-systems. The program provides support for 
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simulations under different user-defined stimuli and for calculation of steady-states and stability/sensitivity 

analyses. A Differential Evolution algorithm is included for parameter estimation from either steady-state 

or time-course data. Results of simulations can be used to generate simulated microarray datasets. The 

GUI is geared towards microarrays but virtually any S-system model can be constructed. The main 

features of the program are: 

1. Graphical design of biological pathways. 

2. Dynamic modelling with user-defined stimuli. 

3. Calculation of steady-states and basic stability/sensitivity analysis. 

4. Parameter estimation from steady-states values or time-course data. 

5. Simulation of gene expression data. 

Each of these features is discussed with some detail in the following sections. 

6.4.1 Graphical Design of Networks 

The graphic design tool of SimArray allows for easy 'point-and-click' drawing of two-dimensional 

networks. Figure 6.4 is a screenshot of SimArray with a simple feedback pathway (Voit 2000). There are 

four different node representations and six different flow/modulation arrows (fig. 6.1). Colours of nodes 

and edges are user-defined. 
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Figure 6.4 Screenshot of SimArray with a simple feedback pathway. On the left-hand side is graphic toolbar with a pointer 
to select and modify the layout of nodes, four node representations, six flow and modulator arrows and zoom tools. The 
node and edge editor on the left-hand side allows provides graph editing capabilities. The parameter editor on the right­
hand side provides editing capabilities of initial values, variable settings, rate constants and kinetic orders. 
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The workflow to construct a pathway and its respective S-systems is as follows: select from the 

graphic toolbar (fig. 6.4, left-hand side) a node representation (square, triangle, diamond or circle) and 

add as many nodes as desired by clicking on the work canvas. A popup screen allows defining the name 

of the node, initial value, if it is a dependent or independent variable and if it is spotted on the microarray. 

Select a flow arrow or modulator and click on the nodes in the canvas to define a new edge. Use the 

parameter editor (6.4, right-hand side) to define the values of a and ~ constants for each dependent 

variable. Use the popup kinetic order editor to specify the values of each component affecting the a and 

j3-terms of the dependant variables. These components are automatically defined from the edges. All 

nodes, edges, settings and graph layout can be modified using the editing tools and editing panes. The S­

systems equations are automatically constructed from the graph. To view the equations click on the menu 

item Analysis (fig. 6.4), sub item Equations (fig. 6.5). 
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Figure 6.5 S-systems equations for the simple feedback pathway. 
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Simulations are one of the most important aspects of a modelling tool. SimArray is very flexible in 

setting up and visualization of simulations. Once a pathway and the numerical parameters of the S­

system have been defined several simulation studies can be performed. The steps to set up a simulation 

involve definition of the time and report intervals; the numerical method (Euler or 4th order Runge-Kutta) 

and the step interval. Currently only fixed step-size methods are available, this is important for the 

Differential Evolution (Cao et al. 2000; chapter 7) but is not necessary for the numerical simulations. A 

future version will include a modified Taylor method. The next step is to define the stimuli to the system. 

Any component - dependent or independent variable - of the system can be used as a stimulus. Stimuli 

are set by defining the component, the intensity (concentration) and the time points of the stimuli. Any 

number of components, time intervals and different concentrations can be used. Results of simulations 

are by default shown as spotted arrays with a red and green channel (fig. 6.6). When setting up a 

stimulus the channel to which it applies must be defined. Thus, different types of stimuli can be defined 

for each channel. Results of simulations can be viewed graphically or numerically. Several options are 

available for selecting which components are displayed, including visualization of single channels (red or 

green) or both channels together. Plots can be exported as bitmap files and numeric results as plain text 

files. 

Figure 6.6 illustrates the results of a simulation using the simple feedback pathway from figures 

6.4 and 6.5. This pathway consists of five nodes with three independent variables (X3, X4 and X5 in fig. 

6.5; shown in red in fig. 6.4) and two dependent variables (X1 and X2 in fig. 6.5; shown in black in fig. 

6.4). The latter were defined as being spotted on the array. The initial values of all components, the a and 

(3 constants of the independent variables X1 and X2 and the S-systems equations of the pathway can be 

seen in figure 6.5. The simulation was run over a ten minute interval, starting at time zero using the Euler 

method with a step of 0.001. The report interval was 0.1. In the red channel two bolus of 0.2 of X1 at one 
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and five minutes were added. No stimuli were applied to the green channel. The effect of the stimuli on 

the dynamics of the system can be easily compared to the model without stimuli using the two channel 

plot. 

Figure 6.6 Red and green channel plot for the feedback pathway. The simulation was run over a 10 minute interval, solved 
using Euler with a 0.001 step size. Two bolus of 0.2 of Xl were added at one and five minutes on the red channel. 
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6.4.3 Steady-States and Stability/Sensitivity Analyses 

10 

Some basic analysis capabilities are included in SimArray. More extensive analyses can be 

performed externally using the text file numeric results of simulations. Figure 6.7 shows the Steady State 

and Stability/Sensitivity window for the feedback pathway. A summary of the S-system is shown in the 

upper pane - if the system is regular or irregular; locally stable or unstable and its oscillatory behaviour. 

For each dependent node the values of the steady-state, material flow, first-order values and the values 

of the real and imaginary parts of the eigenvalues are given. How to calculate the steady-states of S­

systems was discussed in 6.3.1. To solve the matrixes LU decomposition with partial pivoting is 

employed. The results are further refined with an iteration method (Stewart 1998). 

The material flow is the quantity of material that is flowing through each dependent variable in the 

steady-state. Since in the steady state the a-term equals the ~-term; either can be used to calculate the 

flow of material. The apparent first-order rate constants (first-order values in fig. 6.7) are defined as the 

relative fluxes in the steady-state. That is, material flow divided by the steady-state value. First-order 

values provide information on the turnover time of products in the dependent variables. Small values 

indicate long turnover times and bigger values longer turnover times. The importance of eigenvalues was 

discussed in 6.3.1. To determine the eigenvalues SimArray uses a modified QR algorithm (Stewart 1998) 

adapted from the Math.NET open source library (http://nmath.sourceforge.net). 
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Figure 6.7 Steady State and Stability/Sensitivity window for the feedback pathway (steady-states view). The steady-states 
of all dependent variables are shown. The material flow is the same for X1 and X2 following from the precursor-product 
relationship. The turnover time of X1 is over four times the turnover time of X2 (first-order values). The system is locally 
stable since the real parts of all the eigenvalues are negative. Non-zero imaginary parts of eigenvalues indicate possibility 
of oscillations. 

0.2871745887 .. . 0.5743491774 .. . 
1.3195079107 .. . 0.5743491774 .. . 

2 
0.4352752816 ... 

0.9730864461 .. . 
-0.9730864461 .. . 

Besides the steady-states and the stability information, three types of sensitivities are available: 

the log-gain of the steady-states of the dependent variables in relation to a change in the independent 

variables and the sensitivities of the steady-states of the dependent variables in relation to changes in the 

rate constants and the kinetic orders. Figure 6.8 shows the sensitivity values window for the feedback 

pathway. All sensitivities are shown in relation to the steady-state and under the assumption of 

independence, which is the most important scenario. Sensitivities, in theory, only apply to very small 

changes but in practice they generally hold true for larger changes (this depends on the non-linearity of 

the system). They can be interpreted as the percentage of change in a dependent variable in relation to a 

one percent change to an independent variable, a rate constant or a kinetic order. 
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Figure 6.8 Steady State and Stability/Sensitivity window for the feedback pathway (sensitivities view). The sensitivities of 
the dependent variables in relation to changes in the independent variables, rate constants and kinetic orders are shown. 
Sensitivities can be seen as a measurement of the percentage of change in a dependent variable that is caused by a 1 % 
change to the independent variables and the parameters of the system. 
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The logarithmic gain (log gain) of a dependent variable in relation to an independent variable is 

given as the partial derivative in equation 6.11 and describes the logarithmic change in the dependent 

variable Xi caused by the logarithmic change in the independent variable ~. 

dX. 
L(X.,X.)=-I 

I .I dX . 
.I 

(6.11 ) 

Exploiting matrix algebra, all gains can easily be computed using equation 6.12, where the 

indexes 0 and I refer to the dependent and independent variables. For an in-depth discussion see 

Savageau (1969b). 

L(X D' X I) = -A~I AI (6.12) 

Sensitivities in relation to changes in the rate constants can also be inferred from the partial 

derivatives defined in relation to a (6.13) and ~ (6.14) as: 

dInX i S(X.,a.)=-~ 
I .I dIna . 

.I 

The matrix of sensitivities S(X,J3) can be obtained from the relation (Savageau 1996): 

SeX D,fJ) = A;' 

(6.13) 

(6.14) 

(6.15) 
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And since 

SeX ,a) = -sex ,/3) (6.16) 

The matrix S(X,a) is easily obtained as the negative of the S(X,{3) sensitivities. 

The sensitivities in relation to the kinetic orders S(Xk,gij) and S(Xk,hij) are again obtained through 

the calculation of partial derivatives (eqs. 6.17 and 6.18). 

dInX k S(Xk,gij) = (6.17) 
dIngu 

dInX k S(Xk,h.·) = (6.18) 
U d In h., 

U 

6.4.4 Parameter Estimation using Differential Evolution 

Rate constants (0 and ~) and kinetic orders of the S-systems models can be estimated using 

Differential Evolution - DE (Storn & Price 1997; see chapter 3). To set up a DE run the user must specify 

the DE parameters: population size, number of generations, crossover and mutation rates, as well as 

which source of information is to be used to fit the model; either the initial values defined in the model or a 

time-series data file with measurements of the concentration of the dependent variables. The next step is 

to define which dependent variables (equations) are to be parameterized. Any combination of variables 

can be selected, the remaining variables are assumed to be correctly parameterized. This allows, for 

example, that only variables with time-course gene expression data are selected for parameterization. 

Which parameters of the S-systems will be estimated can be defined (0, ~, production and degradation 

kinetic orders). This allows, for instance, estimation of only the rate constants of the selected variables 

using predefined kinetic orders. The search space can be constrained with individual upper and lower 

bounds for each rate constant and kinetic order. 

