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Abstract 

Evolutionary Computation encompasses a large group of stochastic problem solving methods loosely 

inspired on biological evolutionary processes such as selection, mutation and recombination. These 

methods are commonly referred to as Evolutionary Algorithms and all have in common the use of 

populations of candidate solutions which reproduce, compete, and are subjected to selective pressures 

and random variation - the four basic elements of evolution. Some of the best known Evolutionary 

Algorithms include Genetic Algorithms, Genetic Programming and Evolution Strategies. Evolutionary 

Algorithms are suited to optimization of complex non linear problems, making them appropriate to 

optimization of biological problems which are usually complex and non linear. In this thesis Evolutionary 

Algorithms were developed and used to optimize biological problems. For the first problem, Differential 

Evolution was used to optimize nutrition model parameters in beef cattle, predict weight gains and 

formulate rations; results indicate a good fit of predicted values to observed measurements. A second 

problem addressed was the multiple sequence alignment of amino acid and nucleotide residues. A 

Genetic Algorithm was developed and results indicate that the method can improve on Clustal-W 

a.lignments. Genetic Algorithms were also used to optimize the experimental design of spotted 

microarrays. Optimization is treated as a multicriteria problem and the heuristic uses a weighted multi 

objective function to balance conflictive design considerations. Results evidence that, for a given set of 

constraints, near optimal designs can be found that are more efficient than common designs. Differential 

Evolution is also used to parameterize biochemical systems modelled as S-systems differential 

equations, which adhere to a fixed functional form, yet fit well to diverse complex systems. Results show 

that time series data can efficiently parameterize the evaluated models. The last problem evaluated was 

full model discovery and parameterization from time series data. A hybrid Differential Evolution and Gene 

Expression Programming algorithm was developed and compared against other heuristic methods. 

Alongside the development of methods, a major component of this project was the production of 

computational tools that implement the methods; five tools - one for each research topic - were 

developed and are freely available. Evolutionary Computation is a powerful approach to optimization of 

complex biological problems; this is clearly evidenced through the different problems that were addressed 

in this thesis. 

Keywords: evolutionary computation; evolutionary algorithms; gene expression programming; differential 

evolution; genetic algorithms; cattle nutrition models; bioinformatics; computational biology; multiple 

sequence alignment; microarray experimental design; s-systems; delay differential equations; 

biochemical systems; genetic networks. 
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