If the data source selected is the initial values it is assumed that these are the steady-states of 

the components. Of course, if the initial values do not represent a steady state, the prevailing unstable 

state will still be targeted by the DE algorithm. The optimization algorithm builds the linear equations from 

the S-systems and searches for a parameter set that fits to these initial values. The fitness function is a 

simple sum of squares of errors (SSE) between the predicted steady-states (Xi) and the observed (Yi) 

steady-states (eq. 6.19). To use this approach it is important to have a reasonable estimate of the range 

of possible values for the parameters to set up constraints. Since there is a single data value for each 

variable and several parameters the DE can easily find a parameter set that is a perfect fit to the steady­

state but these frequently are biologically unrealistic. This is not a robust approach, but nevertheless 

important since steady-state measurements of components are readily available which is seldom the 

case for time-series data. It can be used to obtain a 'first-try' parameterization that can be further 

evaluated by the modeller. 

(6.19) 

The second approach using time-course data is robust. The DE numerically solves the S-systems 

and optimizes a parameter set that fits the data for the selected variables. The fitness function used is 
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~nL;(Xij- yJ
2 

~n~m 2 
f =-1 *(~i u + ~i~j(COV(Xi'X)-cov(yi'Y») ) 

r(xi'Yi) 
if(r > 0) 

(6.20) 

elseif(r:::; 0) f = -1 *(L~L;(xu - YU)2 * 2+ L~L;(cOV(Xi'X.i )-COV(Yi' Yj))2) 

Where r is the correlation between the predicted and observed datasets for each dependent 

variable and cov is the covariance matrix. This function rewards both good correlation between predicted 

and observed values, and low sums of squared deviations; the importance of the latter increases for 

lower correlations. If the correlation for a given set is zero or negative, fitness is penalized by doubling the 

value of the SSE for that set. An example of parameterization is shown in section 6.5.1. 

6.4.5 Simulation of Gene Expression Data 

Simulated time-course microarray datasets can be generated from the results of model 

simulations. Output consists of a text file for each selected time point, with the concentration values in 

each channel of the dependent variables marked 'as spotted on array' and user-defined foreground and 

background noise. Parameter settings include the total time interval of the simulation from which to 

sample data and the interval between sampling. The number of 'slides' is automatically defined from 

these two parameters. Noise is an important component in microarray studies. SimArray allows three 

options: no noise, random noise and Gaussian noise. Noise can be applied to the foreground ('spots'), 

background or both. Further parameters include minimum and maximum levels of noise and its standard 

deviation. 

6.5 An Example of Model Building and Parameter Estimation Using SimArray 

To illustrate the capabilities of SimArray, the fermentation pathway to produce ethanol in yeast 

(Saccharomyces cere visa e) is presented. This is an interesting model since the pathway has been 

broadly studied and has well known metabolites and kinetic processes as well as being important for 

industrial purposes. More importantly, an extensive discussion of modelling the pathway using S-systems 

and a full parameter set were presented by Voit (2000:260-290) and implemented in the software Power 

Law Analysis and Simulations (PLAS) written by Ferreira (http://www.dqb.fc.ul.pt/docentes/aferreiral 

plasdownm.html), which makes it ideal for testing purposes. 

Briefly, the pathway describes the production of ethanol, glycerol, glycogen and trehalose from 

glucose. The graph for the model of yeast fermentation in SimArray is depicted in figure 6.9. For an in 

depth discussion of the components of the model and its limitations see Voit (2000:260-262). 
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Figure 6.9 Snapshot of directed graph in SimArray of the fermentation pathway of Saccharomyces cerevisae adapted from 
Voit (2000:261). 
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The model consists of five dependent variables (table 6.2) and nine independent variables (table 

6.3). The a and 13 rate constants for each of the dependent variables is presented in table 6.2. 

Table 6.2 Dependent variables in the fermentation pathway of Saccharomyces cerevisae. 

dependent variables acronym steady-state conc. (mM) a rate 

internal glucose GIN 0.0345 0.8122 

gl ucose-6-phosphate G6P 1.011 2.8632 

fructose-1 ,6-diphosphate F1,6DP 9.144 0.5239 

phosphoenolpyruvate PEP 0.0095 0.022 

adenosine triphosphate ATP 1.1278 0.0913 

Table 6.3 Independent variables in the 'fermentation pathway of Saccharomyces cerevisae. 

independent variable 

glucose uptake 

hexokinase 

phosphofructokinase 

glyceraldehyde-3-phosphate dehydrogenase 

pyruvate kinase 

polysaccharide production (glycogen+trehalose) 

glycerol production 

ATPase 

NAD+/NADH ratio 

acronym 

gu 

hk 

pfk 

g3pd 

pk 

pp 

gp 

atpase 

nad-hratio 

value 

19.7 mM min·1 

68.5 mM min-1 

31.7 mM min-1 

49.9 mM min-1 

3440 mM min-1 

14.31 mM min-1 

203mMmin-1 

25.1 mM min-1 

0.042 

~ rate 

2.8632 

0.5239 

0.0148 

0.0945 

3.2097 

91 



Chapter 6 - SimArray, Software for Modelling Genetic and Biochemical Networks 

The S-systems equations built from the directed graph and the kinetic orders of the components 

involved in the production and degradation terms are shown in figure 6.10. All parameters are from Voit 

(2000:278). 

Figure 6.10 S-systems equations of the dependent variables in the fermentation pathway of Saccharomyces cerevisae. 

E quat ions: 
GIN = 0.8122*guAl*G6PA-0.2344 - 2.8632*GINAO.7464*ATP AO.0243*hkAl 

Fl~6DP = 0.5232*G6p AO.7318*ATp A-0.3941*pfk Al*pp AO -
O.0148*Fl~6DPAO.584*ATPAO.119*g3pdAO.944*gpAO.056*nad-hratioA-0.575*PEPAO.03 

PEP = 0.022*Fl~6DPAO.6159*ATPAO.1308*g3pdAl*gpAO*nad-hratioA-0.6088*PEpA O -
O.0945*PEPAO.533*Fl~6DPAO.05*ATPA-0.0822*pkAl 

ATP = 0.0913*Fl~6DPAO.333*PEPAO.266*g3pdAO.5*pkAO.5*nad-hratiOA-O. 304*ATp A O. 024 -
3. 2097*ATp AO. 372*ppAO.0002*atpaseAO. 47*pfk AO. 265*hkAO. 2 65*GINA O.198*G6P A O.196 

Numeric results for the steady-states, stability and sensitivity values are the same as those 

obtained from PLAS with the exception of small variations in the sensitivities of the independent variables 

to changes in the kinetic orders. The partial derivatives (eqs. 6.17 and 6.18) used in PLAS yield 

approximate values; in SimArray the actual changes are calculated which are more precise but 

computationally expensive. Table 6.4 shows the values for the steady-states, material flow, first-order 

values, eigenvalues and the different sensitivities for the five independent variables of the yeast 

fermentation model. 

Table 6.4 Steady-states and Stability/Sensitivity values for the independent variables of the Saccharomyces cerevisae 
model. 

First-Order Eigenvalues Eigenvalues 
Independent Nodes Steady State Material Flow Values (Re) (1m) 

GIN 0.034520909 15.94800181 461.9809357 -1686.945634 0 

G6P 1.014076087 15.94800181 15.72663237 -341.2459191 0 

F1,60P 9.182334902 15.93845039 1.735773151 -13.5883652 7.847460784 

PEP 0.009551363 30.12879505 3154.397462 -13.5883652 -7.847460784 

ATP 1 .135328009 60.39711225 53.19794085 -1 .833784267 0 

Variables Sensitivities GIN G6P F1,6DP PEP ATP 

gu 0.9070656 1.3074685 0.9748421 1.3062934 0.6788323 

hk -1.339848874 0.000214771 -0.000195396 3.81 E-06 0.000528486 

pfk 0.286894854 -0.937332275 0.314441722 0.425490972 0.229315079 

g3pd 0.000161255 -0.000409076 -1 .623858284 0.151677633 -0.00100655 

pk -0.0177137 0.04494245 0.05051785 -1.7783473 0.1105766 

pp 0.000576826 -0.001673141 -0.000642255 -0.00131272 -0.001578535 

gp 0.017334845 -0.043981174 -0.050929066 -0.097316733 -0.10821155 

atpase 0.145591148 -0.369387241 0.335966293 -0.006491828 -0.908842572 

nad-hratio -0.000312716 0.000793377 0.988585281 -0.09182699 0.001952063 

alpha (GIN) 0.9070656 1.3074685 0.9748421 1.3062934 0.6788323 

beta (GIN) -0.9070656 -1.3074685 -0.9748421 -1.3062934 -0.6788323 

alpha (G6P) -0.5148719 1.5159548 0.7852189 1.3099575 1.1917933 

beta (G6P) 0.5148719 -1.5159548 -0.7852189 -1.3099575 -1.1917933 

alpha (F1 ,60P) -0.3095508 0.7853781 0.9094476 1.7377988 1.9323491' 

beta (F1 ,60P) 0.3095508 -0.7853781 -0.9094476 -1.7377988 -1.9323491 

92 



Chapter 6 - SimArray, Software for Modelling Genetic and Biochemical Networks 

alpha (PEP) -0.1371705 0.3480227 -0.4079288 1.7852535 0.8562772 

beta (PEP) 0.1371705 -0.3480227 0.4079288 -1.7852535 -0.8562772 

alpha (ATP) -0.3097684 0.7859303 -0.7148219 0.0138124 1.9337076 
beta (ATP) 0.3097684 -0.7859303 0.7148219 -0.0138124 -1.9337076 

gu - Prod. (GIN) 2.740495959 3.973996568 2.94825773 3.970355125 2.04394856 
G6P - Prod. (GIN) -0.002962812 -0.004270648 -0.003184191 -0.00426681 -0.002217326 

GIN - Oeg. (GIN) 2.289514426 3.316773102 2.462678238 3.313743439 1.70854445 

ATP - Oeg. (GIN) -0.002797067 -0.004031741 -0.003006062 -0.004028118 -0.002093284 

hk - Oeg. (GIN) -3.761447498 -5.376518179 -4.036756959 -5.371818427 -2.828537539 

GIN - Prod. (G6P) 1.297014955 -3.723210337 -1.946142066 -3.225533247 -2.938895467 

ATP - Prod. (G6P) -0.001588413 0.004676964 0.002422499 0.004041416 0.003676855 

hk - Prod. (G6P) -2.152767822 6.617437234 3.374682593 5.69313172 5.166552623 

G6P - Oeg. (G6P) 0.00523153 -0.015401783 -0.007977956 -0.013309033 -0.01210857 

ATP - Oeg. (G6P) -0.025865382 0.076195185 0.039459564 0.065837906 0.059897247 

pfk - Oeg. (G6P) 1.793677337 -5.099745834 -2.674826688 -4.422333133 -4.031575466 

pp - Oeg. (G6P) 0.001370062 -0.004033812 -0.002089413 -0.003485682 -0.003171262 

G6P - Prod. (F1,60P) -0.003184665 0.008080442 0.009357004 0.017880395 0.019882343 

ATP - Prod. (F1,60P) 0.015367828 -0.038979955 -0.045136394 -0.086230197 -0.095879223 

pfk - Prod. (F1,60P) -1.064202454 2.751694122 3.193263627 6.190432642 6.906892366 

pp - Prod. (F1,60P) 0 0 0 0 0 

F1 ,60P - Oeg. (F1,60P) 0.399513256 -1.006507808 -1 .164580879 -2.21350839 -2.458245535 

ATP - Oeg. (F1,60P) 0.004664736 -0.011834178 -0.013703545 -0.026183496 -0.029114368 

g3pd - Oeg. (F1,60P) 1.149122782 -2.857263265 -3.301109378 -6.21293078 -6.884000345 

gp - Oe9. (F1,60P) 0.092146029 -0.23340822 -0.270230841 -0.51572938 -0.573300581 
nad-hratio - Oeg. 

(F1,60P) 0.565843846 -1.42138818 -1.644075552 -3.118013676 -3.46097404 

PEP - Oeg. (F1,60P) -0.043160463 0.109588395 0.126911518 0.242646356 0.269847755 

F1 ,60P - Prod. (PEP) -0.186679358 0.475202489 -0.554140058 2.461685839 1 .173251 082 

ATP - Prod. (PEP) -0.002279742 0.005784291 -0.006779531 0.029675245 0.014232306 

g3pd - Prod. (PEP) -0.534903788 1.370076792 -1 .58235722 7.229776338 3.404740156 

gp - Prod. (PEP) 0 0 0 0 0 
nad-hratio - Prod. (PEP) -0.264381839 0.673926514 -0.784190475 3.505489888 1.666301056 

PEP - Prod. (PEP) 0 0 0 0 0 

PEP - Oeg. (PEP) -0.336276669 0.858285869 -0.99673156 4.481481524 2.124983902 

F1 ,60P - Oeg. (PEP) 0.01521154 -0.038583642 0.045244107 -0.197765048 -0.094904683 

ATP - Oeg. (PEP) -0.001432091 0.003633529 -0.00425881 0.018640327 0.008940194 

pk - Oeg. (PEP) 1.123272309 -2.794245947 3.37764635 -13.53039698 -6.735308765 

F1 ,60P - Prod. (ATP) -0.227915716 0.580596265 -0.525154985 0.010174761 1 .434564162 

PEP - Prod. (ATP) 0.383990277 -0.967664544 0.888321753 -0.01708768 -2.364049883 

g3pd - Prod. (ATP) -0.60377044 1.548366774 -1.387764781 0.027007063 3.852785486 

pk - Prod. (ATP) -1 .253336707 3.251754785 -2.868531802 0.056254631 8.191551629 

nad-hratio - Prod. (ATP) -0.298080548 0.760281303 -0.686510828 0.013311994 1 .880997675 

ATP - Prod. (ATP) -0.000944025 0.002395177 -0.002178419 4.21 E-05 0.005893211 

ATP - Oeg. (ATP) 0.014522263 -0.036835759 0.033514768 -0.000647491 -0.090606551 

pp - Oeg. (ATP) 0.000164856 -0.000418265 0.000380423 -7.35E-06 -0.001029098 

atpase - Oe9. (ATP) 0.470323618 -1 .183427937 1.088658141 -0.020920138 -2.886597719 
pfk - Oeg. (ATP) 0.284127179 -0.717267585 0.656870443 -0.012650321 -1.755536723 

hk - Oeg. (ATP) 0.347577646 -0.876465523 0.803893812 -0.015470241 -2.142678395 

GIN - Oeg. (ATP) -0.206375856 0.525524485 -0.47559067 0.009212127 1 .297969409 

G6P - Oe9. (ATP) 0.000847363 -0.002149859 0.001955387 -3.78E-05 -0.005289444 

6.5.1 Parameter Estimation for the Fermentation Pathway in Saccharomyces cerevisae 

The yeast model was used to test the two available methods for model parameterization with DE. 

For the first approach only the steady-states are used to fit the model (see section 6.4.4). The run 

parameters were: 1,000,000 fitness calls, population size of 10; mutation rate of 0.4 and recombination 

rate of 0.5. Over ten repeats the best fitness was -1.33e-4 (average fitness -3.81ge-4
). In all runs the 

evolved parameters provided a very close fit to the numerical steady-states. But, as previously 

mentioned, this is not a robust approach and the evolved parameters do not reflect the original 
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parameters of the model nor are guaranteed to be stable. Nevertheless, all the kinetic orders had the 

appropriate signs (plus/minus) and considering the parameter set of the best fitness run the kinetic orders 

were all within a (-1, 1) range and the highest rate constant was 0.6198 which is well within the usual 

parameters in S-systems (Voit 2000). 

This approach is useful for an initial model parameterization if only steady-state data is available. 

Its efficiency improves if instead of full model parameterization a subset of the model is selected for 

parameterization. Over two trials of five runs with the same parameters and the DE optimizing a rate 

constants in the first trial and 13 rate constants in the second trial, the best fitness for a was -4.02e-5 and -

1.01 e-4 for 13 with the evolved rate constants closer to the original rates. Table 6.5 shows the best evolved 

values for a in the first trial and for 13 in the second trial. 

Table 6.5 Optimization of rate constants using steady-states in the yeast model. 

dependent variables original a rate predicted a rate original J3 rate predicted J3 rate 
internal glucose 0.8122 0.8115 2.8632 3.0653 

glucose-6-phosphate 2.8632 2.8774 0.5239 0.4897 
fructose-1 ,6-diphosphate 0.5239 0.5280 0.0148 0.0180 

phosphoenolpyruvate 0.022 0.0274 0.0945 0.0955 

adenosine triphosphate 0.0913 0.0817 3.2097 3.1823 

Alternatively, a subset of the equations can be selected for parameterization. Over five runs with 

the same parameters and the DE optimizing only the equation for internal glucose (equation 1 in figure 

6.10) the evolved parameters of the fitted equation are reasonably close to the original parameters (table 

6.6) with a fitness of -1.28e-12
• The best fitness of the five runs was -1.62e-17 but the evolved parameter 

set was significantly different from the original values. This is an important consideration and once again 

a reminder that there is not enough information in steady-state data for a truly reliable parameterization. 

On the other hand, this approach is computationally inexpensive with runs taking under ten minutes on a 

desktop PC. 

Table 6.6 Optimization of rate constants and kinetic orders for internal glucose using steady-states for model fitting in the 
yeast pathway. 

internal glucose original value eredicted value 
rate constants 

alpha 0.8122 0.8122 
beta 2.8632 2.8445 

kinetic orders 
gu 0.9998 

G6P -0.2344 -0.9998 
GIN 0.7464 0.7622 
ATP 0.0243 0.0199 
hk 0.9998 

The second parameterization method evolves a parameter set to fit time-course data. The yeast 

model was used to generate a simulated dataset over a three hour period and sampled at approximately 

every fifteen minutes which was used as the source of data for the DE. The initial values for all dependent 

variables were set at 10. At three hours the model is very close to its steady-state. This approach is 

computationally expensive and runs can extend for over forty hours. The run parameters were: 1,000,000 

fitness calls, population size of 10; mutation rate of 0.4 and recombination rate of 0.5. Over five repeats 
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the best fitness was -332.0350 (average fitness -446.6883). Figure 6.11 shows the fit of the best evolved 

parameters in relation to the original model over three hours. 

Figure 6.11 Fit of the best evolved parameters in relation to the original parameters in the yeast model. 

25r---------~,--------r-,--------~,--------~,--------~--------~ 

5 

! 
o ~- .. -
o 

ATP 

0.5 1.5 
time [h1 

2 

1

- simulated value I 

- - - predicted value 

.....!GU'-I .. PEP .. 

2.5 

-

3 

The full parameter set for the yeast model consists of 55 parameters. For such a complex model 

the evolved parameter set fits well to the original data and adequately reflects the dynamics of four out of 

the five dependent variables. All the evolved parameters are within the usual parameter values of S­

systems and the model is stable. The dynamics of ATP were not adequately modelled with the evolved 

equation being essentially a linearization of the data points. This is still acceptable since the A TP 

equation is particularly complex with 15 parameters. The other four equations are a good fit t6 the data 

with a slight overshoot in F1,6DP and an undershoot in G6PD. For simpler models as the feedback 

example used in the previous section a virtually perfect fit was obtained (data not shown). For complex 

models the use of structural constraints could improve the optimization results (see 6.6). 

6.6 Conclusion and Future Work 

Modelling is an important component of systems studies. In this chapter we described SimArray, 

a tool for modelling genetic and biochemical networks. The main points of SimArray are: 

1. A graphic design tool which reduces construction of networks to a simple 'point and click' 

process. 
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2. Automatic inference of differential equations from the network graph. This eliminates the need of 

manually building the equations from the graph which is a time consuming task and could also 

prove to be appealing to users less mathematically disposed. 

3. Models are constructed as S-systems which always use the same rigid structure, have a solid 

theoretical framework, are capable of representing almost any system and have been widely 

used in the analysis of biochemical systems (Voit 2000). 

4. The most widely adopted tool for working with S-systems is PLAS which is mathematically 

oriented. SimArray provides a graphical, more intuitive alternative to working with S-systems and 

includes an Evolutionary Computation algorithm for parameter optimization. 

5. Due to the current importance of microarray data in systems studies, the 'theme' adopted 

revolves around the microarray framework. Simulated time-course microarray datasets with 

different noise levels can be generated from model simulations. 

Parameterization of S-systems is a complex task (Voit 2000). SimArray uses a Differential 

Evolution (DE) algorithm for parameter optimization which is an efficient and fast heuristic well suited for 

this type of problem (see chapter 7 for a comparison of different heuristic methods). In 6.5.1 the DE was 

used to parameterize a complex model of fermentation in Saccharomyces cerevisae using steady-state 

and time series data. For the first case, the results show that very good fits to the data were obtained, but 

full model parameterization from steady-state data should be treated with caution as it may not be 

biologically meaningful or stable. This is not surprising, since the level of information is limited in relation 

to the number of parameters. For fitting subsets of parameters constrained by the available data, the 

approach is more reliable. For the second case, a full parameter set evolved that fits well four out of five 

of the time-course data points and adequately models the dynamics of the system. 

Several studies have used simulated data to test network inference algorithms (Thomas et al. 

2004); the simulated microarray datasets provide an easy way of generating simulated data from a well 

defined system which can be used to test these methods and how different levels of noise affect their 

performance. A potential application for SimArray is to bridge modelling studies with microarray studies. 

For example, a pathway of interest can be modelled and the effects of a treatment that inhibits expression 

of a particular gene in the pathway can be studied. Time-series microarray data can be used to tune the 

gene product variables in the model; a good correlation between measured data and simulated data is a 

solid indication that the model adequately explains the biological properties of the system, which allows 

further studies without the need of additional experimental data or, alternatively, can suggest further 

experiments worth pursuing. 

Future extensions to SimArray include: 

• Import/export capabilities to SBML (Systems Biology Markup Language) format, an XML­

based language which allows the different tools to exchange models (Hucka et al. 2003; 

Hucka et al. 2004). 

• Extend the sensitivities analyses functions to include how changes to independent variables 

and parameters affect the flux of dependent variables. 

• In the current version parameterization constraints are limited to numerical upper and lower 

bounds; structural model constraints will be included, as for example, precursor - product 

relationships. 
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• S-systems have traditionally been used in modeling biochemical systems but have been used 

in other fields such as economics (Chaudhuri & Johnson 1990); a modified SimArray without 

the microarray thematic will be released to cater for a broader audience. 

• Flow modulators in the graphs are not defined as activation or inhibition; thus the S-systems 

equations exhibit the component in the production and degradation terms of the modulated 

variables. Implementing positive and negative modulation will allow the simplification of 

equations and removal of neutral terms. 
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7.1 Introduction 

Reconstruction of genetic networks and biochemical pathways is an important research topic in 

bioinformatics (De Jong 2002). High throughput molecular techniques are rapidly improving and providing 

data sources that would be untenable just a few years ago. These data can be regarded as a measured 

result of the complex interactions between genes and gene products; the reconstruction of these 

interactions is a major challenge for biologists and an important step in furthering our understanding of 

biological processes. 

Many different approaches have been used for modelling biological processes (see section 2.3.1) 

with systems of differential equations (SDEs) arguably the most widely adopted method for modelling 

complex non-linear systems. SDEs model the differential relationships between the components of the 

system. The reconstruction of genetic networks or biochemical pathways involves inverting the problem 

and building the SDEs from time-series data which more frequently than not is more challenging than 

solving the systems themselves. The difficulties mainly arise from the high levels of noise present in time­

series data, particularly microarray data (Schena 2002) which is the most common source of gene 

expression data. Chen et al. (1999) and De Hoon et al. (2002) used SDEs to infer models of gene 

regulatory networks from time-series gene expression data. A further difficulty is caused by the high 

dimensionality of the problem, with many genes and gene products interacting, thus originating many 

possible solutions and local optima. 

A biological process modelled as a system of differential equations can be split up into two main 

components: the structure of the model per se and the parameters such as the constants or the 

coefficients. An efficient Evolutionary Algorithm (EA) to build SDEs from time-series data must be capable 

of constructing the structure of the model as well as defining its parameters. 

Several prior studies have made use of EC methods to build models as systems of differential 

equations and evidenced their advantages over other modelling approaches. Ando et al. (2002) use 

Genetic Programming (GP) to infer the structure of gene network models and least mean square (LMS) 

as a criterion to determine the parameter set. Lanza et al. (2000) and Koza et al. (2001) use GP to evolve 

both the topology and parameters of metabolic pathways. In a recent study the balance slightly pends in 

favour of GP over Evolution Strategies - ES (Streichert 2004). 

Genetic Programming (Koza 1992), is well suited for structure discovery but is not as efficient for 

parameter fitting since parameters are initially randomly created and new values can only evolve as 

mathematical functions of the original values. This characteristic of GP makes parameter values 

ephemeral since mutation and recombination operators can easily disrupt a good parameter. Add to this 

the need of allowing for deeper trees to evolve efficient parameters which can increase bloating of the 

entire function and the chance that the solution will get stuck in local optima due to inefficient 

parameterization. Differential Evolution - DE (Storn & Price 1997) is an efficient and robust heuristic for 

parameter optimization of continuous spaces (see chapters 3 and 6) but it is not adequate for model 

structure prediction. 
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A hybrid GP for structure discovery of a system of differential equations with an embedded 

Genetic Algorithm (GA) for the parameter optimization was proposed by Cao et al. (2000). Another hybrid 

approach using Linear Genetic Programming (LGP) with Evolution Strategies (ES) was proposed by 

Francone and Deschaine (2004). In this chapter a hybrid EC method is introduced to evolve models of 

biological processes as systems of differential equations and co-evolve a set of parameters for these 

models from time-series data. Gene Expression Programming - GEP (Ferreira 2001), a GP variant is 

used for model inference with an embedded DE for model parameterization. A simple method for 

reducing bloat in GEP - growth in the length of organisms which does not necessarily reflect an 

improvement in their respective fitness (see 7.4.4) - is also presented. Simulated time-series datasets 

derived from two models of the lac operon in E. coli (Mahaffy & Savev 1999; Yildirim & Mackey 2003) are 

used to evaluate the effectiveness of the hybrid algorithm. The main points of this chapter are to 

empirically evidence: 

1. The construction of SDEs which closely predict the time-series data. 

2. The inference of the model structure with the correct relationships between variables. 

3. Efficient determination of an appropriate parameter set. 

4. That the hybrid method is superior to GEP alone. 

5. That bloat can be significantly reduced through our approach. 

The remainder of the chapter is organized as follows. In section 7.2 a brief description of the lac 

operon and the models used to generate the time-series data is presented. Section 7.3 is a general 

overview of Gene Expression Programming. Differential Evolution was previously discussed in chapter 3 

and the reader is referred to that chapter for details of the algorithm. In section 7.4 we discuss the hybrid 

algorithm and the bloat reduction method; a computational tool developed to compare different 

Evolutionary Algorithms and which implements the hybrid algorithm is briefly overviewed. In section 7.5 

the effectiveness of the method is tested in the reconstruction of two models of the lac operon. Some 

conclusions are discussed in section 7.6. 

7.2 Lac Operon in Escherichia coli 

The most widely studied example of positive feedback is the lac operon in E. coli. The biological 

theory of feedback dates to the late 50s with the work of Jacob and Monod and was a breakthrough in 

evidencing gene regulation. Currently gene expression measurements (microarrays) are the most 

widespread source of data and, for this reason, models of genetic networks in which the primary source 

of gene regulation is through the control of transcription rates, become highly important. 

In the absence of external glucose the lac operon (figure 7.1) is responsible for the intake of 

external lactose into the cell and for breaking it down into glucose and galactose. E. coli preferentially 

uses glucose as an energy source and the genes of the lactose cycle are not expressed. Inhibition is 

obtained through a repressor enzyme (coded by gene ~ bound to a 24 nucleotide operator mainly 

downstream from the promoter region of the three structural genes that form the operon. While the 

repressor is bound to the operator, RNA polymerase is incapable of binding to the promoter and 

transcribing the downstream genes. Alongside the operator the operon consists of three structural genes 

Z, Yand A which respectively translate into the proteins ~-galactosidase, permease and thiogalactoside 

transacetylase. Hydrolyses of lactose into glucose and galactose is carried out by ~-galactosidase. 

Lactose is transported into the cellular environment by the permease. The third protein, thiogalactoside 
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transacetylase, does not seem to be involved in the lactose cycle. If glucose is available the lactose 

metabolism is suppressed since glucose inhibits permease and lactose does not enter the cell. 

The repressor, coded by gene I just upstream from the operon, is a homotetramer protein with 

binding sites to the operator and to allolactose. When allolactose, an isomer of lactose, binds to the 

repressor it promotes a conformational change of the homotetramer which can no longer remain bound to 

the operator thus exposing the promoter region to RNA polymerase which will transcribe the three genes 

as a single mRNA (Griffiths et al. 2000:336-343). Figure 7.1 summarizes the dynamics of the lac operon. 

Figure 7.1 Schematic representation of the lac operon in E. coli. In the absence of lactose the repressor binds to the 
operator and inhibits transcription (upper half). In the presence of lactose, the repressor binds to allolactose, changes its 
conformation and can no longer bind to the operator, thus freeing transcription of the structural genes Z, Yand A by RNA 
polymerase (lower half). 

Repressor bound to operator 
No transcription 

Repressor bound to allolactose 
Promoter free - transcription 

f3-galactosidase 

11 ,., 
.-. Repressor (coded by gene I) 
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Several mathematical models were developed to analyse the dynamics of the lac operon. In this 

work we use the models of Mahaffy and Savev (1999) and Yildirim et al. (2004) to generate simulated 

time-series datasets of the dynamics of the lac operon. These models were selected because they 

consider transcriptional and translational delays, an important factor that is not taken into account in other 

models. 

The first model consists of four differential equations (7.1), respectively for the concentrations of 

mRNA (dMldt) with a delay for transcription and translation; permease (dPldt) , ~-galactosidase (dBldt) 

and lactose (dUdt). There are eight parameters in the model (table 7.2; Mahaffy & Savev 1999). 

dM 1 +k1yf 

dt 1 + yf 
dP 
dt =YI-b2Y2 

dB 
- = r~YI -b3 Y3 dt . .. 

dL 
-=SY2 - Y3Y4 dt . 

(7.1 ) 

The second model consists of three differential equations (7.2), respectively for the 

concentrations of mRNA (dMldt) , ~-galactosidase (dBldt) and allolactose (dA/dt). Delays are used to 

model the dynamics of mRNA and ~-galactosidase. The concentration of internal and external lactose are 
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assumed to be close to the steady state across the membrane with a direct one-to-one relationship and 

the concentration of permease is constant. With these assumptions lactose and permease do not have to 

be considered in the model. There are a total of seventeen parameters in the model (table 7.3; Yildirim et 

al. 2004). 

dM l+k(e-PiM A)n_ 
--=a I ™ -Y M 

dt M k+k(e-PTMA)n M 
I TM 

(7.2) 

7.3 Gene Expression Programming 

Gene Expression Programming - GEP (Ferreira, 2001; Ferreira 2002) is a variant of Genetic 

Programming that instead of coding structures as non-linear entities, typically parse-trees in GP, uses 

linear strings of fixed size which are translated into non-linear entities of different sizes and structures. 

This two-step approach allows GEP to be viewed as a hybrid between Genetic Algorithms and Genetic 

Programming. GEP has essentially three main advantages over GP. Firstly, it allows implementation of 

the straightforward search methods common to GAs whilst maintaining the structural complexity 

attainable through GP. Secondly, all linear strings either code for valid structures or can be repaired with 

little overhead; such is not the case with GP where the parse-trees can easily breakdown into invalid 

structures and complex search operators must be used to ensure tree viability. The need to preserve 

valid tree structures limits search operators mainly to recombination between tree branches of the same 

arity. The third advantage of GEP is that it allows for more parsimonious solutions in contrast to GP 

where the entire parse-tree is the solution and the tendency is to bloat the tree to the maximum allowed 

size once the population stops evolving. 

The linear strings of fixed size in GEP are referred to as chromosomes. Each chromosome has n 

genes with a head and a tail. The head consists of terminals and functions and the tail only of terminals. 

Terminals are numerical variables or constants, and functions are mathematical operators. The size of 

the head is a user-defined parameter while the tail is a function of the size of the head as defined in 

equation 7.3. 

t=h(n-l)+l (7.3) 

Where t is the tail size, h is the head size and n is the highest arity of the set of functions. 

Each gene (h+t) can be translated into an expression tree (ET) from the coding region of the 

gene, referred to as an open reading frame (OR F) in a loose biological analogy. An ORF can be of the 

same size of the gene or smaller, in the last case there are non-coding regions downstream of the gene. 

The size of an ORF depends on the position and relationships between functions and terminals on the 

gene. This is a simple matter of looking at each position on the gene starting from zero and if in that 

position there is a function its arity is added to a counter. When the counter value becomes smaller than 
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the current position all terminal nodes in the ET are filled with terminals and no further functions can be 

added to the ET. 

In summary a GEP structure consists of a chromosome with genes of fixed size which code for 

ORFs of variable sizes that are translated into expression trees (ETs). Search operators act on the gene 

structure (genotype) while selection acts on the expression trees (phenotype). 

To illustrate these concepts consider equation 7.4. 

y = (a + b) * (c - d) (7.4) 

This simple algebraic expression can be split into a set of terminals T={a,b,c,d} and a set of 

functions F={+,*,-). This equation can be represented as the ET in figure 7.2. 

Figure 7.2 Expression tree of equation y = (a+b)*(c-d). Tenninal set T={a,b,c,d) and function set F=(+,*,-}. 

The ORF for this equation can be constructed copying the values of the nodes from top to bottom 

and from left to right, resulting in the string { * + - abc d}. Figure 7.3 shows an example of this ORF as 

part of a gene of size 21. The head size of this gene is 10 and consists of terminals and functions. The tail 

(in bold) is formed exclusively with terminals and, from equation 7.3, is of size 11 since the function of 

highest arity is two. Note that the break off point in the gene is position 6, since in this position the total 

arities of the functions add up to 6 and the total number of elements is 7. Evidently from figure 7.2 it is 

clear that no further function could be added to the expression tree. Thus a gene of size 21 can code for 

an ORF of size 7. 

Figure 7.3 GEP gene of size 21 with head (h) of size 10 and tail (t) of size 11. t = h(n-1)+1. The highest arity of the function 
set is 2, thus n = 2. 

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

* + - abc d * a abc c d d d b b a 

At this point it should be clear that the tail is important to ensure integrity of the tree structure. By 

having a tail with only terminals, even if the head is solely fonned of functions, there are enough terminals 

available to form complete trees with terminals in the outer nodes. In this scenario the gene and the ORF 

are of the same size. The value of the function with the highest arity is important to ensure tails with 

sufficient terminals for any combination of functions. 

The distinction between head and tail is an important component of GEP. Tail integrity (only 

terminals in tail) must be preserved and search operators need to be used accordingly. GEP uses a wide 

range of search operators: mutation, Insertion Sequence transposition, Root Insertion Sequence 

transposition, gene transposition, one and two-point recombination and gene recombination (Ferreira 

2001). 
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To illustrate how search operators can modify the structure of ETs yet still preserve structure 

integrity the mutation operator is considered. Mutation randomly changes the value in a gene position 

with another value given a certain probability. Since gene structure must remain intact, mutation in the 

head can replace the original value with either a terminal or a function; in the tail section only terminals 

can be used. Figure 7.4 shows a point mutation in position 4 in which a terminal (b) was replaced by a 

function (j, as a result instead of the ORF of length 7 a new ORF of length 15 is created. A new 

expression tree is created and the resulting equation is also very different. Notice that tree viability is still 

preserved. 

Figure 7.4 Effect of mutation on the GEP structures. A single point mutation can completely change the size of ORFs, the 
ETs and the final product. In position 4 a terminal (b) mutated to a function (*) as shown in Gene B. From this mutation a 
new ORF was created of size 15 (shaded grey) replacing the original ORF of size 7, and a new tree (new segments shaded 
grey). The final products are shown under Equation. Talis in bold font. 

Gene 

~ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

* + - abc d * a abc c d d d b b a 

B ~ : ~ : ~ : : : ~ 9 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 2: 
ORF 

~ 0 1 2 3 4 5 6 

* + - abc d 

B 0 1 2 3 !~ .• ~. 5 6 7 8 9 10 11 12 13 14 

* + - a h c d * a abc c 
,.' .. --------_._----

Expression Tree (ET) 

Equation 

~ A=(a+b)*(c-d) 

B B=(a+((c-c)*a)*(a-b»)*(c-d) 

7.4 Hybrid Evolutionary Algorithm 

Genetic networks and biochemical pathways modelled as systems of differential equations have 

two main components: the mathematical structure of the equations and the parameters of the model. 

GEP is efficient in structure discovery but Jess adequate for parameter optimization. Ferreira (2003) 

presents methods for creating numerical constants in GEP but, within the scope of the models tested in 

this work, the hybrid algorithm proved superior to GEP alone (section 7.5). For parameter optimization 

there is a wide range of heuristic methods available: hill climbing, simulated annealing, evolution 
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strategies, genetic algorithms and their various branches (Michalewicz & Fogel 2000). Differential 

Evolution - DE (Storn & Price 1997) is a simple and robust heuristic for parameter optimization (see 

chapter 3) and more efficient than other methods in the test cases of this work (section 7.5). 

A novel hybrid evolutionary algorithm was developed that incorporates the capacity of Gene 

Expression Programming to construct model structures added to the robustness of Differential Evolution 

in parameter optimization. 

7.4.1 Hybrid Differential Evolution and Gene Expression Programming Algorithm 

A simplified version of the hybrid algorithm is depicted in table 7.1. Initially random values are 

assigned to a given set of variables within the constraints defined by the user. Fully unconstrained values 

can also be used but tend to increase the search times. The algorithm iterates between GEP and DE by a 

user-defined number of iterations. 

Table 7.1 Simplified algorithm of the hybrid method using Differential Evolution and Gene Expression Programming. 

Initialize random values for variables within user-defined constraints 
Do until (termination criterion) 
{ 

Iteration i 
{ 

GEP 
Initialize random population of models 
Replace chromosome 0 with best model 
Do until GEPGeneration = GEPMaxGenerations 
{ 

} 

Select 
Crossover 
Mutate 
Evaluate 
Replace 
Generation++ 

If (GEP Best Model Improves Fitness) 
Replace model with best model from GEP 

Else Keep original model 

Bloat Reduction Method 

DE 
Use Best Model to optimize variables 
Initialize random population of variables within constraints 
Replace chromosome 0 with best variables 
Do until DEGeneration = DEMaxGenerations 
{ 

} 

Select 
Crossover 
Mutate 
Evaluate 
Replace 
Generation++ 

If (DE Best Values Improve Fitness) 
Replace variables with best values from DE 

Else Keep original variables 
i++ 

For the first iteration a random population of models is generated using the initial variable set. 

GEP is used to select better models. At the end of the GEP run the best model is selected, simplified 

through a bloat reduction method (7.4.3) and used as the model for the DE to optimize the variable set. At 

the end of the DE run if the optimized variable set has a higher fitness than the original set it replaces it. 
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From the second iteration onwards, the GEP run will use the optimized variable set. The initial 

populations of GEP and DE are randomly generated apart from chromosomes zero, into which is 

respectively copied the current best model and the current best variable set, thus ensuring that the next 

round starts at least at the current best solution. 

7.4.2 Selection and Search Operators in Gene Expression Programming 

Originally GEP uses roulette wheel selection (Ferreira 2001). In this work the currently preferred 

tournament selection is adopted since it permits better control of the selective pressure and allows for a 

smoother evolution (Hancock 2000). 

Several search operators are used in GEP (Ferreira 2001). Our GEP operators detract from the 

original set. This choice was based on better convergence in the considered test cases (data not shown) 

or simple computational efficiency. The operators can be subdivided into mutation and recombination. 

Two types of mutation are employed: point mutation and block mutation. Point mutation replaces 

a single position with another random element from the function or terminal set in the head or just from 

the terminal set in the tail (Ferreira 2001). Block mutation replaces a randomly defined number of 

positions (up to 20% of the gene size) with new random elements; again, maintaining tail integrity. The 

probability of block mutation is set at 10% of the point mutation probability. 

Recombination consists of one, two and three-point crossover, with an equal probability for each 

method. One-point crossover cuts both parents at the same position and the remainder of the gene 

downstream from the cut point is swapped to form the offspring. Two-point crossover selects a block of 

the same size, starting at the same position in both parents and this block is swapped in the offspring. 

Three-point crossover is a simple extension of two-point crossover where instead of one block being 

swapped, two blocks are swapped (notice that for three-point crossover four cut points are necessary). 

The first two methods are common operators in GEP (Ferreira 2001), the third is a new extension used in 

our implementation. Three-point crossover is the most disruptive operator employed and is used to 

replace transpositions, gene recombinations and gene transpositions which were excessively disruptive 

for these test cases and not implemented in the final algorithm. 

7.4.3 Fitness and Objective Functions 

The fitness and objective function selected are on a direct one to one mapping and henceforth 

referred to only as fitness. 

Since the hybrid algorithm is geared to finding models of differential equations that reflect the 

dynamics of a biological system and since the primary source of information considered are time-series 

measurements of quantities of the components of the system; the fitness function is a measurement of 

goodness of fit between the predicted values of the model at a given time and the observed values. 

Equation 7.5 depicts the fitness function. 

~m 2 
L,.,J·(X·· - Y ) 

f = -1 * L~ .I U 2 ij (7.5) 

ax; 
Where the upper term is the sum of the squares of differences between the observed (xij) and 

predicted (Yij) values at time point j and the lower term is the variance of the observed data (Xi) for each 

component (/) of the system. The use of the variance in the lower term scales the sum of squared 
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deviations so that excessive emphasis is not given to a particular equation in detriment of the others. 

Fitness is treated as a maximization problem with worse solutions having highly negative values (due to 

the minus one multiplier) and the better organisms having values closer to zero, which is the maximum 

fitness. 

Even though GEP will mostly yield valid trees, it still is possible that non viable structures will 

appear. These could be a division by zero or the square root of a negative number. These invalid 

organisms are assigned a highly negative fitness value. The same approach is employed for unstable 

equations that overflow. 

Fitness evaluation is the most time consuming aspect of the algorithm. A modified Euler method 

with a fixed step-size of 0.01 is used. According to Cao et a/. (2000) this step-size is the best trade-off 

between accuracy of solutions and computational effort. 

A scenario where tree structure can break down is with the use of time-delays in differential 

equations. A time-delay can be viewed as an operator that takes two arguments, on the right-hand side a 

list of the concentrations of a component over time and on the left-hand side a delay (t-T), and returns the 

concentration at the delay point. For incorrectly placed time-delay operators instead of assigning a low 

fitness value, the GEP string is repaired to ensure a viable solution. Repair is carried out probabilistically, 

either replacing the time-delay operator with another randomly selected operator or replacing the right­

hand side with a concentration and the left-hand side with a valid delay. 

A last aspect of the fitness function is constraint-handling. If parameter constraints are defined, 

values that do not meet the constraints are replaced with the average value of the constraint range 

defined for the parameter, instead of penalizing the entire function. This approach ensures that a higher 

proportion of the population is formed of organisms that meet the constraint criteria. 

7,,4.4 Bloat 

Bloat is a common phenomenon in Evolutionary Algorithms of variable length, particularly 

Genetic Programming and its variants. This essentially is the growth in the length of organisms which 

does not necessarily reflect an improvement in their respective fitness. Frequently the growth consists of 

regions that do not alter the structure of the solution giving raise to inert regions referred to as introns. An 

example is long trees attached to an addition branch that result in zero do not alter the value of the 

solution (figure 7.5). 

Figure 7.6 Bloat. The shaded tree is inert and does not alter the final value of the organism. A) A bloated parse-tree with 16 
nodes. B) The same tree can be reduced to 6 nodes. 
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A common cause of bloating in Evolutionary Algorithms is attributed to convergence. If the 

algorithm ceases to find better solutions or evolution slows down, there will be a greater number of similar 

solutions and the entire population tends to grow to the maximum allowed size (Langdon & Poli 

2002:193-217). 

Several approaches have been suggested to reduce bloat. Common techniques include 

maximum size and tree depth limits (Koza 1992) used in almost all GP applications, a fitness function 

weighted by the size of the solution (Banzhaf et al. 1998) and code editing to identify non-coding regions 

and prune them out (Blickle 1996). 

In this work two methods to reduce bloat in GEP are adopted. The first approach is the common 

maximum total size limit with no depth limit. The second, more interesting approach, involves the use of a 

pruning routine at the end of a GEP round before the model parameters are optimized using DE (table 

7.1). The pruning routine removes inert structures and replaces subtrees of variables with a single 

variable thus generating more parsimonious trees without loss of accuracy. This simple approach 

significantly reduces the length of solutions (see section 7.5). 

7.4.5 Computational Tool for Evolutionary Algorithms 

A generic C# object-oriented computational tool was developed to allow testing the performance 

of the hybrid algorithm as well as comparing it to GEP for the considered test cases (figure 7.6). The tool 

is designed to be easily extensible to include other EAs and heuristic methods besides the ones currently 

available. 
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Figure 7.6 Evolutionary Computation Methods Tool. A C# tool that implements the hybrid DE-GEP algorithm. The tool also 
allows comparison of the efficiency of the hybrid approach to other heuristic methods. In the example Differential 
Evolution was used to find the values of five variables that, solving for the given equations fit the data in the columns 
(columns with no asterisks - given values, columns with asterisks - predicted values). 

~ 4 
23.30. .. . 23.30 ... -5690 ... -5690_ .. 3168 .... 3168 .... 76.45 ... 76.45 ... 
24.30.:. 24.30 ... -5691... -5691... 6336 .... 6336 .... 152.9 .. : 152.9 ... 
25.30 ... 25.30 ... ·5692 ... -5692 ... 9504 .... 9504 .... 229.3. .. 229.3 ... 
26.30 ... 26.30 ... ·5693. .. ·5693. .. 1267 ... 1267 ... 305.8 ... 305.8 ... 
27.30 ... 27.30 ... -5694 ... -5694 ... 1584 ... 1584 ... 382.2 ... 382.2. .. Equations: 
28.30 ... 28.30 ... -5695 ... -5695 ... 1900 ... 1900 ... 458.7... 458.7 ... .'11 = x + vl + v2 + log10 (15) • vl 
29.30 ... 29.30 ... -5696 ... ·5696 ... 2217 ... 2217 ... 535.1... 535.1 ... .'12 = v3 • v4 • 5 I 7 - x 
30.30 ... 30.30 ... ·5697 ... -5697 ... 2534 ... 2534 ... 611.6 ... 611.6 ... .1'3 = (vl + v2) x (v3 + v4) • x 
31.30. .. 31.30 ... -5698 ... -5698. .. 2851... 2851 ... 688.0 ... 688.0 ... .'14 = x I v5 A v2 
32.30 ... 32.30 ... -5699 ... -5699 ... 3168 ... 3168 ... 764.5 ... 764.5 ... .1'5 = sqrt v4' (v5 -v2) + logn x 
33.30 ... 33.30 ... -5700 ... -5700 ... 3484 ... 3484 ... 841.0 ... 841.0 ... 
34.30 ... 34.30 ... -5701... -5701...' 3801... . 3801 ... 917.4 ... 917.4 ... Number of Equations: 5 
35.30 ... 35.30 ... -5702 ... -5702 ... 4118. .. 4118 ... 993.9 ... 993.9 ... Number of Constants: 3 

36.30 ... 36.30 ... -5703 ... -5703. .. 4435 ... 4435 ... 1070 .... 1070 .... N umber of Variables: 5 

37.30. .. 37.30 ... -5704 ... -5704 ... 4752 ... 4752 ... 1146 ... 1146 .... Function of X: Yes 

38.30 ... 38.30 ... -5705 ... -5705 ... 5068 ... 5068 ... 1223 .... 1223. ... 
Y on right hand side: No 

39.30 ... 39.30 ... -5706 ... -5706 ... 5385 ... 5385 ... 1299 .... 1299 .... Constants: 
40.30. .. 40.30 ... -5707 ... -5707... 5702... 5702 ... 1376 .... 1376 .... Cl: 15 
41.30 ... 41.30 ... -5708. .. -5708: .. 6019 ... 6019 ... 1452 .... 1452 .... C2: 5 
42.30 ... 42.30 ... -5709 ... -5709 ... 6336 ... 6336 ... 1529 .... 1529 .... C3: 7 
43.30 ... 43.30 ... -5710 ... -5710 ... 6652 ... 6652 ... 1605 ... 1605 .... 
44.30 ... 44.30 ... -5711... -5711... 6969 ... 6969 ... 1682 .... 1682 .... 
45.30 ... 45.30 ... -5712 ... -5712 ... 7286 ... 7286 ... 1758 .... 1758 .... 

24 46.30 ... 46.30 ... -5713. .. -5713 ... 7603. .. 7603. .. 1834 .... 1834 ... 
25 47.30 ... 47.30 ... -5714 ... -5714 ... 7920 ... 7920 ... 1911... 1911.... Results: 
26 48.30 ... 48.30 ... -5715 ... -5715 ... 8236 ... 8236 ... 1987 ... 1987 .... 

Fitness: -,. 95899550383868E -, 7 27 49.30 ... 49.30 ... -5716 ... -5716 ... 8553 ... 8553. .. 2064 ... 2064 .... 
28 50.30 ... 50.30 ... -5717 ... -5717 ... 8870 ... 8870 ... 2140 .... 2140 .... .1'1: -2.10415456802002E-18 

29 51.30 ... 51.30 ... -5718 ... -5718 ... 9187 ... 9187 ... 2217 .... 2217 .... .1'2: -3. 931 1 5538639063E -25 
.'13: -6. 77038073769276E -18 

30 52.30 ... 52.30 ... -5719 ... -5719 ... 9504 ... 9504 ... 2293 ... 2293 .... .'14: -1.4401792975409E -18 
31 53.30 ... 5330 ... -5720 ... -5720 ... 9821.. 9821... 2370 .... 2370 .... .'15: -9. 27524004201763E -18 
32 54.30 ... 54.30 ... -5721 ... -5721... 1013. .. 1013. .. 2446 ... 2446 .... 
33 55.30 ... 55.30 ... -5722 ... -5722 ... 1045 ... 1045 ... 2523. .. 2523 ... Values of variables: 
34 56.30 ... 56.30 ... -5723 .. -5723. .. 1077... 1077. .. 2599 ... 2599 .... Vl: 10.0000000007968 
35 57.30 ... 57.30 ... -5724 ... -5724 ... 1108 ... 1108 ... 2675 .... 2675 .... V2: 0.54300000001 1739 
36 58.30 ... 58.30 ... ·5725 ... -5725 ... 1140 ... 1140 ... 2752.. .. 2752 .... V3: -24.5100000029052 
37 59.30 ... 59.30 ... ·5726 ... -5726 ... 1172 ... 1172. .. 2828 .... 2828 .... £ V4: 324.999999985956 

• V5: 0.00034000000005897 ~ 

The current version allows for two classes of problems: discovery and parameterization of 

functions f(x) and differential equations dxldt. Input data - the data for which a function and parameters 

are sought - consists, for the first class, of values for x and the respective values for each function f(x). 

For the second class, data consists of time points and measured values of the components at each time 

point. 

The user can select between using only a parameter optimization method (from Random Search, 

Stochastic Hill Climbing, Simulated Annealing, Genetic Algorithms, Differential Evolution and Evolution 

Strategies) with user defined equations (input as a plain text file) or, alternatively, the iterative method 

described in section 7.4.1 with GEP for model discovery. Even though emphasis is given to the hybrid 

method using DE and GEP, the tool allows the use of the hybrid approach with any available combination 

of parameter optimization heuristics and structure discovery methods. A third possibility is to use just a 

Genetic Programming variant to construct and parameterize the model. 

Each heuristic method has its own set of parameters and these can be defined by the user 

through the Settings panel (right-hand side on figure 7.6). Further settings include definition of constants, 

variables, constraints on variables and the function set (operators). 

7.5 Hybrid Algorithm in Model Discovery and Parameterization 

Two mathematical models of the lac operon (see 7.2) were used to test the efficiency of the 

hybrid algorithm. A dataset was generated for each model using the parameters summarized in table 7.2 
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for the model of Mahaffy and Savev (1999), henceforth referred to as Modell and table 7.3 for the model 

of Yildirim et al. (2004), which will be referred to as Model II. These parameters are the same ones as 

used by the respective authors. The first dataset consists of a sampling of 40 points of the concentrations 

of mRNA, permease, ~-galactosidase and lactose taken over forty minutes from Model I. The second 

dataset consists of 40 measurements of the concentrations of mRNA, ~-galactosidase and allolactose 

sampled over a twenty minute time interval from Model II. At respectively forty and twenty minutes both 

models are very close to their steady states. 

Table 7.2 Parameters for Modell of the lac operon from Mahaffy and Savev (1999). The parameters are not expressed in 
units since they are not derived from biological experimental data. 

Parameter Value 
k1 5 
T 0.86 

b1 
b2 2 
b3 0.1 
r3 0.1 

S 1 

P 2 

Component Initial Value 
mRNA 1 

permease 

~-galactosidase 

lactose 

The parameters of Model I are not expressed in units since they are not derived from 

experimental data, consequently they must be viewed purely from a mathematical standpoint (Mahaffy & 

Savev 1999). The same does not apply for Model /I, where the authors went to great lengths to estimate 

biologically significant parameters which as closely as possible reflect experimental data (Yildirim & 

Mackey 2003; Yildirim et al. 2004). 

Even though Modell consists of four equations (equation 7.1) while Model /I has three (equation 

7.2), the later is a more complex model in regards to the structure and parameterization (tables 7.2 and 

7.3), with eight parameters more than Modell and all with different values whilst the first model has five 

numerical parameter values (three values are repeated). The parameter search space for Model /I is also 

much broader. 
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Table 7.3 Parameters for Model II of the lac operon from Yildirim et al. (2004). The parameters used were estimated from 
experimental data and closely reflect biological values. 

Parameter Value 

j.I 3.03e-02 min-1 

aM 9.97e-01 j.lMmin-1 

as 1.66e-02 min-1 

aA 1.76e+04 min-1 

VM 0.411 min-1 

Vs 8.33e-04 min-1 

VA 1.3Se-02 min-1 

n 2 

K 7200 

Kl 2.S2e-02 (j.lMr2 

KL 9.70e+02IJM 

KA 1.9Se+03IJM 

~A 2.1Se+04 min-1 

1M 0.1 min 

1s 2min 

L SOIJM 

Component Initial Value 

mRNA 4.6e-4 IJM 

~-galactosidase 1.2e-3IJM 

allolactose 4.271JM 

7,.5.1 Comparison of Differential Evolution with Other Heuristic Methods 

Our first approach was to compare model parameterization efficiency of Differential Evolution with 

other heuristic methods for the lac operon models. To ensure results are comparable, each method 

performed the same number of fitness evaluations (10,000 for Model I and 5,000 for Model I~ not 

considering the evaluation of the initial populations. At these numbers of iterations a method might not 

have converged on a solution, but it is sufficient to provide a clear indication of efficiency within 

reasonable computational times. Table 7.4 summarizes the parameter settings for each heuristic. These 

parameters were selected based on published settings and the results of preliminary runs. 

Table 7.4 Parameter settings for the heuristic methods. 

Random Search 

iterations 

Stochastic Hill Climbing 

restarts 

iterations 

neighbors 

closest neighbor 

furthest neighbor 

Simulated Annealing 

restarts 

neighborhood (%) 

retries 

max. temperature 

min. temperature 

cooling ratio 

10000 

10 

100 

10 

0.01 

0.1 

10 

0.1 

10 

0.5 
0.1 

0.01 

Genetic Algorithm 

generations 

population size 

crossover rate 

mutation rate 

tournament size 

Evolution Strategies 

generations 

IJ 
A 

P 

Differential Evolution 

generations 

population size 

crossover rate 

mutation rate 

1000 

10 

0.8 

0.1 

2 

1000 

10 

100 

3 

1000 

10 

0.5 
0.2 
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Ten runs were performed with each method and for each of the two models. Table 7.5 

summarizes the results of these runs. The fitness value is as described in section 7.4.2, note that the 

closer the fitness is to zero the closer the predicted points fit the original data. For each model the 

average fitness of the ten runs and the best found fitness are shown. 

Heuristic Method 

Random Search (RS) 

Stochastic Hill Climbing (HC) 

Simulated Annealing (SA) 

Genetic Algorithm (GA) 

Evolution Strategies (ES) 

Differential Evolution (DE) 

Table 7.5 Comparison of efficiency of heuristic methods. 

Modell Modell Model II 

Average Fitness Best Fitness Average Fitness 

-891.864 -426.721 -422885.120 

-308.016 -187.310 -391.880 

-535.594 -224.687 -273.756 

-183.977 -77.122 -204.117 

-127.346 -96.450 -92.839 

-1.186 -0.002 -62.193 

Model II 

Best Fitness 

-392.133 

-389.456 

-136.406 

-124.913 

-27.917 

-4.287 

As would be expected Random Search (RS) was by far the worst performer, but it still is an 

interesting method that can be used as a benchmark, in the sense that it provides an estimate of how 

good an entirely randomly generated solution can be. RS performed particularly poorly with the more 

complex Model 1/. 

Stochastic Hill Climbing (HC) adapted from Michalewicz and Fogel (2000) is highly dependent on 

the initial randomly generated parameters and can easily get stuck at a local optimum. With Modell/all 

HC solutions got trapped close to the same local optimum. Surprisingly, given its wide spread use in 

optimization problems, Simulated Annealing - SA (Palshikar 2001, with modifications) performed worse 

than HC with the first test case. This inferior result may be due to a smoother fitness landscape of this 

model, with HC not getting trapped so easily at a local optimum. For Model II, SA performed better 

breaking out of the local optima where the HC algorithm got entrapped. 

The other three methods, Genetic Algorithms (GAs), Evolution Strategies (ES) and Differential 

Evolution (DE) are population based heuristics and strictly speaking Evolutionary Algorithms. GAs usually 

are coded as binary strings (canonical GA), in this study a real valued GA was used which is a hybrid 

between GAs and ES, the usual recombination techniques of GAs are used in conjunction with an ES 

derived mutation operator that modifies a parameter value adding to it a sample from a normal random 

distribution N(O, 1). No self-adaptation of mutation rates was used. The ES is of the type (\J/p,J..) adapted 

from Beyer and Schwefel (2002). The three EAs were significantly better than the other heuristics in the 

average of the runs and in the best solution (table 7.5). For Modell the GA's best fitness was higher than 

the best fitness of the ES. Nonetheless the average fitness of ES was higher than the GA's. The range of 

fitness values in ES (-158.415 to -96.4502) was tighter than with the GA (-326.136 to -77.122). 

Repeatability is an important consideration for adopting a heuristic, even if occasionally a method delivers 

an above average solution it is usually preferable to employ a method that yields consistent results, 

evidently without getting entrapped at a local optimum. This is particularly true for the hybrid iterative 

algorithm proposed. The variability in the results of the GA can be attributed to the use of a constant 

mutation rate which does not self-adapt as in ES. For Modell/the best and average fitness of ES were 

significantly better than the GA. 

Of all tested methods DE (see chapter 3 for a description of the algorithm) was by far the most 

efficient heurist, particularly for the simpler Model I. This advantage is less pronounced in Model II which 
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has a steeper and more complex solution space, but it is still highly significant. From these results DE 

was selected as the method of choice for parameter optimization in the hybrid algorithm. 

7.5.2 Comparison of the Hybrid Algorithm with Gene Expression Programming 

In this section the efficiency of the hybrid algorithm is compared to Gene Expression 

Programming (GEP) alone in their ability to construct a model and optimize the parameters for this model 

that most closely fit the simulated data points of the two lac operon models. Five runs were performed for 

each method and for each lac operon model. The parameter settings used are shown in table 7.6. 

Table 7.6 Parameter settings for GEP and the hybrid algorithm. The symbol @ in the function set is the time delay function. 
The concentrations in the variables set are the values of the concentrations over time of each component of the model (4 
in model I and 3 in model II) as estimated by the algorithm. 

Hybrid 
GEP Algorithm 

Generations 20000 Iterations 10 
Population 

Size 100 GEP 
Crossover 

Rate 0.9 Generations 2000 
Population 

Mutation Rate 0.1 Size 100 
Tournament Crossover 

Size 2 Rate 0.9 

Head Size 40 Mutation Rate 0.1 
Tournament 

Tail Size 41 Size 2 

Head Size 40 

Modell Model" Tail Size 41 

Function Set {+,-,*,1.',,@} {+,-, *,1,I\,@} 

Constants Set {0.1,1,10} {0.1,1,1 0,100,1000,1 OOOO,e} Modell Model" 
Variables Set Concentrations Concentrations Function Set {+,-,*,1,I\,@} {+,-,*,I,/\,@} 

Constants Set {1 } {1,e} 
{ 

{Concentrations Concentrations 
Variables Set + + 

1 0 variables} 20 variables} 

DE 

generations 2000 

population size 10 

crossover rate 0.5 

mutation rate 0.2 

GEP is more efficient if numerical constants are left to evolve during the run instead of being 

hardcoded into the terminal set (Ferreira 2003). Thus, only basic building blocks were included in the 

constants set within the range of the parameters used in the models. The hybrid algorithm instead of 

constructing numerical constants uses a set of variables as parameters to optimize during the DE step. 

The number of variables used was selected as being slightly larger than the number of parameters in 

each model. 

As a result of these runs for Modell the best fitness of the hybrid algorithm was -95.481 (average 

-105.292) compared to -219.838 (average -316.684) of GEP, whilst for Model II the best values were 

respectively -20.158 (average -29.669) and -80.885 (average -124.942). 

The hybrid algorithm is clearly more efficient for these test cases than only GEP. A further 

advantage of the method is the size of evolved solutions, with the hybrid algorithm producing solutions on 

average 47.5% shorter than GEP. This reduction can be attributed to the pruning algorithm (see 7.4.3) 

112 



Chapter 7 - Hybrid Evolutionary Computation Algorithm 

and the lack of need to evolve constants from a basic set since the DE optimizes the constants of the 

equations. 

7.5.3 Evolved System of Differential Equations and Parameters for Modell 

Five more extensive runs of the hybrid algorithm were performed using the same parameters of 

table 7.6 with 100 iterations instead of 10. Figure 7.7 shows the fit of the equation set evolved with the 

hybrid algorithm to the original model of the lac operon of the best run. The predicted data and the 

simulated data points are virtually indistinguishable with a fitness value of < -2x10-3
. 

8 
E 

Figure 7.7 Fit of predicted and simulated data points for model I. 
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The simplified and rearranged form of the run is shown in equation 7.6. Where y1 is the 

concentration of mRNA, y2 is permease, y3 is ~-galactosidase and y4 is lactose. The original equations 

(?1) are on the right hand side to facilitate comparisons. 

1 _ 4.9987 Y~-O.64 y~-O.64 + 1 _ 
Y - 1-0.64 1-0.64 1 Y I 

Y4 Y4 + 
y2 = YI -(Y2 + Y2) (7.6) 

y3 = YI /10.1023- Y3 /10.1023 

y4 = Y2 - Y3Y4 

The evolved system of differential equations preserves the structure of the original model with the 

correct production and degradation components and the relationships between the elements. Out of the 

ten available variables for optimization only three appear in the final model. These do not necessarily 

mimic the original parameters but rather are adapted to the evolved equations. An appropriate time delay 
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was discovered even though it is not a perfect match to the original value (0.86) which is the main cause 

of deviation between the simulated and predicted data. 

7.5.4 Evolved System of Differential Equations and Parameters for Model II 

The same procedure as described in 7.6.3 was performed for model II. The fitness of the best run 

was -9.5030, not as good as for model I. Figure 7.8 shows the fit of the evolved system of equations to 

the simulated data. The values of allolactose were divided by 1000 to scale them down to allow for 

visualization on the same graph. 

Figure 7.8 Fit of predicted and simulated data points for model II. Allolactose levels are scaled down on a 1 :1000 ratio. 
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The evolved equations after simplification and rearrangement are shown in eq. 7.7. The original 

equations (7.2) are on the right hand side to facilitate comparisons. 

8.1379-( y3 ) 
y1 = 0.123003 yl+.\'1+8.7614 - y1 

y2 = y1- yl'-O.53614 

y3 = 0.12303 _ (y2o.516968) 

dB --=a e-P'IIM -Y B 
dt B 'II B 

(7.7) 

dA=aB L 
dt A KL + L 

Where y1 is the concentration of mRNA, y2 is ~-galactosidase and y3 is allolactose. Likewise to 

model I out of the 20 available variables only 8 were used in the equations. 

The fit of the predicted values to the simulated data points (figure 7.8) is worse than for model I 

particularly for allolactose, but still a reasonable fit (R2 0.987 - y1, 0.999 - y2 and 0.836 - y3) for such a 

complex model. Changes of the EA parameters may improve convergence to a better fit. Of more 

concern are the equations which do not always reflect the true relationships between the different 
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components of the system as these are of key importance to understand a biochemical pathway or a 

genetic network. 

7.6 Conclusion and Future Work 

In this chapter a hybrid Evolutionary Computation algorithm was developed to infer the structure 

and parameters of biochemical pathways as systems of differential equations. GEP is used for model 

structure discovery with a nested DE for model parameterization. The choice of the latter is based on its 

better efficiency to determine the parameters of the two lac operon models test cases. These results 

conflict with those of Moles et al (2003) which presented evidence that ES is more efficient than DE for 

global optimization. In their work the model to parameterize consisted of 8 differential equations with 36 

parameters while the lac operon models have fewer parameters. The difference between ES and DE was 

less evident in Modell/which has more parameters. Further studies are needed to determine if DE 

becomes less efficient in comparison to ES with models that have a greater number of parameters. 

Further, the focus of our comparisons was on rapid optimization instead of precision. Fast convergence is 

paramount for the hybrid approach so that fewer iterations are necessary to achieve a reasonable set of 

parameters for the GEP to work on. 

The hybrid approach is more efficient than GEP for these models, the predicted data points had a 

better fit to the simulated data and, more importantly, the evolved models more accurately reflected the 

true relationships between the components of the system (data not shown). A further advantage is that 

through the use of a pruning method between iterations bloat is greatly reduced, thus there is less 

premature convergence at local optima and the resulting equations are more tractable and simple. 

Evolutionary Algorithms are computationally intensive but lend themselves well to parallelization 

(Whitley 2001; Alba & Tomassini 2002); with current cluster computing technologies the transition is not 

overly arduous. A future implementation of the hybrid algorithm will allow for parallelization and 

concurrent optimization of parameters which can be fed back into the GEP in real time. An eventual 

drawback of EC methods is the lack of consistency in results; some runs prematurely converge on poor 

solutions whilst other runs are at or close to the global optimum. This inconsistency is closely related to 

the empirical approach used to determine the initial settings which have to be fine tuned to suit different 

problems. Recent advances have been achieved in building a solid theoretical framework for EC 

(Langdon & Poli 2002) but it still is a very active and unexplored field of research. The choice of 

population size, mutation and recombination rates, the terminal and function set and constraints can 

greatly influence the outcome of a run. Further studies are needed to determine ideal parameter settings; 

particularly the size of the terminal set which seems to markedly influence the outcome. In these test 

cases only a fraction of the available terminals were used in the final evolved models but a certain surplus 

seems to be important to allow for an efficient search of the solution space. If the terminal set is too large 

or too small the efficiency of the algorithm was found here to be reduced (data not shown). 

The models used in this study to test the algorithm are more complex than commonly used test 

cases since we wanted to test the efficiency of the algorithm under a more realistic scenario. For model I 

the fit, structure and parameters were very close to the original model, with the evolved model not only 

serving as a predictor but also capable of providing knowledge about the dynamics and interactions of the 

components of the system. For modell/the same does not apply. A reasonable model to fit the data 

evolved but it is not necessarily good at predictions. More importantly, it is mathematically complex and 

115 



Chapter 7 - Hybrid Evolutionary Computation Algorithm 

not informative of the real relationships of the elements and this is significant since the ability of the 

method to reverse engineer pathways and networks seems to decrease with more complex systems, thus 

scalability concerns should be addressed. 

But how do we currently build models of systems such as the lac operon? This is done by 

experimental intervention, and, generally, simple statistical and human interpretation. The approach 

under discussion promises much greater power for the interpretation step. With appropriate manipulation 

of evolved models, it may also help point to new experiments to be carried out that will give most power to 

resolve those points about which most model ambiguity exists. Cycles of incisive experiments and 

powerful interpretation may lead to much faster understanding of biological systems. 

Scalability issues will be addressed in future work. Use of S-systems (Voit 2000; chapter 6) to 

reverse engineer a system could provide a more robust framework since they use a rigid structure that is 

well suited for the DE to parameterize and for GEP to select the components involved in the underlying 

biological process. 
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